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Power-law distributions in nature

Distributions of event sizes for many natural phenomena
appear to follow power laws, in some cases over many
orders of magnitude

Examples: earthquakes N ~m-b
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Figure 4.2. Number of
earthguakes per year N
occurring in southern
California with magnitudes
greater than m as a function
of m. The solid line is the
data from the southern
California earthquake
network for the period
1932-1994. The straight
dashed line is the correlation
with (4.1) taking & = 0.923 e ..
(D=1.846)and a = 1.4 X . AT
105, The solid circle is the .
observed rate of occurmence
of great earthquakes in .3
southern California (Sieh 10
et al., 1989). m
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D Turcotte, Fractals and Chaos in Geology and Geophysics, Cambridge, 1997
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Figure 4.1, Worldwide
number of earthquakes per
year, N, with magnitodes
grealer than m as a function
of m. The square root of

the rupture area A is also
given. The solid line is the
cumulative distribution of
moment magnitxdes from the
Harvard Centroid Moment
Tensor Catalog for the period
Januvary 1977 to June 1989
(Froblich and Daviz, 1953).
The dashed line represents
(4.1) with b= 111 (D =

22 anda=6 X100 yr-?,



Figure 4.4. The cumulative
number of earthquakes per
year N occurring in the
Memphis—St. Louis (New
Madrid, Missouri) seismic
zone with magnitudes
greater than m as a function
of m (Johnston and Nava,
1985). The data are for the
period 1816-1983. The
open circles represent
instrumental data and the
solid circles histonical data.
The dashed line represents
(4.1)withb=090 (D=
1.80)and g = 2.24 X 10?
yr-\,

10

10
Qq,_m
=
.y
. ":,“
\-..‘\'
10" .
..
Qe
ﬁ'
1072 T
“.‘

-3 | o [ | | k. |

s 5 4 5 5 7
m



Volcanic eruptions

Figure 4.13. Number of
volcanic eruptions per year
N_with a tephra volume
greater than V as a function
of V for the penod
19751985 (squares) and for
the last 200 years (circles)
{(McClelland ef al., 1989).
The line represents the
correlation with (2.6) taking
D=12114,
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River basins
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Figure 1.6. Basin length versus
area for unchanneled valleys,
SO areas and low-Order
channels tempty circles), Solid
circles are reported data for large
channel networks [after
Montgomery and Owetrich, 19921,

| Rodrigues-Iturbe, Fractal river basins : chance and self-organization
Cambridge University Press, 1997



Forest Fires
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Neuronal Avalanches
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Other examples of scale-invariant (power-law) distributions in nature:
- Solar flares

- Earth's magnetosphere

- Rain and drought intensity/duration

- Stock prices

- Wars

In the laboratory:

- Magnetic domain wall motion (Barkhausen noise)

- Ricepile experiment



Why is the observation of scale-invariant behavior
without parameter tuning a problem?

The systems in which power-law distibutions and 1/f noise are
documented are composed of many interacting units, and as such are
described by statistical mechanics

Statistical mechanics shows that most systems generically exhibit
non-power-law distributions (i.e., Poisson or exponential), with
scale-invariant behavior only at a critical point (a continuous phase
transition)

To reach criticality, one or more parameters (temperature, pressure...)
must be adjusted precisely

Who is adjusting the parameters of Earth's tectonic plates or of
forest-fire propagation?



Self-Organized Criticality

Bak, Tang and Wiesenfeld (Phys Rev Lett,1987) argued that scale-
invariant distributions and 1/f noise could arise without tuning in
systems far from equilibrium, with a threshold for activity and spatial
coupling between elements, when subject to a slow external drive.

Threshold dynamics: The response of each element to
perturbations below a certain value is minimal; strong response or
activity above this threshold

Spatial coupling: When an active element relaxes, it perturbs its
neighbors, which may themselves become active —» avalanches

Slow loss mechanism: When activity reaches the edge of the
system, some is lost

Slow external drive: In the absence of activity, the system is
excited at a rate << rate of relaxation/propagation



Sandpile Models: The BTW Sandpile

Square lattice of LxL sites

Each site (i,j) harbors z(i,j) particles or “sand grains” (z is called “height”)
z(i,j)=0,1,2,3,0r4

If z(i,j) = 4, the site “topples”, transferring one grain to each neighbor:

z(i,J)) — ™0 and z(i+1,j)) »z(i+1,j)) + 1 and similarly for the other
three neighbors of site (i,j)

This may cause other neighbors to topple, and so on (avalanche)

When a site at the edge of the system topples, one (or more) grains
are lost

When all sites have z(i,j) < 4, a new grain is added at a randomly chosen
site — infinitely slow drive
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P Bak, How Nature Works (Springer-Verlag, 1996)



The simple rules of the BTW sandpile give rise to a scale-invariant avalanche-
size distribution in the stationary state, apparently without adjusting any
parameters

P(s; L)

&5

Fig. 3.13 DNumerbcal resulis of the avalanche-size probability, P(=; L), wversus the
avalanche size, 2, for the two-dimensional BTW model on square lattices of =zize
o= 32,128,512, 2 048 marked with lines of increasing dash length. The freqquency of
avalanches decays with size. "T'here is no typical size of an avalanche except for & cutoff
avalanche size which increases with system size.

K Christensen and N R Moloney, Complexity and Criticality, Imperial Coll. Press, 2005



BTW Sandpile

Avalanche-size distribution:
P(s;L) ~ s-Ts G(s/s¢)
with avalanche size exponent 15 = 1.33

and cutoff size S¢ ~ LP, with D = 2.86
But: dissipative and nondissipative avalanches scale differently
BTW sandpile is a deterministic dynamical system

Toppling invariants lead to many conserved quantities, lack of
ergodicity



Stochastic Sandpile Models

Scaling behavior appears to be simpler in the stochastic sandpile
(Manna 1991)

Here z(i,j) = 0, 1, or 2. Sites with z = 2 topple, sending two grains
to randomly chosen neighbors

The stochastic sandpile again features loss of grains at the edges
and addition when there are no toppling sites

This model also produces scale-invariant avalanche distributions,
with somewhat different exponents than the BTW model



Why do sandpile models exhibit scale-free avalanche distributions
without tuning of parameters?

Connection with absorbing-state phase transitions:

The protocol of grain addition (in absence of activity) and loss of
grains at boundaries pins the system at a critical point

(RD, M. A. Munoz, A. Vespignani and S. Zapperi, Braz. J. Phys., 2000)



Phase Transitions
Examples: liquid-vapor, magnetic, binary mixtures...
Formal definition: singular dependence of macroscopic properties
(e.g., density) on control parameters (temperature, pressure)
in a system with a very large number of degrees of freedom
Example: magnetic systems (ferromagnetic/paramegnetic transition)
Control parameters are temperature (T) and external magnetic field (H)
Order parameter: magnetization
At the critical point (zero field, T=Tc) there are long-range correlations:
The correlation function

C(r) = cov[m(r), m(0)]
decays as a power law [m(r) is the local magnetization]

The distribution of cluster sizes also follows a power law



Magnetic Phase Transition
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Minimal description of a magnetic phase transition: the Ising model

“Spins” localized at sites on a lattice interact with their neighbors and
with the external magnetic field

The spin sj at site i can take values of +1 or -1

The energy of the system is

H:ZE[EJ—HZEi

(i) i

For H=0 the minimum-energy configurations have all spins equal.
Using statistical mechanics, one can calculate the magnetization and
other properties as functions of T and H

There is a transition between a disordered phase (m=0) and an ordered
one in dimensions d>1



Ising model: magnetization for H=0
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Ising model: typical configurations at various
temperatures



At the critical point (and only there), the mean cluster size in the Ising model
diverges and the cluster-size distribution follows a power law

Away from the critical point the distribution decays exponentially

This raises two problems:

1. The natural and social systems exhibiting scale-free behavior are
far from equilibrium, as are the sandpile models. Can we observe
critical phenomena in far from equilibrium systems?

2. How can such critical phenomena appear without our having to tune
parameters?

We shall see that (1) it is not difficult to find critical phenomena in systems

out of equilibrium and (2) in the case of an absorbing-state phase transition,
parameter tuning can be hidden.



Absorbing state of a Markov process:
Consider a population of organisms, population size N(t)

N evolves via a stochastic dynamics with transitions from N to
N+1 (reproduction), and to N-1 (death)

N=0 is an absorbing state: if N=0 at some time t, then N(t') =0
for all times t' > t

Systems with spatial structure: phase transitions between
active and absorbing states are possible in infinite-size limit

Of interest in population dynamics, epidemiology, self-organized
criticality, condensed-matter physics, social system modelling...

Processes with an absorbing state are intrinsically far from
equilibrium, as the dynamics is irreversible



Examples of absorbing-state phase transitions:

Directed percolation* (DP) (contact process)
Parity-conserving (branching-annihilating random walks)
Conserved DP (conserved stochastic sandpile)**

*Experiment:Takeuchi et al, Phys Rev Lett 99 234503 (2007)

**Experiment: L Corté, P M Chaikin, J P Gollub and D J Pine, Nature Phys 2008
Transition between reversible and irreversible deformation in sheared colloidal
suspension

General references on absoring-state phase transitions:

J Marro and R Dickman, Nonequilibrium Phase Transitions in Lattice Models,
(Cambridge Press, 1999).

H Hinrichsen, Adv. Phys. 49 815 (2000).

G Odor, Rev. Mod. Phys. 76, 663 (2004)



Contact Process (Harris 1972): a birth-and-death process with
spatial structure

Lattice of Ld sites in d dimensions

Each site can be either active (oj = 1) or inactive (gj = 0)
An active site represents an organism

Active sites become inactive at a rate of unity, indep. of neighbors

An inactive site becomes active at a rate of A times the fraction of
active neighbors

The state with all sites inactive is absorbing

e0® CO® 00 @
® ® ® O
A A2 A2 1

Rates for the one-dimensional CP.



Contact Process: order parameter p is fraction of active sites

Rigorous results: continuous phase transition between active and
absorbing state for d = 1, at some A¢ (Harris, Grimmet...)

Order parameter: p [ ()\—)\C)B

(Mean-field theory: A¢ =1, f=1)

Results for A¢, critical exponents: series expansion, simulation,
analysis of the master equation, €-expansion

Types of critical behavior: static, dynamic, spread of activity
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Order parameter in the one-dimensional contact process:
series expansion analysis



subcritical critical supercritical

Spread of activity in contact process (avalanches)
At critical point avalanche-size distribution is power-law



The contact process is a good example of a critical point in a far from
equilibrium system, but to observe power-law scaling we must adjust
the creation rate to its critical value

Let's consider another simple model, activated random walkers

A Markov process defined on a lattice of L9 sites with
periodic boundaries

Particles perform random walks on the lattice
Let nj denote the number of particles at site i (nj =0, 1, 2,...)

Initially N particles are distributed randomly over the lattice

Dynamics: any site with nj = 2 is active
Active sites topple at a rate of unity, sending two
particles to randomly chosen neighbors

The number of particles remains constant throughout the evolution
( = N/LOI IS a control parameter



Activated random walkers (ARW): when site i topples two particles
jump from i to a nearest neighbor, independently

Examples of topplings in one dimension
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Activated random walkers: any configuration with without active sites is
absorbing

Such configurations exist for { < 1

There is an absorbing-state phase transition at { = { ¢ (= 0.94885 in one
dimension)

Order parameter: P, the fraction of active sites
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Typical evolution of ARW process



As in the contact process, the activated random walkers process exhibits

scale-invariance at the critical point, but o reach this point we must tune (
to its critical value

Now we make two simple changes in the process:

1. Replace the periodic boundary condition with open boundaries
When a site at the edge topples, particles may be lost

2. Eventually the system reaches an absorbing configuration
When this happens a new particle is added at a randomly chosen site

Evidently this converts the ARW process into the Manna sandpile

These changes force the ARW process to its critical point:

If { > { ¢ thereis activity and { can only decrease

If { < ( ¢ activity will stop and { will then increase



Absorbing-state mechanism for SOC: self-organized criticality in a slowly
driven system corresponds to an absorbing-state phase transition in the
model with the same local dynamics, but with strict conservation

Simulations confirm that the critical exponents in SOC and in the absorbing
phase transition are related

As the system size increases, the fluctuations of { in the driven sandpile
are restricted to an ever smaller region centered on the critical density of
the conserved model

The SOC and absorbing “ensembles™ are however distinct
(Pruessner and Peters, Phys. Rev. E, 2006, arXiv:0912.2305)

In deterministic sandpiles, the critical density in the conserved version is
a tiny bit higher than in the SOC version! (Fey et al., Phys Rev Lett, 2010)



In sandpile and related models, an infinite timescale separation between
activity (toppling) and driving is realized by prohibiting addition while
activity is in progress

In natural systems, we can't expect the driving mechanism to “wait” for
all activity to cease before perturbing the system

If the perturbation rate h is very small, scale-free distributions can be
generated over a finite range: the avalanche duration distribution is

cut off at a time ~1/h

This should be fine from an empirical viewpoint!



Alternatives to SOC

In some instances, the validity of power-law distributions have been
guestioned; in others, alternative explanations have been proposed

Example: Scale-invariant rain and drought distributions
Rain event intensity: integrated precipitation over a rainy period
The intensity distribution follows a power law

Peters, Hertlein, and 10°
Christensen, Phys. 0L o
Rev. Lett., 2002 5
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The distribution of time intervals between passage of consecutive raindrops

also involves power laws o war B
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Peters et al suggest the observed power laws are
evidence of SOC in the dynamics of evaporation and
condensation in Earth's atmosphere

Activity: Rapid condensation above a threshold value of
humidity

Slow drive: Energy influx from Sun, causing evaporation
Loss: Rain falling to Earth
Coupling mechanism between nearby regions of

atmosphere not clear - Winds associated with rainfall?
Cold pools?






Alternative model (RD Phys Rev Lett, 2003)

If condensation occurs in localized regions, chaotic advection can
generate power-law distributions of rain intensities at fixed
observation sites

Simple model: two-dimensional fluid with rain treated as passive
tracers, fluid motion generated by a systen of ideal vortices




L

10° 10" 10% 10° 10* 10° 10°

1D'_.'r : 1 IIIIIII| 1 I||||I.IJ 1 IIIIIII| 1 IIIIIII| 1 IIIIIII| 1 IIIIIIII L 11l
10 10" 102 10°  10* 10° 108 107

Figure 4. Rain-size (main graph) and drought-duration (inset) dis-
tributions in systems of vortices of equal strength, T' ~ 0.857.. o
Ny = 10; »: Ny = 20; O: Ny = 50; 4: Ny = 100. The vor-
tex intensity K is scaled ~ 1//Ny in these studies. The straight
lines have slopes of -1.01 (rain size) and -1.13 (drought).

This simple two-dimensional
model yields power-law
distributions but does not
reproduce the observed
exponents (1.36 and 1.42 for
rain intensity and

drought duration, resp.)

It does raise the possibility
that the observed power laws
are due to chaotic advection



SUMMARY

Power-law distributions are observed in many natural and social systems

SOC provides a mechanism for generating scale-invariant behavior without
parameter tuning

The essential ingredients are: (1) a system of many coupled nonlinear
elements having a threshold for activity; (2) a slow loss mechanism;
(3) an even slower external drive

In stochastic models, SOC works by forcing the system to an
absorbing-state critical point

In some instances, alternatives to SOC have been proposed
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