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Power-law distributions in nature                                       

Distributions of event sizes for many natural phenomena 
appear to follow power laws, in some cases over many    
orders of magnitude                                                              

   
    Examples: earthquakes        N ~ m-b                                         

                  

D Turcotte, Fractals and Chaos in Geology and Geophysics, Cambridge, 1997



  



  



  

Volcanic eruptions



  

River basins



  

I Rodrigues-Iturbe, Fractal river basins : chance and self-organization 
Cambridge University Press, 1997



  

Forest Fires

D Turcotte, Rep. Prog. Phys., 1999 



  

Neuronal Avalanches

Beggs and Plenz, J. Neurosci, 2003



  

Other examples of scale-invariant (power-law) distributions in nature:

- Solar flares

- Earth's magnetosphere

- Rain and drought intensity/duration

- Stock prices

- Wars

In the laboratory:

- Magnetic domain wall motion (Barkhausen noise)

- Ricepile experiment



  

Why is the observation of scale-invariant behavior 
without parameter tuning a problem?

The systems in which power-law distibutions and 1/f noise are 
documented are composed of many interacting units, and as such are 
described by statistical mechanics

Statistical mechanics shows that most systems generically exhibit 
non-power-law distributions (i.e., Poisson or exponential), with 
scale-invariant behavior only at a critical point (a continuous phase 
transition)

To reach criticality, one or more parameters (temperature, pressure...)
must be adjusted precisely 

Who is adjusting the parameters of Earth's tectonic plates or of
forest-fire propagation?



  

Self-Organized Criticality  

Bak, Tang and Wiesenfeld (Phys Rev Lett,1987) argued that scale-
invariant distributions and 1/f noise could arise without tuning in 
systems far from equilibrium, with a threshold for activity and spatial 
coupling between elements, when subject to a slow external drive.

Threshold dynamics: The response of each element to 
perturbations below a certain value is minimal; strong response or 
activity above this threshold

Spatial coupling: When an active element relaxes, it perturbs its 
neighbors, which may themselves become active       avalanches

Slow loss mechanism: When activity reaches the edge of the
system, some is lost

Slow external drive: In the absence of activity, the system is 
excited at a rate << rate of relaxation/propagation

 



  

     Sandpile Models: The BTW Sandpile

Square lattice of LxL sites

Each site (i,j) harbors z(i,j) particles or “sand grains” (z is called “height”)

z(i,j) = 0, 1, 2, 3, or 4

If z(i,j) = 4, the site “topples”, transferring one grain to each neighbor:

 z(i,j)         0  and z(i+1,j)       z(i+1,j) + 1 and similarly for the other
three neighbors of site (i,j)

This may cause other neighbors to topple, and so on (avalanche)

When a site at the edge of the system topples, one (or more) grains
are lost

When all sites have z(i,j) < 4, a new grain is added at a randomly chosen
site – infinitely slow drive

  



  

P Bak, How Nature Works (Springer-Verlag, 1996)



  

The simple rules of the BTW sandpile give rise to a scale-invariant avalanche-
size distribution in the stationary state, apparently without adjusting any 
parameters

K Christensen and N R Moloney, Complexity and Criticality, Imperial Coll. Press, 2005



  

BTW Sandpile

Avalanche-size distribution:

P(s;L) ~ s-τs G(s/sc)

with avalanche size exponent τs ≈ 1.33 

and cutoff size  sc  ~ LD, with D ≈ 2.86 

But: dissipative and nondissipative avalanches scale differently

BTW sandpile is a deterministic dynamical system 
Toppling invariants lead to many conserved quantities, lack of 
ergodicity
 



  

Stochastic Sandpile Models

Scaling behavior appears to be simpler in the stochastic sandpile 
(Manna 1991)

Here z(i,j) = 0, 1, or 2.  Sites with z = 2 topple, sending two grains
to randomly chosen neighbors

The stochastic sandpile again features loss of grains at the edges
and addition when there are no toppling sites

This model also produces scale-invariant avalanche distributions, 
with somewhat different exponents than the BTW model



  

Why do sandpile models exhibit scale-free avalanche distributions 
without tuning of parameters?

Connection with absorbing-state phase transitions:

The protocol of grain addition (in absence of activity) and loss of
grains at boundaries pins the system at a critical point 

(RD, M. A. Muñoz, A. Vespignani and S. Zapperi, Braz. J. Phys., 2000)



  

Phase Transitions

Examples: liquid-vapor, magnetic, binary mixtures...

Formal definition: singular dependence of macroscopic properties 
(e.g., density) on control parameters (temperature, pressure) 
in a system with a very large number of degrees of freedom

Example: magnetic systems (ferromagnetic/paramegnetic transition)
Control parameters are temperature (T) and external magnetic field (H)
Order parameter: magnetization

At the critical point (zero field, T=Tc) there are long-range correlations:

The correlation function
  

C(r) = cov[m(r), m(0)] 

decays as a power law [m(r) is the local magnetization]

The distribution of cluster sizes also follows a power law



  

Magnetic Phase Transition



  

Minimal description of a magnetic phase transition: the Ising model

“Spins” localized at sites on a lattice interact with their neighbors and
with the external magnetic field

The spin si at site i can take values of +1 or -1  

The energy of the system is

For H=0 the minimum-energy configurations have all spins equal.
Using statistical mechanics, one can calculate the magnetization and
other properties as functions of T and H

There is a transition between a disordered phase (m=0) and an ordered
one in dimensions d>1



  

Ising model: magnetization for H=0



  Ising model: typical configurations at various 
temperatures



  

At the critical point (and only there), the mean cluster size in the Ising model
diverges and the cluster-size distribution follows a power law

Away from the critical point the distribution decays exponentially

This raises two problems:

1. The natural and social systems exhibiting scale-free behavior are
    far from equilibrium, as are the sandpile models.  Can we observe
    critical phenomena in far from equilibrium systems?

2. How can such critical phenomena appear without our having to tune
    parameters?

We shall see that (1) it is not difficult to find critical phenomena in systems
out of equilibrium and (2) in the case of an absorbing-state phase transition,
parameter tuning can be hidden.



  

Absorbing state of a Markov process:

Consider a population of organisms, population size N(t)

N evolves via a stochastic dynamics with transitions from N to 
N+1 (reproduction), and to N-1 (death)

N=0 is an absorbing state: if N=0 at some time t, then N(t') = 0 
for all times t' > t

Systems with spatial structure: phase transitions between 
active and absorbing states are possible in infinite-size limit 

Of interest in population dynamics, epidemiology, self-organized 
criticality, condensed-matter physics, social system modelling...

Processes with an absorbing state are intrinsically far from 
equilibrium, as the dynamics is irreversible



  

Examples of absorbing-state phase transitions:

 Directed percolation* (DP) (contact process)

 Parity-conserving  (branching-annihilating random walks)

 Conserved DP (conserved stochastic sandpile)** 

*Experiment:Takeuchi et al, Phys Rev Lett 99 234503 (2007)  

**Experiment: L Corté, P M Chaikin, J P Gollub and D J Pine, Nature Phys 2008
Transition between reversible and irreversible deformation in sheared colloidal
suspension

General references on absoring-state phase transitions: 
J Marro and R Dickman, Nonequilibrium Phase Transitions in Lattice Models,      
(Cambridge Press, 1999).
H Hinrichsen,  Adv. Phys. 49 815 (2000).
G Odór, Rev. Mod. Phys. 76,  663 (2004)



  

Contact Process (Harris 1972): a birth-and-death process with 
spatial structure

Lattice of  Ld sites in d dimensions

Each site can be either active (σi = 1) or inactive (σi = 0)
An active site represents an organism

Active sites become inactive at a rate of unity, indep. of neighbors
An inactive site becomes active at a rate of λ times the fraction of 
active neighbors

The state with all sites inactive is absorbing



  

Contact Process: order parameter ρ  is fraction of active sites

Rigorous results: continuous phase transition between active and 
absorbing state for d ≥  1, at some λc (Harris, Grimmet...)

Order parameter:  ρ  ∼   (λ − λc)β

(Mean-field theory: λc = 1, β = 1)

Results for λc, critical exponents: series expansion, simulation, 
analysis of the master equation, ε-expansion

Types of critical behavior: static, dynamic, spread of activity



  

Order parameter in the one-dimensional contact process:
series expansion analysis



  Spread of activity in contact process (avalanches)
At critical point avalanche-size distribution is power-law

subcritical                         critical                             supercritical



  

The contact process is a good example of a critical point in a far from 
equilibrium system, but to observe power-law scaling we must adjust 
the creation rate to its critical value

Let's consider another simple model, activated random walkers
A Markov process defined on a lattice of Ld sites with
periodic boundaries

Particles perform random walks on the lattice
Let ni denote the number of particles at site i (ni = 0, 1, 2,...)

Initially N particles are distributed randomly over the lattice

Dynamics: any site with ni ≥ 2 is active 
Active sites topple at a rate of unity, sending two
particles to randomly chosen neighbors

The number of particles remains constant throughout the evolution
ζ = N/Ld is a control parameter



  

Activated random walkers (ARW): when site i topples two particles 
jump from i to a nearest neighbor, independently

Examples of topplings in one dimension



  

Activated random walkers: any configuration with without active sites is 
absorbing

Such configurations exist for ζ  < 1 

There is an absorbing-state phase transition at ζ = ζ c (= 0.94885 in one
dimension)

Order parameter: ρ, the fraction of active sites



  

time

Typical evolution of ARW process



  

As in the contact process, the activated random walkers process exhibits 
scale-invariance at the critical point, but o reach this point we must tune ζ  
to its critical value

Now we make two simple changes in the process:

1. Replace the periodic boundary condition with open boundaries  
    When a site at the edge topples, particles may be lost

2. Eventually the system reaches an absorbing configuration
    When this happens a new particle is added at a randomly chosen site

Evidently this converts the ARW process into the Manna sandpile

These changes force the ARW process to its critical point:

If  ζ   >  ζ c  there is activity and  ζ  can only decrease

If  ζ   <  ζ c activity will stop and  ζ  will then increase



  

Absorbing-state mechanism for SOC: self-organized criticality in a slowly
driven system corresponds to an absorbing-state phase transition in the
model with the same local dynamics, but with strict conservation

Simulations confirm that the critical exponents in SOC and in the absorbing
phase transition are related

As the system size increases, the fluctuations of ζ  in the driven sandpile 
are restricted to an ever smaller region centered on the critical density of
the conserved model

The SOC and absorbing “ensembles” are however distinct
(Pruessner and Peters, Phys. Rev. E, 2006, arXiv:0912.2305)

In deterministic sandpiles, the critical density in the conserved version is
a tiny bit higher than in the SOC version! (Fey et al., Phys Rev Lett, 2010)



  

In sandpile and related models, an infinite timescale separation between
activity (toppling) and driving is realized by prohibiting addition while
activity is in progress

In natural systems, we can't expect the driving mechanism to “wait” for
all activity to cease before perturbing the system

If the perturbation rate h is very small, scale-free distributions can be
generated over a finite range: the avalanche duration distribution is 
cut off at a time ~1/h

This should be fine from an empirical viewpoint!



  

Alternatives to SOC

In some instances, the validity of power-law distributions have been
questioned; in others, alternative explanations have been proposed

Example: Scale-invariant rain and drought distributions
Rain event intensity: integrated precipitation over a rainy period
The intensity distribution follows a power law

Peters, Hertlein, and
Christensen, Phys.
Rev. Lett., 2002



  

The distribution of time intervals between passage of consecutive raindrops 
also involves power laws

J Lavergnat and P Golé, Journal of Applied Meteorology, 1998 



  

Peters et al suggest the observed power laws are 
evidence of SOC in the dynamics of evaporation and 
condensation in Earth's atmosphere

Activity: Rapid condensation above a threshold value of 
humidity

Slow drive: Energy influx from Sun, causing evaporation

Loss: Rain falling to Earth

Coupling mechanism between nearby regions of 
atmosphere not clear - Winds associated with rainfall?
Cold pools?



  



  

Alternative model (RD Phys Rev Lett, 2003)

If condensation occurs in localized regions, chaotic advection can 
generate power-law distributions of rain intensities at fixed 
observation sites 

Simple model: two-dimensional fluid with rain treated as passive 
tracers,  fluid motion generated by a systen of ideal vortices



  

This simple two-dimensional 
model yields power-law 
distributions but does not 
reproduce the observed 
exponents (1.36 and 1.42 for 
rain intensity and 
drought duration, resp.) 
It does raise the possibility 
that the observed power laws 
are due to chaotic advection



  

SUMMARY

Power-law distributions are observed in many natural and social systems

SOC provides a mechanism for generating scale-invariant behavior without
parameter tuning

The essential ingredients are: (1) a system of many coupled nonlinear 
elements having a threshold for activity; (2) a slow loss mechanism; 
(3) an even slower external drive

In stochastic models, SOC works by forcing the system to an 
absorbing-state critical point

In some instances, alternatives to SOC have been proposed



  

Thanks!
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