
A Research Framework for  
Simplifying the Construction of GFD Models 

Frank Giraldo 

Department of Applied Mathematics 
Naval Postgraduate School, Monterey CA USA 

http://faculty.nps.edu/fxgirald 

IPAM April 2010 

*Funded by ONR-Battlespace Environments, ONR-Computational Mathematics and AFOSR-
Computational Mathematics 



Motivation for this Work 

We are interested in constructing numerical methods for constructing non-hydrostatic 
mesoscale and global atmospheric models (for NWP applications) as well as  
constructing coastal ocean models (for tsunami and storm-surge modeling).  

To simplify this process, we are developing a framework for constructing research  
codes. For example: 

1.  Once a code is running properly it is easier to attach new modules to do new 
problems. 

2.  This idea also allows us to reuse all of our data structures for CG/DG (serial 
and MPI). 

3.  This idea allows for different sets of interpolation/integration points to be used 
within the same model (e.g., nodal DG using either Lobatto or Legendre 
points). 

4.  The inclusion of new time-integrators is vastly simplified. 
5.  However, the data structures need to be generalized in order to handle non-

conforming grid adaptivity. 



Talk Summary 

I.  Equation Sets 
•  Hydrostatic Equations 
•  Nonhydrostatic Equations 
•  Pseudo-Incompressible Equations 

II.  Spatial Discretization  
•  Continuous Galerkin Methods 
•  Discontinuous Galerkin Methods 

III.  Suite of Time-Integrators 
•  Explicit SSP Methods 
•  Semi-implicit (IMEX) Methods  
•  Fully-Implicit Methods  

IV.  Adaptivity 
•  Conforming Methods 
•  Non-conforming Methods 



I. Equation Sets 



 Non-hydrostatic Equations 
(fully compressible Euler equations) 

(Mass) 

(Momentum) 

(Energy) 

(Equation of State ) 

∂ρ
∂t

+∇ •U = 0

∂U
∂t

+∇ •
U⊗U

ρ
+ PI3

⎛
⎝⎜

⎞
⎠⎟
= − f k×U( ) − ρgk + SU

∂Θ
∂t

+∇ •
ΘU
ρ

⎛
⎝⎜

⎞
⎠⎟
= SΘ

P =PA
RΘ
PA

⎛
⎝⎜

⎞
⎠⎟

γ

U = ρu,

Θ = ρθ,

u = (u,v,w)T ,

x = (x, y, z)T ,

∇ =
∂
∂x
, ∂
∂y

∂
∂z

⎛
⎝⎜

⎞
⎠⎟

T

θ =
T
π

and π =
P
PA

⎛
⎝⎜

⎞
⎠⎟

R /cp



 Unified Equations Framework 
(see Dale’s, Nigel’s, and Rupert’s talks) 

(Mass) 

(Momentum) 

(Energy) 

(Equation of State ) 

∂ρ
∂t

+∇ •U = 0

∂UHoriz

∂t
+∇ •

U UHoriz

ρ
+ PI2

⎛
⎝⎜

⎞
⎠⎟
= − f k×UHoriz( ) + SU

δPI
∂Θ
∂t

+∇ •
ΘU
ρ

⎛
⎝⎜

⎞
⎠⎟
= SE

P =PA
RΘ
PA

⎛
⎝⎜

⎞
⎠⎟

γ

U = ρu,

Θ = ρθ,

u = (u,v,w)T ,

x = (x, y, z)T ,

∇ =
∂
∂x
, ∂
∂y

∂
∂z

⎛
⎝⎜

⎞
⎠⎟

T

θ =
T
π

and π =
P
PA

⎛
⎝⎜

⎞
⎠⎟

R /cp

δH
∂W
∂t

+∇ •
UW
ρ

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ +

∂P
∂z

= −ρg + SW



II. Spatial Discretization 



•  Primitive Equations: 

•  Approximate the solution as: 

–  Interpolation O(N) 

•  Write Primitive Equations as: 

•  Weak Problem Statement: Find 

–  such that  
•  Integration O(2N) 

Galerkin Methods 

∂q
∂t

+∇ ⋅F = S(q)

qN = ψ i
i=1

MN

∑ qi FN = F qN( )

R(qN ) ≡
∂qN
∂t

+∇ ⋅FN − SN = ε

qN ∈Σ(Ω)∀ψ ∈Σ

ψ
Ω /Ωe
∫ R qN( )dΩ = 0

Σ = ψ ∈L2 (Ω) :ψ ∈PN (Ωe )∀Ωe{ }
Σ = ψ ∈H 1(Ω) :ψ ∈PN (Ωe )∀Ωe{ }

(DG) 

(CG) 

SN = S qN( )



Comparison of CG/DG Methods 

Continuous Galerkin Methods 

•  High order accurate yet local construction (via 
DSS) 

•  Simple to construct efficient semi-implicit 
time-integrators 

•  In high-order mode, primarily used with quads 
and inexact integration (e.g., using Lobatto 
points avoids non-diagonal mass matrix with 
slight error since integration is O(2N-1)) 

•  No analog of Lobatto points exist on the 
triangle so costly to use 

•  Excellent scalability on MPP 

Discontinuous Galerkin Methods 

•  High order accurate and completely local in nature 
(no DSS required as in CG) 

•  High order generalization of the FV (but with 
compact support) 

•  Upwinding and BCs implemented naturally (via 
Riemann solvers) 

•   Not so easy to construct efficient semi-implicit 
time-integrators, due to the difficulty in extracting 
the Schur complement 

•  Since matrices are all local, using quads or 
triangles is straightforward and one need not worry 
as much about exact vs. inexact integration 

•  On quads, using Legendre points is analogous to 
using exact integration (for O(2N+1) polynomials) 
while resulting in diagonal mass matrices 

•  Excellent scalability on MPP 



DG Interpolation/Integration Points 
(2D Advection with Q=N integration points) 

Lobatto Legendre 

Resolution of CG/DG methods is controlled by K (no. elements) and N (poly order) 
but dofs is controlled as (KN+1)d for CG and (K(N+1))d for DG  



Scalability of CG Method 
(Surface Values for T185 L26 during 0-30 days: Global Hydrostatic 

Model) 

Pressure Temperature 

30 day simulation of a Baroclinic Instability (Jablonowski-Williamson) for a fully 3D 
atmospheric model using 8th order polynomials 



Scalability of CG Method 
(Global Hydrostatic Model with T239 L30 DT=300 seconds) 

Simulations performed at NAVO via PETTT Program 



CG Method for 3D Rising Thermal Bubble 
(Nonhydrostatic Cartesian Model) 

Simulations performed by Jim Kelly  



III. Suite of Time-Integrators 



1. Explicit Time-Integrators 

•  Let’s rewrite the governing 
equations as 

•  SSP-RK(2,3,4)   
For k=1,…,K 

•  SSP-BDF2 
 We write as 

 or in general, more compactly, as 

∂q
∂t

= S(q)

qk =
m=0

k−1

∑ α k ,mq
m + Δtβk ,mS q

m( )( ), q0 = qn , qK = qn+1

qn+1 = α0q
n +α1q

n−1 + γΔt β0 S(q
n ) + β1 S(q

n−1)( )

qn+1 = αm
m=0

K −1

∑ qn−m + γΔt βm
m=0

K −1

∑ S(qn−m )



2. Semi-Implicit Time-Integrator 
(Building an implicit method on top of an explicit one) 

•  Once again, rewriting the governing equations as 

•  If we knew the linear operator L, then we could write 

•  Discretizing by Kth order time-integrator yields 

 Where 

 and 

∂q
∂t

= S(q)

∂q
∂t

= S(q) − δSI L(q){ } + δSI L(q)[ ]

qtt = q̂ + λL qtt( )

λ = δSIγΔt, qtt = ρmq
n−m

m=−1

K −1

∑ , q̂ = ρ−1q
explicit + ρmq

n−m

m=0

K −1

∑

qexplicit = αm
m=0

K −1

∑ qn−m + γΔt βm
m=0

K −1

∑ S(qn−m )



2. Semi-Implicit Time-Integrators 
(Constructing the Schur Complement) 

•  The implicit problem that we have is: 

•  Where the dims are: 
–  For 2D Euler d=4, 3D d=5, etc. 
–  For 2D Euler we solve a 16N2 system 
–  For 2D SWE d=3, and solve a 9N2 

•  A better approach is to write out the 
system as follows (for 2D SWE): 

•  Applying block LU decomposition: 

–  Where the Schur Complement is: 

–  And the dimensions are: 

I − λL( )qtt = q̂

A ∈RdNxdN , qtt ∈R
dN , b ∈RdN

A11 A12
A21 A22

⎛
⎝⎜

⎞
⎠⎟
utt
ϕ tt

⎛
⎝⎜

⎞
⎠⎟
=

b1
b2

⎛
⎝⎜

⎞
⎠⎟

Aqtt = b

A11 A12
0 A22 − A21A

−1
11A12

⎛
⎝⎜

⎞
⎠⎟
utt
ϕ tt

⎛
⎝⎜

⎞
⎠⎟
=

b1
b2 − A

−1
11A12b1

⎛
⎝⎜

⎞
⎠⎟

A22 − A21A
−1
11A12( )ϕ tt = b2 − A

−1
11A12b1 Aϕ tt = b

A ∈RNxN , ϕ tt ∈R
N , b ∈RN



2. Semi-Implicit (IMEX) Time-Integrators 
(Important Properties of Schur Complement) 

•  The original system is: 

•  The Schur Complement system is: 

•  This system is clearly smaller than the original 
system (NxN instead of 3Nx3N for 2D SWE). 

•  Equally important is that the Schur System is 
better conditioned than the original system. 
This means that fewer iterations are required by 
an iterative solver to reach convergence. 

•  Key Point: A semi-implicit method should be 
more efficient than the most efficient explicit 
methods, but with the Schur Complement the 
gains are much bigger.   

A22 − A21A
−1
11A12( )ϕ tt = b2 − A

−1
11A12b1

A11 A12
A21 A22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

utt
ϕ tt

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

b1
b2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

κ ASchur( ) = 210
κ ANoSchur( ) = 2.6 ×106

2D Euler Equations 



3. Fully-Implicit Time-Integrators 

•  Writing the governing equations as 

•  We then discretize this implicitly using 
implicit methods (eg., BDFK, IRK) 

•  Where the matrix problem is now 
–  Which clearly requires a nonlinear 

implicit solution (eg., Newton-Krylov 
methods) 

•  We write the problem as the functional: 

•  And then solve the nonlinear problem: 

•  With the resulting Linear System: 

∂q
∂t

= S(q)

qn+1 = αm
m=0

K −1

∑ qn−m + γΔtS(qn+1)

qn+1 − γΔtS(qn+1) = αm
m=0

K −1

∑ qn−m

F = qn+1 − γΔtS(qn+1) − αm
m=0

K −1

∑ qn−m ≡ 0

F q( )(k+1) = F q( )(k ) + ∂F q( )(k )
∂q

q(k+1) − q(k )( ) ≡ 0

∂F q( )(k )
∂q

q(k+1) − q(k )( ) = −F q( )(k )



Comparison of SI Time-Integrators 
(CG Rising Thermal Bubble) 



Comparison of FI/SI Time-Integrators 
(Läuter Test Case for DG SSWE: No Schur Complement ) 



IV. Adaptivity 



Adaptive Methods 

Conforming Grids: A grid point on an interface (edge/side) is owned by only two control 
volumes (the left and right elements).  This kind of adaptive method places all of the work 
on the grid generator and NO WORK on the solver (what you use to solve your questions: 
think of your projects 3 and 4, for example). Therefore, one can construct a solver in 
isolation and interface it with a conforming adaptive method to produce adaptive solutions. 



Adaptive Methods 

Non-Conforming Grids: A grid point on an interface can be owned by more than two 
control volumes. This kind of adaptive method places much of the burden on the solver as it 
now needs to be able to handle non-conforming grids but greatly simplifies the adaptivity 
process. This kind of grid can produce very efficient adaptive methods and is the idea used 
in the adaptive mesh refinement (AMR) methods of, e.g., Marsh Berger, Phil Colella, etc. 



DG Method with Conforming Adaptivity  

Simulations performed by Andreas Mueller in collaboration with Jörn Behrens 



DG Method with Conforming Adaptivity  

Simulations performed by Andreas Mueller in collaboration with Jörn Behrens 



DG Method with Conforming Adaptivity  

Simulations performed by Andreas Mueller in collaboration with Jörn Behrens 



Closing Remarks 

•  This modeling framework allows us to produce codes relatively quickly and 
offers a simple means to validate new codes (once one component is working). 

•  Switching interpolation/integration points for DG is very simple in this approach 
and requires very few changes to any existing code (e.g., from Lobatto to 
Legendre). 

•  For the time-integrators, it makes it easy to test which approach is best for which 
type of problem. 

•  Also we anticipate that new time-integrators can be incorporated with minimal 
effort. We hope to show this to be the case (e.g., SI-RK methods, extrapolation 
methods,  exponential Rosenbrock and Rupert’s blended method). 

•  Did not address this here, but the success of SI/FI methods are heavily reliant on 
good preconditioners. We believe we have a good strategy for the Schur form 
(manuscript in preparation) but not for the No Schur form. This is good news for 
SI but not yet for FI. 

•  Efficiency is somewhat affected by this approach but makes the codes very easy 
to adapt to new needs (e.g., the CG methods carry along data structures that are 
only needed by the DG methods) 

•  Rewriting our codes to make them fully modular took some effort initially, but 
then facilitates the modification of the code and is simplifying the MPI 
implementation (in progress). 


