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Outline of the talk

• Overview of Met Office’s Unified Model

• Spherical Geopotential Approximation

• Relaxing that approximation

• A method of implementation

• Alternative view of Shallow-Atmosphere 
Approximation

• Application to departure points



© Crown copyright   Met Office

Met Office’s Unified Model

Unified Model (UM) in that single model for:

Operational forecasts at

Mesoscale (resolution approx. 12km → 4km → 1km)

Global scale (resolution approx. 25km)

Global and regional climate predictions (resolution 
approx. 100km, run for 10-100 years)

+ Research mode (1km - 10m) and single column 
model

20 years old this year
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Timescales & applications
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The ‘Morpeth Flood’, 06/09/2008

1.5 km L70 
Prototype UKV 
From 
15 UTC 05/09
12 km

0600 UTC
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2009: Clark et al, Morpeth Flood

© Crown copyright   Met Office

UKV 4-20hr forecast 
1.5km gridlength

convection permitting model
UK radar network
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The underlying equations...
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Traditional Spherically Based Equations

Dru

Dt
− uv tanφ

r
− (2Ω sinφ) v+

cpdθv

r cosφ

∂Π

∂λ
= −uw

r
− (2Ω cosφ)w +Su

Drv

Dt
+
u2 tanφ

r
+ (2Ω sinφ)u +

cpdθv

r

∂Π

∂φ
= −vw

r
+ Sv

Drw

Dt
+ cpdθv

∂Π

∂r
+
∂Φ

∂r
=
u2 + v2

r
+ (2Ω cosφ)u + Sw

Red = Shallow-Atmosphere Approx (eliminate boxed terms)

Blue = Hydrostatic Approx (eliminate boxed term)

Green = Spherical Geopotential Approx ( ∂Φ/∂r = g (r) only)
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The Spherical Geopotential Approximation

• All geopotentials - including the Earth’s surface - are
represented by concentric spheres

• Apparent gravity acts towards the centre of the Earth

• To prevent spurious vorticity sources/sinks g cannot vary
with latitude (White et al., 2005)

• Nearly all numerical models of the global atmosphere are
based on the SGA
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Why relax the SGA?

• Good to get Earth’s shape right(ish) in models!

• Good to include the small ( ≈ 0.5%) increase of g from
Equator to Poles without spurious vorticity sources/sinks

•Most likely to be evident in long term climate simulations

• Good to quantitatively test the accuracy of the spherical
geopotential approximation

• Important though that signal is not influenced by different
numerics
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The Shape of the Earth

• The Earth is approximately an oblate spheroid:

– Equatorial radius
a = 6378 km

– Polar radius
c = 6357 km

• Ellipticity small

ε ≡ a− c

a
≈ 1

298

• But a− c = 21 km, more than twice the height of Everest
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Geopotential near rotating fluid spheroid

• Classical problem ( Clairaut in 18th century) to account for
the observed increase of g with latitude

• Re-examined by White et al. (2008) to find geopotentials

• Two small parameters:

ε ≡ a− c

a
≈ 1

298

m ≡ Ω2a3

γME
∼

∣∣∣∣ centrifugal force

Newtonian gravity

∣∣∣∣ ≈ 1

289
,

• To O (ε,m) geopotentials are spheroids

x2 + z2

[
1 + (2ε−m)

a2

R2
+m

R3

a3

]
= R2
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Variation of Gravity

• Near to the surface R = a
gP
gEq

= 1 +
5

2
m− ε

• Earth’s actual mass distribution m = ε (to within 3%):
gP
gEq

= 1 +
3

2
ε ⇒ 0.5% increase

• For uniform mass distribution m = 4ε/5 (Newton )
gP
gEq

= 1 + ε

captures 2/3rds of the variation
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Spheroidal Coordinates...
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Confocal Oblate Spheroids

• “Oblate spheroidal coordinates” of e.g. Gill (1982) and Gates
(2004) are in fact confocal oblate spheroidal coordinates:

x2

cosh2 η
+

z2

sinh2 η
= d2

with d fixed, η variable

•Match to Earth’s surface ⇒
gP
gEq

= tanh η0 ≈ 1− ε 6= 1 +
3

2
ε!

• Separation along minor axis greater than along major axis
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Similar ellipses

Equation is:
x2 + (1 + µ) z2 = r2

Now µ fixed, r variable

Match to Earth’s surface ⇒
µ = 2ε

and
gP
gEq

= (1 + µ)1/2 ≈ 1 + ε

• Sign right!

• Captures 2/3rds actual variation for actual Earth

• Exact for an Earth with uniform mass distribution
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Implementation...
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Semi-Lagrangian scalar advection

Consider
DF

Dt
= R

Integrate along trajectory :

∫ t+∆t

t

DF

Dt
dt =

F t+∆t (x)− F t (x− U∆t)

∆t
=

∫ t+∆t

t

Rdt ≈ Rt+∆t (x) +Rt (x− U∆t)

2

i.e. (
F − ∆t

2
R

)t+∆t

A
=

(
F +

∆t

2
R

)t
D

c© Crown Copyright Met Office



© Crown copyright   Met Office

 

 

Semi-Lagrangian vector advection

For the vector equation
Dv

Dt
= S

Integrate along trajectory to obtain, as before:(
v − ∆t

2
S

)t+∆t

A
=

(
v +

∆t

2
S

)t
D

All well and good...

But what of components?
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The Problem of Curvilinear Coordinates...

The familiar problem that

i.
Dv

Dt
≡ i.

D

Dt
(ui + vj + wk) 6= D (i.v)

Dt

[
=
Du

Dt

]
translates into the SL equivalent that

iA. (vD) 6= (iA.vA)D [ = uD]

In fact
vD = uDiD + vDjD + wDkD

so that, e.g.,

iA. (vD) = uD (iA.iD) + vD (iA.jD) + wD (iA.kD)
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The Matrix Formulation

• Extending this to all three directions: u
v
w


D

= M

 uD
vD
wD


where

M ≡

 iA.iD iA.jD iA.kD
jA.iD jA.jD jA.kD
kA.iD kA.jD kA.kD


•M transforms

– from: vector components in the departure-point frame
– to: vectors in the arrival-point frame
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The Consequence...

Component form of momentum equations can be written as:(
v − ∆t

2
S

)t+∆t

A
= M

(
v +

∆t

2
S

)t
D

where
XA ≡

(
XA, YA, ZA

)T
XD ≡

(
XD, YD, ZD

)T
• No explicit metric terms

• No singularity at the pole
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M for Spherical Polar Coordinates

M11 = cos∆λ, M12 = sinφD sin∆λ, M13 = − cosφD sin∆λ

M21 = − sinφA sin ∆λ

M22 = cosφA cosφD + sinφA sinφD cos ∆λ

M23 = cosφA sinφD − sinφA cosφD cos ∆λ

M31 = cosφA sin ∆λ

M32 = sinφA cosφD − cosφA sinφD cos ∆λ

M33 = sinφA sinφD + cosφA cosφD cos ∆λ

c© Crown Copyright Met Office



© Crown copyright   Met Office

 

 

Where have the Metric Terms Gone?

• SL form holds for finite displacements

• Reduces to Eulerian form as displacement ( ∆λ ≡ λA − λD)
and ∆t→ 0:

• In this limit:

sin ∆λ→ ∆λ,
∆λ

∆t
→ uA

rA cosφA
, uD → uA, vD → vA

and so:

M12vD = vD sinφD sin ∆λ→ uAvA tanφA
rA

∆t

• Each off-diagonal element of M generates one metric term
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Similar Oblate Spheroidal Form

• Basic derivation is the same

• “Trick”: use secondary meridional coordinate, ψ, geographic
latitude (not orthogonal to vertical coordinate)

O
C

Z
j

Y

k

Polar
axis

Equator
ψ

A A

A

R

dA

A

A

• Significantly M has exactly the same form but with φ→ ψ

• Contrast Eulerian formulation where (for COS at least) two
extra metric terms appear
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Shallow-atmosphere...
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Shallow-Atmosphere Approximation

Dru

Dt
− uv tanφ

r
− (2Ω sinφ) v+

cpdθv

r cosφ

∂Π

∂λ
= −uw

r
− (2Ω cosφ)w +Su

Drv

Dt
− u2 tanφ

r
+ (2Ω sinφ)u +

cpdθv

r

∂Π

∂φ
= −vw

r
+ Sv

Drw

Dt
+ cpdθv

∂Π

∂r
+
∂Φ

∂r
=
u2 + v2

r
+ (2Ω cosφ)u + Sw

• Traditional approach:

– Eliminate all boxed red terms
– Replace r with a in all algebraic expressions
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Shallow-atmosphere - a different perspective

•M is a rotation matrix

• Can be factored in infinite number of ways

• One is of particular interest:

1. Rotate departure-point UVT about radial direction
to line up i with Great Circle connecting rD with rA

2. Rotate UVT along Great Circle arc about new j direction

3. Rotate UVT about new radial direction to line up i direction
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Shallow-atmosphere - a different perspective

• Result is M = ACD

• Shallow-atmosphere approximation is obtained by C→ I

•M→ AD ≡ Q:

Q =

 p q 0
−q p 0
0 0 1


with

p =
M11 +M22

1 +M33
and

q =
M12 −M21

1 +M33

giving the same result as in Temperton et al. (2001)
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Departure points...
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Rotation Matrix for Departure Points?

• Departure points now take on greater significance

• And they are also governed by a vector equation
Dx

Dt
= v

• So can we apply consistent approach (and avoid
polar singularity issues)?

• Discrete vector form is

xD = xA −
∆t

2
(vA + vD)
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Rotation Matrix for Departure Points II

As before component form can be written as

MxD = xA −
∆t

2
(vA + MvD)

Or, since xA =
(

0, 0, rA
)T and xD =

(
0, 0, rD

)T :

M13rD = −∆t

2
[uA + (M11uD +M12vD +M13wD)]

M23rD = −∆t

2
[vA + (M21uD +M22vD +M23wD)]

M33rD = rA −
∆t

2
[wA + (M31uD +M32vD +M33wD)]
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A Local Cartesian Transform Approach

The result can be cast into a local Cartesian form:

XDA = −∆t

2
(UA + UDA)

YDA = −∆t

2
(VA + VDA)

ZDA = rA −
∆t

2
(WA +WDA)

where
XDA ≡MxD,

and
VDA ≡MvD

are Departure point coordinates and velocities as seen in the
Arrival-point Cartesian system
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The Inverse Transformation

From
(
XDA, YDA, ZDA

)
obtain departure point as:

tan (λA − λD) =
−XDA

ZDA cosφA − YDA sinφA

r2D = X2
DA + Y 2

DA + Z2
DA

sinφD =
YDA cosφA + ZDA sinφA

rD

c© Crown Copyright Met Office
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Spheroidal Case

Spheroidal case follows spherical case closely except:

xA =
(

0, 0, rA
)T − dA

(
0, cosφA, sinφA

)T
and

xD =
(

0, 0, rD
)T − dD

(
0, cosφD, sinφD

)T

O
C

Z
j

Y

k

Polar
axis

Equator
ψ

A A

A

R

dA

A

A
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Spheroidal Case

• Applying M as before, but to modified position vectors,
results in

XDA = M13rD
YDA = M23rD + (dA − dD) cosφA
XDA = M33rD + (dA − dD) sinφA

• Inversion is a little more complicated
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Shallow-atmosphere case

Form obtained by constraining departure point to remain on
arrival sphere:

xD = xA −
∆t

2
(vA + vD) + B (xA + xD)

1. Cartesian transformation as before
XDA ≡MxD,

2. but velocities transform using momentum shallow-atmosphere
rotation matrix

VDA ≡ QvD,

3. and

XH
D = −

(
1 +M33

2

)
∆t

2

(
VH
A + VH

D

)
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What does it all mean?

Single set of equations:

(ui − α∆tΨi)
n+1 = Mij

(
uj + β∆tΨj

)n
D

with similar ones for departure point equations

Need only to specify:

1.∇-operator in terms of the coordinate metric factors

2. Components of gravity vector (only vertical is non-zero)

3. Matrix elements Mij

4. Components of Earth’s rotation vector in chosen
coordinate system
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Similar Oblate Spheroidal and Spherical Polar Coordinates

Similar oblate spheroids (SOS)
(ε ≡ common eccentricity)

Spherical polars
(ε = 0)

Coords

(λ, ϕ, r)
λ = longitude

ϕ = meridional coordinate
r = semi−major axis of spheroid

(λ, φ, r)
λ = longitude
φ = latitude

r = radius of sphere

Metric
factors

hλ=
(
r
hr

)
cosφ

hϕ=
(
r
hr

)(
sinφ cosφ
sinϕ cosϕ

)
hr =

(
1− ε2 sin2 φ

)1/2

hλ = r cosφ
hφ = r
hr = 1

Gravity g = ga

(1−ε2 sin2 φ)
1/2

(a
r

)2
g = ga

(a
r

)2

Notes
φ = geographic latitude
ϕ→ φ & r→ r as ε→ 0

Geographic latitude
= spherical polar

latitude when ε = 0
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Result is...

Identical numerical system encompassing hierarchy of model
approximations:

1. Similar Oblate Spheroidal geopotential approximation

2. Deep-atmosphere Spherical geopotential approximation
(no latitudinal variation of g)

3. Shallow-atmosphere approximation
(non-Euclidean geometry)

4. Cartesian

Hydrostatic versions apply to (2)-(4)
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Where are we?

• Elements of approach form basis of deep-atmosphere, non-
hydrostatic, spherical New Dynamics in MetUM

• Next version of dynamical core (ENDGame) will incorporate
full functionality

• Allow clean assessment of impact of various
approximations
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Summary

• Can relax Spherical Geopotential Approximation

– Retain 2/3rds latitudinal variation of gravity

• Semi-Lagrangian method can be straightforwardly applied
to non-spherical coordinate systems

– Especially when use geographic latitude

• Eulerian component equations can be derived from the
rotation matrix forms
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Summary

•Matrix view gives insight into the non-Euclidean nature of
the shallow-atmosphere approximation

– neglect of great circle curvature

• Therefore desirable to avoid shallow-atmosphere approxi-
mation:

– avoid loss of some (significant) Coriolis terms
– and avoid non-Euclidean, space-distorting character
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Questions?

Further details can be found in:

• Spheroidal coordinate systems for modelling global atmospheres
White, Staniforth and Wood 2008 Q.J.R.Meteorol.Soc. 134 pp 261-270

• Rotation matrix treatment of vector equations in
semi-Lagrangian models of the atmosphere I: Momentum equation
Staniforth, White and Wood. 2010 Q.J.R.Meteorol.Soc. 136 pp 497-506

• Rotation matrix treatment of vector equations in
semi-Lagrangian models of the atmosphere II: Kinematic equation
Staniforth, White and Wood. 2010 Q.J.R.Meteorol.Soc. 136 pp 507-516
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