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Outline

• HOMME:  spectral finite element dynamical core

– Motivation: improve scalability of the CCSM
• Spectral elements are compatible/mimetic

– Leads to local conservation (mass, PV, Energy) 
and monitone transport

• Aqua planet: 

– Spectra & energy budgets

– Equivalent resolution tests
• Real planet model intercomparison.  



The Community Climate System 
Model (CCSM)

IPCC-class model:

− Seasonal and interannual variability in the 
climate

− Explore the history of Earth's climate

− Estimate future of environment for policy 
formulation

− Contribute to assessments

Developed by NCAR, National Labs and 
Universities.  

Fully documented, supported and freely 
distributed

Runs on multiple platforms and resolutions

CCSM4 (Released April 1, 2010): Higher 
resolution and increasing complexity



Horizontal Grid Resolution

Source:    IPPC 4th Assessment Report



Source: http://celebrating200years.noaa.gov/breakthroughs/climate_model/welcome.html

• Column Physics
– Subgrid parametrizations: precipitation, radiative 

forcing, etc.
– embarrassingly parallel with 2D domain decomp 

• Dynamical Core
– Solves the Atmospheric Primitive Equations 
– Scalability bottleneck!

CCSM Atmosphere Component (CAM)



The Dynamical Core Scalability Bottleneck

•Most dynamical cores in 
operational models use latitude-
longitude grids: 
– Well proven.  Many good solutions to 

the “pole problem”:  Spherical 
harmonics, polar filtering, implicit 
methods

– But these approaches degrade parallel 
scalability 



The Dynamical Core Scalability Bottleneck

•Petascale dynamical core:
– Quasi-uniform grids avoid the pole problem

– Can use full 2D domain decomposition in horizontal directions

– Each column in the vertical/radial direction kept on processor

– Equations can be solved explicitly, only nearest neighbor communication

– Numerical methods that perform as well as lat/lon based methods remains 
a challenge.



CAM-EULGISS-BQ CAM-FV isen GEOS-FV

GEOS-FVCUBE

OLAM

MIT-GCM

ICON

HOMME

GME

Advection Results from the NCAR 2008 ASP Coloquium
Dynamical Core Experiment



HOMME optional dynamical
core included in CCSM4

HOMME:  NCAR's High-Order Method Modeling 
Environment. 

Dynamics  (modeled after CAM-Eulerian)

− Hydrostatic finite-element based dynamical core 

– 4'th order accurate finite element method (quadrilateral 
elements):  Locally conserves mass, PV(2d) and moist 
energy   

− S&B MWR 1981 vertical coordinate

− Enstrophy/KE dissipation:  CAM-Eulerian type hyper-
viscosity  

Transport (modeled after CAM-FV)
− 3'rd order accurate, locally conservative, quasi-monotone 

finite element advection for horizontal 

− Vertically-Lagrangian (Lin 2004)  w/UKMO conservative 
monotone reconstruction (Zerroukat et. al, QJRMS 2005)

All properties preserved on arbitrary unstructured 
quadrilateral grids  (CCSM configurations use cubed-
sphere grid)



Two time-slice configurations included in 
CCSM4

1 Degree  ( ~100km )
−Atmosphere: cubed-sphere grid, equatorial grid spacing 1°
−Land:  2° lat-lon 

−Data ocean + cice (prescribed ice extent)  gx1v6 
−Physics/Tracer/Dynamics timesteps:  1800 / 360 / 90s

−AMWG Diagnostics:  http://users.nccs.gov/~taylorm 

1/8 Degree  (~12.5km )
– Atmosphere: cubed-sphere grid, equatorial grid spacing 1/8°
– Land:  1/4° lat-lon 

– Data ocean + cice (prescribed ice extent)  gx1v6
– Physics/Tracer/Dynamics timesteps:  900 / 45 / 11.25s 
– For testing scalability out to O(400,000) cores



CCSM/HOMME Scalability 

•BGP (4 cores/node):  Excellent scalability down to 1 element per processor (86,200 
processors at 0.25 degree resolution).    1/8 degree CCSM running at > 1 SYPD.  

•JaguarPF (12 cores/node):  2-3x faster per core than BGP, scaling not as good.  1/8 
degree CCSM running at 3 SYPD.  



Compatible Finite Elements



The CG Finite Element Method

Tile the sphere with quadrilateral elements

H
0

d    =   piecewise polynomials (degree d) within each 

element.  

H
1

d    =   C
0 

 Ո H
0

d   (continuous piecewise polynomials)

Quadrature based inner product <f,g > 

Solve the Galerkin formulation in H
1

d

Differential operators more-or-less determined by choice 

of H
0

d

P:  Projection operator from H
0

d  to H
1

d   

Orthogonal w.r.t. the quadrature based inner 
product.  



Discrete Inner Product: 
Gauss-Lobatto (d+1)x(d+1) Quadrature

f , g∈H0
d

∫ f g≈ ∑
elements

∑
i

wi J  xi , y i f x i , y i gx i , y i=〈 f g〉

w
i 
= Gauss-Lobatto weights

J  = Jacobian of mapping from 
spherical element to reference 
element



Finite Elements
Example:  Tracer Advection

∂ h
∂ t

=−∇⋅hu
Advection Equation:

Forward Euler: 
(or convex combinations
like SSP RK)

Weak Form:  
Solve system of 
scalar equations 
for   

  

〈ht1〉=〈h t〉−〈∇ h⋅hu〉

h t1=h t− t∇⋅hu 

∀∈H1
d

h t1∈H1
d



Finite Elements:  Tracer Advection

Advection: 

FE Galerkin 
solution:
    

h∗=ht−1− t∇h⋅hu h∗∈H 0
d

h t1=Ph∗ h t1∈H 1
d

h t1=h t− t P∇⋅hu

Application of the FE projection operator P requires inverting the FE 
mass matrix.    

Spectral FE:  choice of GLL quadrature based inner product and 
nodal basis functions gives a diagonal mass matrix.  (Maday & 
Patera 1987)   

All inter-element communication is embed in P.  FE provides a clean 
decoupling of computation & communication.    



Compatible Numerical Methods

Integration by parts insures conservation

Curl Grad = 0 preserves Lagrangian nature of vorticity evolution

Many schemes have this property on orthogonal Cartesian grids

The SEM is one of the few methods to retain these properties on arbitrary 
grids in general curvilinear coordinates.    

Discrete operators and discrete integral satisfy continuum properties:

∫ p∇⋅v∫ v⋅∇ p=0

∫ v⋅∇×u−∫u⋅∇×v=0
∇×∇ p=0
∇⋅∇×u=0

•Margolin, Shashkov, Int. J. Numer. Meth. Fluids, 2007
•Arnold, Bochev, Lehoucq, Nicolaided, Shashkov, Compatible Spatial Discretizations (The IMA 
Volumes in Mathematics and its Applications), Springer 2006



Compatible Numerical Methods

Integration by parts formulas hold for arbitrary conforming grids in 
curvilinear coordinates. 

Un-projected annihilator properties are trivial for FE

Projected annihilator property is more difficult, but holds for spectral 
elements (Taylor & Fournier, JCP 2010)

Discrete operators and discrete integral satisfy similar properties:

〈 p∇h⋅v 〉〈v⋅∇ h p 〉=0
〈v⋅∇h×u 〉−〈u⋅∇ h×v 〉=0
P ∇ h×P ∇h p  =0
P ∇h⋅P ∇h×u =0



Compatibility: Local Version

Discrete DIV and GRAD are adjoints

Discrete CURL is self-adjoint

CURL GRAD = DIV CURL = 0  

∑


v⋅∇ h p∑


p∇h⋅v=∑
∂

p v⋅n

Continuum Identity for any area Ω: 

∫


p∇⋅v∫


v⋅∇ p=∮
∂

pv⋅n

Discrete Identity holds for Ω = a single element:

Discrete boundary integral is the natural Gauss-Lobatto 
quadrature approximation along the element boundary

p and v are continuous, thus element edge “flux” is equal 
and opposite to flux computed by adjacent elements 

For curvilinear mappings, requires only that the mapping 
is continuous across element edges



∫


∇⋅pv=∮
∂

pv⋅n

Relatively new result for finite elements:
−Hughes et al.  JCP 2000:  The Continuous Galerken Method is 

Locally Conservative
−Work presented here extends this result to inexact integration 

formulation with curvilinear elements (spectral elements).

Local conservation often obtained by replacing divergence operator by 
control volume flux.  In SEM, we use the numerical divergence 
operator directly and rely on the discrete form of the identity, for any 
element  :

Local Conservation:  Mass

Identity holds for any curvilinear conforming mesh

Since p & v are continuous in a CG formulation, 
element edge flux is always continuous  



∫


p∇⋅v∫


v⋅∇ p=∮
∂

pv⋅n

Local conservation of energy is obtained by using the vector invariant 
formulation of the equations, combined with the SEM discrete form of 
the integration by parts identity:   for any element  :

Local Conservation:  Energy

Energy conservation obtained by exact, term-by-term 
balance of all adiabatic terms in the KE, IE and PE 
budgets.    

Identity holds on any curvilinear conforming mesh

Energy conservation is semi-discrete:  exact with 
exact time integration.



PV conservation  (2D shallow water)

∂u
∂ t

f  k×u∇ 
1
2
u
2
gh=0

∂

∂ t
hq∇⋅hq u=0

Shallow water equations, vector invariant form:  

Using that P CURL P GRAD = 0, we can show that for a SEM 
solution u above, the projected vorticity,  

Solves the SEM discrete equation for potential vorticity, q, in conservation 
form (and thus conserves potential vorticity):

=∇×u =P q=
 f
h





Monotone or Sign Preserving
Finite Element Advection



Finite Element Tracer Advection

Discrete Equation: 

Equivalent to:
    

h∗=ht−1− t∇h⋅hu h∗∈H 0
d

h t1=Ph∗ h t1∈H 1
d

h t1=h t− t P∇⋅hu

Within each element, h* can have oscillations and new 
extrema, but in any compatible finite element method, the 
element averages of h* are monotone - no new local min 
or max.  (Taylor, St.Cyr, Fourner, ICCS 2009).  



Finite Element Tracer Advection

h∗=ht−1− t∇h hu

h∗∗=limiter h∗
h t1=Ph∗∗

Element average monotonicity property means that h* 
can be replaced by any mean-preserving 
reconstruction (monotone, sign-preserving, others).  

Reconstruction requires no inter-element 
communication.

Projection must be monotone preserving – true for 
spectral FE, but not for general FE



Deformational Flow Test Case for the sphere
(Nair, Lauritzen, under review, JCP)

 



Nair-Lauritzen Deformational Flow Test Case for the sphere

 



L1 L2 M ax Norm M ax M in

DG 0.045 0.029 0.031 -0.001 -0.018

CSLAM 0.025 0.019 0.029 -0.002 -0.019

HOM M E 0.030 0.020 0.025 -0.004 0.000

Errors 



Idealized Test Cases



Shallow Water Equations on the Sphere
Test 2                                    Test 5

Test case 2 (analytical solution):  perfect 4'th order convergence 
Test case 5 (reference solution):  convergence rate of 2.6 until error is reduced to the level 
of uncertainty in the reference solution.  



Aqua Planet 

Full Atmospheric physics and dynamics, on a 
planet with no land and a fixed sea surface 
temperature
Follow Williamson equivalent resolution 
methodology (Williamson, Tellus 2008) 
– No convergence under mesh refinement, 

as expected due to the nature of many of 
the subgrid physics parametrizations

– Strong signal with resolution
– However,  agreement between dynamical 

cores establishes equivalent resolutions     
 



Moist  Atmospheric Primitive Equations

Assuming terrain following pressure coordinate σ = p/p
s
:  

u  = velocity field 
p

s
 = surface pressure

T  = temperature

ζ = vorticity
ω = pressure vertical velocity
σ = sigma vertical coordinate
Φ = geopotential

∂u
∂ t

f  k×u∇
1
2
u2̇

∂u
∂


RT v
p

∇ ps=0

∂T
∂ t

u⋅∇ T̇
∂T
∂

−
RT v
c p
∗



p
=0

∂ ps
∂ t

∇⋅psu
∂

∂
ps ̇=0

∂ psq
∂ t

∇⋅ psq u
∂

∂
 psq ̇ =0

(combining p
s
 and  sigma-dot equations)  



Aqua Planet - CAM 3.4 Physics

Total (solid lines) and compressible (dotted lines) components



Real Planet:  KE spectra

Rotational (top) and compressible
(bottom) components



Moist Energy Conservation

E=
1
2∬ psu⋅u∬c p

∗
psT∫ pss

Total Energy conservation: adiabatic case: (no forcing, dissipation, 
limiters, Robert filter)
− dE/dt = 1e-4  W/m^2

− Decreases to machine precision as:  O(Δt2)

− Must include moist contributions to c
p
 to show conservation 

− c
p
* = c

p
 + (c

pv
-c

p
)q

− Using dry energy formula, dE/dt = 0.5 W/m^2.   



Moist Energy Conservation

E=
1
2∬ psu⋅u∬c p

∗
psT∫ pss

Full Model:  (0.5 degree resolution)   W/m^2
Robert 
Filter, q 
limiters

Hyperviscosity Physics Internal 
Transfer

dKE/dt -0.6 -2.5 3.2

dIE/dt 0.6 2.3 +/- 6 -3.2

dE/dt -0.013 0.0 0.0

Note:  At 2 degree resolution, models are criticized for dissipating too 
much KE in order to achieve sufficient enstrophy dissipation.  
Hyperviscosity (CAM-Eulerian, CAM-HOMME) or ILES (CAM-FV) or 
semi-lagrange (Bowler QJRMS 2009) are 1-2 W/m^2.

CAM-HOMME at ½ degree (above) 0.6 W/m^2
CAM-HOMME at 1/8 degree:  0.3 W/m^2



Resolution Viscosity PRECC PRECL CLDTOT TMQ

EUL T42 5m 1.0E+16 1.71 1.11 0.64 20.21

HOMME 1.9 5m 1.0E+16 1.76 1.14 0.66 20.09

EUL T85 5m 1.0E+15 1.59 1.38 0.60 19.63

HOMME 1.0 5.5m 1.0E+15 1.59 1.43 0.61 19.67

EUL T170 5m 1.5E+14 1.44 1.62 0.55 19.13

HOMME 0.5 5m 1.5E+14 1.48 1.62 0.55 19.36

T340 5m 1.5E+13 1.36 1.75 0.50 18.75

Physics dt

Aqua Planet Global Mean Quantities 

Compared to the size of the resolution signal, there is a remarkable 
agreement between CAM/HOMME and CAM/Eulerian  
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Real Planet Simulations
Comparisons with Observations



1/8 degree simulations on JaguarPF



Real Planet:  Zonal Mean Temperature
CCSM-EUL                      CCSM-HOMME                    CAM-FV
     T85                                1 Degree                          0.9x1.25

Observations



Zonal Mean Zonal Wind (DFJ)
CCSM-EUL                      CCSM-HOMME                    CAM-FV
     T85                                1 Degree                          0.9x1.25

Observations



Precipitation Rate

CCSM-EUL                      CCSM-HOMME                    CAM-FV
     T85                                1 Degree                          0.9x1.25

CCSM-HOMME 1 DegreeCCSM-EUL T85

CAM-FV 0.9x1.25 OBSERVATIONS



Conclusions

Compatible version of SEM:  

−SEM: efficient, scalable explicit method which obtains 
high-order accuracy on unstructured grids.

−Compatible formulation:  locally conservative and 
preserves Lagrangian properties of vorticity

Allows the CCSM to scale to O(100,000) processors.



Jablonowski and Williamson, A Baroclinic Instability 
Test Case for Atmospheric Model Dynamical Cores, 
Q.J.R. Meteorol. Soc. (2006)

– Dynamical core only: no atmospheric physics
– L2 error in surface pressure as a function of 

time shown below
– Converges under mesh refinement to 

reference solution (uncertainty in reference 
solution is yellow shaded region)

 Test 2: Baroclinic Instability Test 



 Order of Accuracy Comparison



Test 2: Baroclinic instability.  Surface pressure at day 9. The tests starts with balanced initial 
conditions that are overlaid by a Gaussian hill perturbation. The perturbation grows into a 
baroclinic wave. Some models show cubed-sphere or icosahedral grid imprinting in the Southern 
Hemisphere.  High order methods show spectral ringing in the 1000mb contour. 

GISS-BQ CAM EUL CAM-FV isen

GME

OLAMICON

GEOS-FVcubeGEOS-FV

HOMME



Aqua Planet Experiment:  Zonal Data
Comparison with FV & Eulerian Dycore
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Zonal Mean Pressure Vertical Velocity

HOMME GLOBAL SPECTRAL 

FINITE VOLUME OBSERVATIONS



Real Planet:  Zonal Means (DFJ, JJA)
CCSM-EUL                      CCSM-HOMME                    CAM-FV
     T85                                1 Degree                          0.9x1.25

Observations
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