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Slim : a multi-scale model for the 
ocean, coaslines and rivers 

www.climate.be/slim 

Outline 

•  Meshing the ocean on the sphere 
•  Solving PDE’s on the ocean with high-order DG 
•  Numerical challenges 



Gravity  
waves on 
a froggy 
planet 

Building a general method for irregular manifolds 

•  The method is independent of the manifold 
•  It must be easy to implement 
•  It must be robust to handle such a funny benchmark 



Structured grid … 
•  Finite differences are easy to implement 
•  Programming is easy 
•  Well known in the world of oceanography 
•  Bad representation of the coastlines 
•  Difficult to enhance locally the resolution 
•  Poles singularity 

…versus unstructured grid 
•  Numerical methods are more complicated 
•  Programming is more complicated 
•  Not well known in the world of oceanography 
•  Accurate representation of the coastlines 
•  Enhancing the resolution is flexible 
•  No singular points 



Delaunay based  
triangulation 

1.8 million triangles, 
780 seconds for doing the mesh,  
90% spent in computing the mesh size field. 

•  Poincaré waves have to be resolved 
•  Mesh size smaller along coastlines 
•  Geometry of the coastlines has to be represented 



Are adaptive unstructured-grid 
models coming of age ? 

Reduced-gravity simulation of a baroclinic 
eddy in the Gulf of Mexico. 

This simulation is several orders of magnitude 
cheaper than a constant resolution one of the 
same accuracy ! (Bernard, 2007) 

•  Numerical models of marine systems should be able to explicitly 
represent the broadest possible range of scales. 

•  Increasing the resolution everywhere is not the best option as this 
often results in a very inefficient use of the computational resources. 

•  The idea is to increase the resolution where and when it is needed  !  



Mahakam river,  
a highly multi-scaled   
motivating example 



72% of the elements  
are in 1.4%  
of the domain 

•  Validated hydrodynamics with wetting/drying processes. 
•  Development of a three-layers sediment module 
•  Computing time elapsed since entering in the domain (age) 



Hydrodynamics 



Size of the 
smallest  
element   
is 7 m 

Numerical models and computer simulations are the 
only tools available to understand in detail and predict 
the evolution of complex environmental systems. 

“Science is now a tripartite endeavour, with Simulation 
added to the two classical components, Experiment and 
Theory”   Allan R. Robinson 



The Galerkin  
Discontinuous  
Method 

•  Bloc-diagonal global matrices  
•  Transfer between elements through the flux on the edges 
•  A weak collocated formulation can be also derived 
•  Upwinding by the flux evaluation (Riemann’s solver) 



The Shallow Water Equations… 

•  Very crude model for geophysical flows, 
but allows the existence of inertia-gravity 
waves 

•  Constant depth of the ocean 



A 1D sharp simplified problem 
in a finite domain 



What is  
the solution ? 

t = 0 

t = 1 

Rossby’s radius 



A more and more 
complex and 
interesting  
solution… 

t = 2 

t = 33 



What are  
the equations ? 

t = 500 

Helmholtz’s Equation 
Forced Wave Equation 



How does 
information 
propagate ? 

Riemann’s Invariants 

t = 1 



Two distinct  
waves… 

t = 1 



An analytical  
solution exists ! 

t = 700 

Separation of the Classical Equations 
with the boundary conditions 



The Continuous  
Galerkin Method 

 n = 200, t = 2 

 n = 2000, t = 2 
Oscillating solutions  

that only converge in a mean sense… 



The Optimal Technique : 
Integrating along characteristics 

t = 200 
Second-order Runge-Kutta 



Time integration  
has to be  
accurately  
performed… 

t = 200 
Heun (RK-2) 
Δt = 0.01 

t = 200 
Explicit Euler 
Δt = 0.01 

t = 200 
Explicit Euler 
Δt = 0.001 



The Discontinuous 
so-called Galerkin  
Method 

Penalty term to enforce 
weak continuity of the 

solution 

Penalty Factor 
(usually = 1) 

Upwinding Factor 
(usually = 1) 



After some tedious algebra… 

Considering only 
once integrals along 
internal segments. 



How to impose 
the continuity 
constraint ? λ = 1, ζ = 100 

Almost the classical upwind difference ! 
Stable, but a lot of numerical diffusion… 

t = 0.3 
λ = 1, ζ = 1 

λ = 0, ζ = 1 

t = 0 



The Discontinuous  
Galerkin Method 

Penalty terms to enforce 
weak continuity of the 

solution 

Upwinding Factor 
(in fact, the best selection is = 0) 



The Discontinuous  
Galerkin Method 

t = 2 
λ = 0 



How to impose 
continuity 
constraint ? 

t = 2 
λ = 0 

t = 2 
λ = 0.001 

t = 2 
λ = -0.001 



The Discontinuous  
Riemann-Galerkin Method Penalty terms to enforce 

weak continuity of the 
Riemann’s invariants 

Forward 
Upwinding 

Backward 
Upwinding  



DG Method works ! 
t = 2 

t = 200 

•  The use of a good Riemann solver is mandatory ! 
•  A sharp problem is needed to discriminate 

inefficient or unstable numerical techniques 



Theoretical rates of convergence 
are obtained for the analytical 
Stommel problem 



How does it  
converge ? 

Uniform P4 Mesh 

Uniform P1 Mesh 

Adaptive P4 Mesh 

Adaptive P1 Mesh 



High-order versus  
low-order meshes 

Global Rossby-Hauritz waves 

Unsteady balance between 
pressure term and Coriolis force 



Intuitively... 

Spectral Transform Method 
[Jakob-Chien et al. (1995)] 



Finally, a pattern characterized by a 
wave number of two appears! 

And the flow  
becomes instable... 



Internal waves  
in the lee of a  
moderately tall 
seamount 

The computation starts with a global zonal 
geostrophic equilibrium ignoring the seamount 
as in Williamson testcase 5 

Cloud waves in the lee of Amsterdam island 
(NASA image from J. Schmalz) 



7 days evolution  
of density deviation field 



Mesh of 23562 
triangles extruded 
into 25 σ layers  



Two well separated modes at day 7 



Cut in the density 
field at day 7 



Multi-scale modelling  
of the Great Barreer Reef 

(Australia) 



Time-space  
scales 

•  Forcings : 
wind, tides, Coral Sea inflow 

•  Wide spectrum of hydrodynamics processes simulated : 
eddies, tidal jets, sticky waters, general circulation  



The time 
stepping 

 issue 

•  890,000 triangles 
•  Smallest element : 7 m 
•  Largest element : 3,300 m 
•  99.9 % > 60m 

The time step is constrained by the smallest element . 

•  Use innovative time stepping procedures 
•  Implicit-explicit (IMEX) schemes 
•  Multirate schemes 



Reduce cost by 1000 ! 
Use high performance computers ! 

Each route could reduce the computational cost by 
one order of magnitude. 

•  Exploit single precision BLAS/LAPACK for the efficient 
implementation of the explicit and implicit discontinuous Galerkin 
methods. 

•  Implement new time-integration procedures adapting the time step to 
the physical processes. 

•  Introduce multi-level methods for the implicit linear and non-linear 
solvers with multigrid methods as a preconditioner for stiff, non-linear 
and non-positive-definite systems.  

1.759 Pflops 
224,162 processors 

10 Gflops 
2 processors 



Conclusions 

Bernard et al . (JCP, 2009)(OM, 2009) (JSC, 2008) 
Comblen et al. (OM, 2009) (OD, 2010) 

http://perso.uclouvain.be/vincent.legat/papers/ 

•  Today, the efficiency of high-order adaptative DG 
methods has been demonstrated in several applications. 

•  It has also been demonstrated with realistic geometry, 
bathymetry and forcings. 

•  An original implementation on manifolds, combining the 
advantages of both usual methods is given. 


