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@ Motivation: Why focus on tracer transport? (context: global climate models)
@ multi-tracer efficiency
@ ‘resolve’ near grid-scale features
@ consistency: mass-tracer, preserve relative concentrations
@ accuracy on ‘fancy’ spherical grids (test case)
@ geometric flexibility

© Conservative Semi-LAgrangian Multi-tracer (CSLAM) scheme
9 scheme basics

© Flux-form version of CSLAM (FF-CSLAM)
@ semi-Lagrangian flux-form method
@ experimentation with limiters/filters

@ New challenging test cases for transport schemes on the sphere
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Why focus on transport schemes? Multi-tracer efficiency

Continuity equations in NCAR's Community Atmosphere Model (CAM) version 5
@ Air density
@ Water species: Water vapor, cloud liquid water and ice

@ Microphysics & Aerosols: number concentrations (cloud water variables,
aerosols), particulate organic matter, dust, sea salt, secondary organic
aerosols, ... (total of 22)
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Why focus on transport schemes?

Continuity equations in NCAR's Community Atmosphere Model (CAM) version 5

@ Air density
@ Water species: Water vapor, cloud liquid water and ice

@ Microphysics & Aerosols: number concentrations (cloud water variables,
aerosols), particulate organic matter, dust, sea salt, secondary organic
aerosols, ... (total of 22)

Continuity equations in Chemistry version of CAM

Prognoses 126+ chemical species (computational cost of resolved scale transport
is substantial also compared to parameterizations of sub-grid-scale chemical pro-
cesses).
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Why focus on transport schemes?

Continuity equations in NCAR's Community Atmosphere Model (CAM) version 5

@ Air density
@ Water species: Water vapor, cloud liquid water and ice
@ Microphysics & Aerosols: number concentrations (cloud water variables,

aerosols), particulate organic matter, dust, sea salt, secondary organic
aerosols, ... (total of 22)

Continuity equations in Chemistry version of CAM

Prognoses 126+ chemical species (computational cost of resolved scale transport
is substantial also compared to parameterizations of sub-grid-scale chemical pro-
cesses).

v

— In many atmospheric modeling applications the computational cost of resolved
dynamics is (or is expected to be) dominated by the cost of tracer transport

— Multi-tracer efficiency is becoming increasingly important
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Example from CAMb at 1.9° x 2.5° resolution

Water variables
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@ many fields (water variables, aerosols, chemical species, ...) contain near
grid-scale features

@ production/loss terms are large, however, locally the advective tendency can
be large (e.g., cloud ice mixing ratio for Cirrus, aerosols, ...)
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Example from CAMb at 1.9° x 2.5° resolution

Aerosol number concentration
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@ many fields (water variables, aerosols, chemical species, ...) contain near
grid-scale features

@ production/loss terms are large, however, locally the advective tendency can
be large (e.g., cloud ice mixing ratio for Cirrus, aerosols, ...)
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Aerosols: Eruption under the Eyjafjallajokull glacier (left); Meteosat-9, April 15 (8AM) (right)

@ many fields (water variables, aerosols, chemical species, ...) contain near
grid-scale features

@ production/loss terms are large, however, locally the advective tendency can
be large (e.g., cloud ice mixing ratio for Cirrus, aerosols, ...)
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Example from CAMb at 1.9° x 2.5° resolution

Br: Strong diurnal cycle (produced by photolysis)

Grid-box averaged BRO at level 6 (54.6 hPa) 10e-12 kghkg latitude = 44.5263 lev=6
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@ many fields (water variables, aerosols, chemical species, ...) contain near
grid-scale features

@ production/loss terms are large, however, locally the advective tendency can
be large (e.g., cloud ice mixing ratio for Cirrus, aerosols, ...)
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Why focus on transport schemes? Consistency

@ Air mass and tracer mass consistency:

ap o

a‘l‘v'(PV)—O. (1)
9(pq) o

5o +V-(pPav) =0, (2)

where ¥ is the velocity vector, p is density for dry air (kg/V) and ¢
concentration (mixing ratio, kg/kg). If q =1 then (2) reduces to (1).

Monotonicity: Note that (1) and (2) imply
dg_, 4

dat ' dt

0
a+\)-v, (3)

q is conserved along trajectories/characteristics of the flow.

— Requirement for monotonicity applies to q not (pq)!

If the flow is non-divergent V - vV =0 and if the transport operator preserves a
constant for non-divergent flow fields then you no longer need to distinguish
between p and pq when testing for monotonicity preservation!
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Why focus on transport schemes? Consistency (cont.)

@ Chemistry: Relative concentrations control chemical reactions &
transport schemes should preserve them (at least in areas with no or little
mixing)
this is stronger than preservation of linear correlations: q; =cq; +d

<
> N /

tracer
\

’ * . numerical solution to tracer 1

mixing ratio

tracer 1

physical space

Figure: Assume constant wind. Most scheme can transport tracer 1 exactly but not tracer 2

Relative concentrations near large gradients are altered by numerical
scheme ...
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Why focus on transport schemes? ‘Fancy’ spherical grids

Primarily for scalability many groups are considering more isotropic

spherical grids
- challenges schemes in new ways:

@ Grids are not orthogonal (at least not globally):
9 might question accuracy of dimensionally split schemes
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Why focus on transport schemes? ‘Fancy’ spherical grids

Primarily for scalability many groups are considering more isotropic spherical grids
- challenges schemes in new ways:
@ Grids are not orthogonal (at least not globally):
9 might question accuracy of dimensionally split schemes
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Convergence plots for moving vortices test case (Nair and Jablonowski, 2008): (left) CSLAM monotone, (right) Putman and Lin (2007)

@ CSLAM and Putman and Lin (2007)-scheme use the same order of
reconstruction function; main difference: fully 2D and dimensionally split,
respectively!
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Why focus on transport schemes? ‘Fancy’ spherical grids

Primarily for scalability many groups are considering more isotropic spherical grids
- challenges schemes in new ways:

@ Grids are not orthogonal (at least not globally):

@ might question accuracy of dimensionally split schemes

9 Zonal flow is newer always aligned with grid lines as for the lat-lon grid

PN
R eos e
eSS
(7 5SS
oo Sl <

o N

5
s
S
S

OO
SO
55
——
=

oy
RO

B e

SR

RIS
=

AR

Peter Hjort Lauritzen (NCAR)



Rotated steady—state test case at 1° & 2° (Lauritzen, Jablonowski, Taylor and Nair, 2010a)

Day 9, approximately 2 horizontl resoluton at equator

Gmen i b

Rotate computational grid
(physical flow stays the same)

u reguieriationgrid  -¢" U roguierletiongrd 45" U roquisrlationgrid - g0°

* Setup:

- balanced steady state initial conditions
(ps=1000 hPa for all t)

- rotate computational grid (solutions should
be invariant under rotation of computational
grid)

« Baroclinically unstable flow (so any perturbation
will grow.

Amplitude of spurious waves vary significantly
among models (decreases with resolution)
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Rotated steady—state test case at 1° & 2° (Lauritzen, Jablonowski, Taylor and Nair, 2010a)

@ Definition: If £, > 0.5 then model is

unable to maintain balanced flow

1, norm of P (hPa)

1, norm of P (hPa)

rotation angle ot = 0°

rotation angle o = 45°

rotation angle ot = 90°
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1, norm of P (hPa)

0 15 20
days

@ Tendency for these models: Higher order and rigorous 2D treatment of grid
‘non-uniformities’ seems to lead to better solutions

@ Open question: How many days should a model be able to maintain a balanced flow before

it will spuriously impact long ‘real’ model simulations? (minimum-resolution)

Peter Hjort La
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Commercial break
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Lecture Notes in Computational Science and Engineering

@ Springer book entitled ‘Numerical Techniques for Global Atmospheric Models’ based on the
lectures given at the 2008 NCAR ASP (Advance Study Program) Summer Colloquium.

@ Editors: P.H. Lauritzen, C. Jablonowski, M.A. Taylor and R.D. Nair

@ 16 Chapters; authors include J. Thuburn, J.Tribbia, D.Durran, T.Ringler, W.Skamarock,
R.Rood, J.Dennis, Editors, ...

@ Publication date: Tentatively late 2010 or early 2011

@ More details at: http://www.cgd.ucar.edu/cms/pel/colloquium.html and
http://www.cgd.ucar.edu/cms/pel /Incse.html

This book surveys recent developments in numerical techniques for global
atmospheric models. It is based upon a collection of lectures prepared by leading
experts in the field. The chapters reveal the multitude of steps that determine the
MartinPeters global atmospheric model design. They encompass the choice of the equation set,
g‘;'::m"r:'fz':aslpﬂ:‘t'd computational grids on the sphere, horizontal and vertical discretizations, time
Simulation integration methods, filtering and diffusion mechanisms, conservation properties,
tracer transport, and considerations for designing models for massively parallel
computers. A reader interested in applied numerical methods but also the many facets
of atmospheric modeling should find this book of particular relevance.
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End of commercial break
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CSLAM & FF-CSLAM

So | hope | have convinced you that:

multi-tracer efficiency is important

consistency is important

preservation of gradients (relative concentrations) is important
geometric flexibility is important

¢ 6 ¢ ¢ ¢

for ‘fancy’ grid models fully 2D advection schemes may significantly increase
accuracy

@ need to assess minimum resolution for models for which ‘grid-imprinting’ is
not spuriously perturbing the solution (at least for models intended for long
runs, e.g., paleo-climate applications, low frequency variability studies, ...)

Next:
@ Geometrically flexible scheme: CSLAM and FF-CSLAM

@ CSLAM was presented at PDEs on the sphere workshop in 2009 and has
been published in J. Comp. Phys. (Lauritzen et al., 2010b)

— only brief discussion here
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Conservative Semi-LAgrangian Multi-tracer (CSLAM)

@) (b)

&
Ay ‘ Ay
\

Finite-volume Lagrangian form of continuity equation for 1\ = p, p q:
J wE*ldxdy:J PYrdxdy = ZJI ) dx dy,
Ak ak Ak

where the ay's are non-empty overlap regions:

axe = ax N Ay, ak(#(l); ¢=1,..., L. (1)
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Conservative Semi-LAgrangian Multi-tracer (CSLAM)

@) (b)

Ay

)
:
| |

Finite-volume Lagrangian form of continuity equation for 1\ = p, p q:

Lk
[ wptaxau=| wpaxay - Y4 (Pax+Qaul,
Ar =)o

ax axe

where day, is the boundary of ay, and

+SE =fxy) = Y Xyl
<2
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Conservative Semi-LAgrangian Multi-tracer (CSLAM)

@) (b)

L
Ay . ‘ A
\

Finite-volume Lagrangian form of continuity equation for \{ = p, p q:

Ly
J ﬂ)Tk‘“dxdy:J YRdxdy = 3 | Y cMwd |,
Ax ag =1 |i+j<2
(i.j

where weights w; ) are functions of the coordinates of the vertices of Ayg.
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Conservative Semi-LAgrangian Multi-tracer (CSLAM)

@) (b)

)
:
| |

Finite-volume Lagrangian form of continuity equation for 1\ = p, p q:

JA IPEHdXdy:J Prdxdy = Z|:Z clllwu :|
k

ax =1 |i+j<2
o w](:e]) can be re-used for each additional tracer (Dukowicz and Baumgardner, 2000)
@ computational cost for each additional tracer is the reconstruction and limiting/filtering.
@ CSLAM is stable for long time-steps (CFL>1)

@ Equi-angular cubed-sphere extension of CSLAM discussed next ....

@ CSLAM is fully two-dimensional and can be extended to any spherical grid constructed from
great-circle arcs.
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Gnomonic projection

@ Computational space is ‘Cartesian-like’ gnomonic coordinates (x,y)
(Sadourny, 1972) defined in terms of central angles («, B):

T T

x =tanx and 1y =tanp; oc,Be[—Z,Z], (1)
@ any straight line on the gnomonic projection corresponds to a great-circle arc
@ = reuse Cartesian algorithm except:

9 Divergence theorem must be converted to gnomonic coordinates
(Ullrich, Lauritzen and Jablonowski, 2009).
o Consistently couple the panel discretizations for the global domain.
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Divergence theorem in gnomonic coordinates

Let ¥ be a vector field with contravariant components W, and ¥, in the direction
of the unit basis vectors (ey, ey), i.e. ¥ =W e, +¥,e,. Divergence theorem:

J V. wdv = féi [\Px dy + Y, dx} , (2)
Ak dae
where v v
V= —> and ¥, = —2L—,
pv1+y? opVIR?

with p = /1 +x2 +y2. The divergence operator is given by

v, oY
v\l;_p3|:a Y

: (3)

0x oy
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A choice of potentials for fully 2D (third-order, ‘2D PPM’) reconstructions:
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Divergence theorem in gnomonic coordinates

(@) (b) (€)

[ STl | A

@ Integrating the potentials along sides of ay,:
o (Fig. c) Along coordinates lines it is possible to compute the line integrals
exactly (Ullrich, Lauritzen and Jablonowski, 2009).
o (Fig. b) Along lines of arbitrary orientation we use 2-point Gaussian
quadrature.
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Coupling panels

T

-r

-r

-r r -r r -r r

€

(a) Halo for panel p (on panel p’s projection). Note that the cells on neighboring panels
are deformed on panel p’s projection.

©

(b) Compute deformed upstream grid (Figure shows upstream grid for moving vortex test
case). Note that cells entering from neighboring panels are ‘naturally’ skewed

[

(c) ‘Chop off’ non-local overlap areas

[

Do remapping local to panel (for each panel)

[

Collect contributions from neighboring panels.
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Flux-form CSLAM (FF-CSLAM)

P}
&3

a ™, &’

a,
=4
ai:d
Finite-volume flux-form of continuity equation for { = p, p q:

J Prfldxdy = J d)*k‘dxdyf ZSWJ]‘ (x,y)dxdy|,
A Ax e=1 | t= age

where
@ af = 'flux-area’ (yellow area) = area swept through face e
@ L{ = number of overlap areas for ai; ag, = af N Ay
9 sy, = 1 for outflow and -1 for inflow.

@ All technology developed for CSLAM can be re-used
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Flux-form CSLAM (FF-CSLAM)

=
a [ a*
3 =4
-
Finite-volume flux-form of continuity equation for 11) =p, p q:
J Prtldxdy = J PR dx dy— Zsk(j]l (x,y)dxdy|, (11)
Ak Ak e=1 [t=

@ Note: all the areas involved in forecast (11) ‘sum-up to' upstream Lagrangian area day:

4 [Lg
AA =) | sgdaf| =day. (12)
e=1 |¢=1

Aside: in flux-form you'll conserve mass even when you are ‘sloppy’ about approximating
ay, that is, effective upstream areas day do not need to span the domain without
overlaps/gaps as for the Lagrangian scheme! (However, for consistency and maybe
accuracy it should be the case - geometric error)

@ One tracer: For CFL <1 FF-CSLAM is at most 40% more expensive than CSLAM (for
CFL~3 FF-CSLAM is approximately 110% more expensive than CSLAM)

— Why FF-CSLAM?
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Flux-form CSLAM (FF-CSLAM)

@ In CSLAM shape-preservation is enforced by filtering the sub-grid-cell reconstructions (also
applicable for FF-CSLAM)

@ Casting in flux-form one may also apply flux-limiters such as FCT (Flux-Correct-Transport,
Zalesak 1979).

@ Flux-form allows for super-cycling (also referred to as sub-cycling), that is, transport
tracers with longer time-steps than what is used for the dynamics.

ksplit

(Pa)™ = (pa)™+(q™) x | 3 spni/ksvlit| (11)
i=1

where 5pnt/ksplit is the flux of air mass into the cell during one sub-cycled time-step
At/ksplit, ksplit is the number of ‘dynamics’ time-steps per tracer time-step, (q™) is
the average of q over brown area:

flow direction flow direction

time
U 2 " A P P A

time

Figure: Assume no flow through right cell boundary
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Flux-form CSLAM (FF-CSLAM)

@ In CSLAM shape-preservation is enforced by filtering the sub-grid-cell reconstructions (also
applicable for FF-CSLAM)

@ Casting in flux-form one may also apply flux-limiters such as FCT (Flux-Correct-Transport,
Zalesak 1979).

@ Flux-form allows for super-cycling (also referred to as sub-cycling), that is, transport
tracers with longer time-steps than what is used for the dynamics.

ksplit
(p q)n+1 — (P q)n + <qn> % Z 5pn+1/kspl1t , (11)

i=1

Note that if g = 1 then the equation reduces to the discrete continuity equation for air
(air-tracer mass consistency)

flow direction flow direction

time time

RTINS AT unA‘.j

TSN ATl WYL NN Y8

Figure: Assume no flow through right cell boundary
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Limiters and filters

@ In the literature: Many 1D limiters but few fully 2D limiters!
@ A priori (‘Monotone filtering'): Filter the recon-
struction fg(x,y) so that extreme values lie within
the adjacent cell-average values (Barth and Jespersen, /

1989). =i

@ A posteriori (‘Monotone limiting’): Limit the fluxes to prevent new extrema
. —ntl .
in P using flux-corrected transport (Zalesak, 1979).

@ Monotone filters/limiters tend to ‘clip’ physical extrema

a) Unlimited b) Monotone filter/limiter c) Selective filter/limiter

Wo - -
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Limiters and filters

@ In the literature: Many 1D limiters but few fully 2D limiters!

@ A priori (‘Monotone filtering'): Filter the recon-
struction f,(x,y) so that extreme values lie within /
the adjacent cell-average values (Barth and Jespersen,

1989). — [E

@ A posteriori (‘Monotone limiting'): Limit the fluxes to prevent new extrema

ingp" using flux-corrected transport (Zalesak, 1979).

@ Selective filtering/selective limiting (Blossey and Durran, 2008): apply
filtering or limiting only where a WENO-based smoothness metric exceeds a
certain threshold:

2 2¢\2 2 24\2 24 \2
1 of 5 02f of 5 02f 22
Y=3 {(2Ax ax) + (Ax ax2) + (2Ay ay> + (Ay ay2> + (AxAy axay) (12)

Will render solution non-oscillatory but not strictly monotone (‘miniscule’
under- and over-shoots)
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Limiters and filters

@ In the literature: Many 1D limiters but few fully 2D limiters!
@ A priori (‘Monotone filtering'): Filter the recon-
struction fg(x,y) so that extreme values lie within
the adjacent cell-average values (Barth and Jespersen, /

1989). =i

@ A posteriori (‘Monotone limiting’): Limit the fluxes to prevent new extrema
. —ntl .
in P using flux-corrected transport (Zalesak, 1979).

@ Monotone filters/limiters tend to ‘clip’ physical extrema

a) Unlimited b) Monotone filter/limiter c) Selective filter/limiter

Wo - -
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Flux-form CSLAM (FF-CSLAM): Results

Convergence plots for

solid-body advection o

C2 cone

B

0.001

pE9O+

sel
—— 2nd3rd Order

E,

Ba
m
8

olq

Uniimited 3.17
Mono. lmiter 1.79
M r152

pE9O+

Sel.limiter 3,18
Sel fiter 3.18
—— Znd/3id Order

0.0001
2 8 %

2 8 % 192

@ Third-order convergence in E; and E, for unlimited scheme and when using

selective limiter/filter

The monotone filtering is much less efficient than monotone limiting in

FF-CSLAM (monotone limiting almost doubles the cost whereas monotone

filtering almost triples the cost)
— Computational cost of limiting is substantial (most likely also the case for

other schemes?)!

@ We also ran moving vortices test case (Nair and Jablonowski, 2008) as

mentioned on earlier slide (Harris and Lauritzen 2010, submitted)
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Idealized test cases for transport
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Idealized test cases for transport

@ Most transport schemes that have been implemented in global climate
models have ‘only’ been tested (in idealized setup) for solid-body advection

2 No flow features of much interest (no deformation, no divergence, etc.):

9 Does not challenge schemes much

@ Preservation of a constant is easier compared to more complex non-divergent
flows (Lagrangian areas undergo no deformation, rotation, etc.)

@ Does not force modelers to distinguish between tracer concentration q and

tracer density p g

April, 2010
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Idealized test cases for transport

@ Most transport schemes that have been implemented in global climate
models have ‘only’ been tested (in idealized setup) for solid-body advection

o No flow features of much interest (no deformation, no divergence, etc.):

@ Does not challenge schemes much

@ Preservation of a constant is easier compared to more complex non-divergent
flows (Lagrangian areas undergo no deformation, rotation, etc.)

@ Does not force modelers to distinguish between tracer concentration q and
tracer density p g

@ Need more rigorous benchmark test cases in a challenging environment to:
@ test schemes under divergent and deformational flow conditions
9 test schemes on new unstructured spherical grids
@ test static and dynamic mesh refinement algorithms
o test trajectory algorithms (semi-Lagrangian or Lagrangian methods)
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|dealized test cases for transport

@ Most transport schemes that have been implemented in global climate
models have ‘only’ been tested (in idealized setup) for solid-body advection

@ No flow features of much interest (no deformation, no divergence, etc.):

9 Does not challenge schemes much

@ Preservation of a constant is easier compared to more complex non-divergent
flows (Lagrangian areas undergo no deformation, rotation, etc.)

@ Does not force modelers to distinguish between tracer concentration q and
tracer density p g

@ Need more rigorous benchmark test cases in a challenging environment to:
@ test schemes under divergent and deformational flow conditions
9 test schemes on new unstructured spherical grids
@ test static and dynamic mesh refinement algorithms
o test trajectory algorithms (semi-Lagrangian or Lagrangian methods)

@ test case has to be simple to implement otherwise (most) people will not use it! J
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Class of deformational test cases (Nair and Lauritzen 2010, in review)

@ Very hard to derive complex flows that have an analytical solution for
transport (for all t)
@ So we follow ideas developed by LeVeque (1996) and use a time-reversing
flow field, i.e. the exact solution after (t=T) = initial condition (t=0)
@ Two non-divergent flow fields (k is flow parameter):
o Case-1:
u(A,0,t) = ksin®(A/2)sin(20) cos(mt/T) (12)
v(A,0,t) = gsin()\] cos(0) cos(7tt/T) (13)
P(A,0,t) = ksin®(A/2)cos?(8) cos(mt/T). (14)
where 1) is the stream function: u=—%% v = _L %%
o Case-2:
u(A,0,t) = ksin(A)sin(20) cos(rt/T) (15)
v(A,0,t) = ksin(2A)cos(0) cos(mt/T) (16)
P(A,0,t) = ksin?(A)cos?(8) cos(mtt/T), (17)
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Class of deformational test cases (Nair and Lauritzen 2010, in review)

@ Very hard to derive complex flows that have an analytical solution for
transport (for all t)

@ So we follow ideas developed by LeVeque (1996) and use a time-reversing
flow field, i.e. the exact solution after (t=T) = initial condition (t=0)

@ Two divergent flow fields (k is flow parameter):

» Case-3:
u(A,8,t) = —ksin?(A/2)sin(28) cos(mt/T) (12)
v\, 8,1) = gsin()\)cos(e] cos(mit/T) (13)
o Case-4:
u(A,8,t) = —ksin?(A/2)sin(260) cos(mt/T) (14)
v(A,0,t) = —ksin(A)cos?(8) cos(mt/T) (15)

Peter Hjort Lauritzen (NCAR) CSLAM and FF-CSLAM April, 2010



Class of deformational test cases (Nair and Lauritzen 2010, in review)

@ For (semi-)Lagrangian schemes the trajectories can be computed using
high-order Taylor Series expansions:

The wind vector V = dx(t)/dt, and the upstream position of x4 at the
departure time t — At is given by,

x4 = x(t — At) = x(t) — At Tx(t) + (ay* & xX(t) —- - (12)

dt 21 dt2

dAu do

dt  cos() dt
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Class of deformational test cases (Nair and Lauritzen 2010, in review)

Deformational Flow (DG3): Case-2 Deformational Flow (DG3): Case-3

(@) Intial Divergent Wind (b) Inital Fields (1=0)
(@) Intial Non-divergent Wind (b) Inital Fields (t=0)
H A - v
A - i -
(¢) Deformed Fields at =T/2 (@) Final Fields (1=T)
(c) Deformed Fields at =T/2 (@ Final Fields (1=T)
,A . A - IS . o -
o - - - A v i -

0 01 02 03 04 05 06 07 08 09 1
0 01 02 03 04 05 06 07 08 09 1

@ Note: You can use any spatial distribution as the initial condition

@ At DOE transport meeting 3 weeks ago it was suggested to add solid-body
rotation to the flow (to avoid the possibility of cancellation of errors when
the flow reverses)

@ Also: Shifted initial condition (if tracer q is zero it can hide some artifacts ...)

@ Show animations ...
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Class of deformational test cases (Nair and Lauritzen 2010, in review)

9 Test forces modelers who transport tracer mass and not ¢ to distinguish
between density and concentration (even for the non-divergent flow no
scheme will preserve a constant!)

9 Very challenging flow conditions
@ Test can, of course, be rotated to direct flow over your ‘trouble points’

@ This test can be setup to test accuracy of sub-cycling (smooth background
air mass field and non-smooth tracer field)

Peter Hjort Lauritzen (NCAR) CSLAM and FF-CSLAM April, 2010



Class of deformational test cases (Nair and Lauritzen 2010, in review)

@ (as part of DOE transport efforts) We plan to organize a short working
workshop at NCAR in early 2011
9 Participants must bring solutions!
o A draft test case setup will be formulated later this year (goal: get at accuracy
versus cost, gradient preservation, accuracy and cost of filters/limiters, ...)
o Comments are very welcome! (perhaps add simplified chemistry,
L.Bonaventura)
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