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Canonical sampling
Our models are described by Hamiltonian systems

This can be integrated with a symplectic integrator and the 
energy will be well conserved.

The system samples (≈) the microcanonical ensemble:

For a system in thermal equilibrium with a reservoir at 
temperature β-1, energy is exchanged.  Canonical ensemble:

Need a mechanism to perturb the dynamics 



Interlude:
Mean fields for discretizations



 Equilibrium Statistical Mechanics of Discretizations
QG potential vorticity model - incompressible flow over topography

Hamiltonian PDE with Poisson structure and energy functional

Family of Casimirs

Area preservation

Cf [q] =
�

f(q) dx

qt +∇⊥ψ · ∇q = 0, ∆ψ = q − h

∂G

∂t
= 0, G(σ, t) = meas{x ∈ Ω | q(x, t) ≤ σ}



Equilibrium statistical theories for ideal fluids
A lot* of work has been done on determining the equilibrium 
distribution for 2D ideal fluids.   The various theories differ in their 
treatment of vorticity conservation laws.

The fine scale vorticity field is modelled by a probability distribution

The coarse-grain, or mean vorticity field is the ensemble average

The mean fields are functionally related (steady states) 

* Kraichnan 75, Salmon et al. 76, Carnevale & Frederiksen 87, Miller 91, Miller, Weichman & Cross 
92, Robert 91, Robert & Sommeria 91, Ellis, Haven & Turkington 02, Majda & Wang 2006



Mean field predictions

Ignoring PV altogether, E conservation leads to a mean field prediction

Energy-enstrophy theory (E-Z) yields a linear mean field relation

Robert/Miller theory enforces conservation of PV level set ‘area’:

(microcanonical)

Ellis, Haven & Turkington enforce only energy and circulation, but include 
a prior distribution on fine scale vorticity (canonical)



Mean fields for discretizations

• Problem setup of Abramov & Majda (2003)

• Instead of ensemble averages, we look at the time average over an 
interval            ,  for 

• Assuming sufficient ergodicity,

[103, T ]

q̄T =
1

NT

�

n

qn, ψ̄T =
1

NT

�

n

ψn, NT ∆t = T − 103

lim
T→∞

q̄T = �q�, lim
T→∞

ψ̄T = �ψ�

L = 2π, M = 22, h(x, y) = 0.2 cos x + 0.4 cos 2x, EM = 7, ZM = 20



Mean fields for Arakawa ’66 schemes

• Comparison of classical schemes by Arakawa ’66 conserving discrete 
approximations of energy (E), enstrophy (Z), or both (EZ).  



Hamiltonian particle-mesh (HPM) method*

A set of K discrete particles with lumped vorticity (circulation)
 

Coarse-grain vorticity on a uniform grid obtained by summing the overlapping 
particle distributions

Hamiltonian dynamics with

Time integration with a symplectic integrator (implicit midpoint)

*Developed in the context of SWEs:  [F., Gottwald & Reich 02, F. & Reich ’03, Cotter & Reich 
03 04 06, Cotter, F. & Reich 04] 



• Abramov & Majda (2003) used Zeitlin’s (1991) Poisson truncation of the 
ideal fluid, which preserves M+1 integrals on an MxM grid, to study the 
statistical relevance of the higher moments of vorticity  

• A nonzero third moment is “statistically relevant”

• Conjecture that higher moments irrelevant

Poisson integrator with N conserved quantities

ĈN, 4 ! N ! 22 in Eqs. 10 are statistically irrelevant for
predicting the large-scale mean flow. On the other hand, the
streamline contours in Fig. 4 b–d indicate stronger, more

localized regions of closed stream lines associated with negative
values of the stream function for the cases with Ĉ3 ! 2, 4, and
6. Recall that closed stream lines with negative stream function

Fig. 3. The scatter plots q! vs. "! for the 23 " 23 sine-bracket truncation, layered topography, Ĉ3 ! 0, 2, 4, 6.

Fig. 4. The contour plots of the mean stream function, 23 " 23 sine-bracket truncation, layered topography, Ĉ3 ! 0, 2, 4, 6.
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Skew and Flat distributions - HPM method
Draw the vorticity from

with skewness

or excess kurtosis (no skew.)

We derived and compare with 
Lagrangian and Eulerian 
analytical models.

Comparison with time 
averaged loci.  T = 104.

various approximations were made, and to allow the system to sample the available phase space (assuming ergodicity) in a
reasonably short simulation interval.

We construct initial conditions with a desired prior distribution and energy value. The mean state (30) is fully defined by
these quantities. If the dynamics is sufficiently ergodic, then the time average mean stream function W and mean potential
vorticity !q should agree with the ensemble averages (24) and (23).

Given a continuous prior distribution on vorticity PðrÞ, we define particle PV values Qk as follows. The number of par-
ticles is K ¼ j2M2. We discretize the range of vorticity r into L equal partitions of size Dr where

r‘ ¼ r0 þ ‘Dr; ‘ ¼ 1; . . . ; L:

We choose the number of particles with vorticity r‘þ1=2 ¼ ðr‘ þ r‘þ1Þ=2 to be
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Fig. 3. Normally distributed PV on the particles. The scatter plot of mean fields (left) with linear fit. Mean stream function (right).
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Fig. 4. Locus ð!qi;WiÞ for skewed PV distributions, c ¼ 0, 2, 4, and 6 (grey points). The theoretical prediction based on (21) is shown in red and that based on
(30) is shown in blue. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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K‘þ1=2 ¼ K
Z r‘þ1

r‘

PðrÞdr
! "

:

Any remainder particles are assigned the values of the consecutive most probable level sets.
The particles are initially placed on a uniform grid of spacing Da ¼ Dx=j in each direction. Using Monte Carlo simulations,

the PV values are randomly permuted until a configuration is found within desired total energy (grid function) H0 % 0:01. In
all simulations, the target energy was H0 ¼ 7, and the total circulation was C1ðQ Þ ¼ 0, consistent with [1]. The Lagrange mul-
tipliers b and a follow from the constraints of total energy and circulation.

6.1. Normally distributed PV

From the classical energy–enstrophy theory of Kraichnan and others [15,27,4] it is known that if the PV field is normally
distributed, the mean field relation should be linear of the form (7). To verify this for the HPM method, we draw the particle
vorticities from a zero-mean Gaussian prior distribution

Qk & PðrÞ ¼ exp ' r2

2h2

# $
:

In this case the EHT theory yields (in the semi-discrete case)

piðrÞ ¼ Z'1
i expð'bhWiirÞPðrÞ;

which is continuous in the PV r. This density can be exactly integrated to yield the linear mean field relation

hqii ¼ 'bh2hWii:

We choose b and h to specify energy H0 ¼ 7 and enstrophy C2 ¼ 40.
In the left panel of Fig. 3, the locus of data points ðWi; !qiÞ is plotted for the time-averaged fields. The vorticity–stream func-

tion relation is nearly linear as predicted. Due to the finite sampling of the Gaussian distribution, the simulation data is not
precisely linear. The Eulerian statistical model (30) yields a more linear mean field prediction, but the Lagrangian statistical
model (21) more precisely fits the simulation data.
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Fig. 5. Mean stream functions corresponding to Fig. 4. For nonzero skewness c– 0 the stream function is two-dimensional, despite one-dimensional
topography.
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Due to the linearity and isotropy of (7) and (8), the mean stream function hwi satisfies a Helmholtz equation and is ex-
pected to be independent of y due to the special choice of topography. In the right panel we observe that the mean stream
function is indeed independent of y.

6.1.1. Skew PV distributions
In [1], Abramov and Majda show that nonzero values of the third moment of potential vorticity can cause significant devi-

ation from the statistical predictions of the normally distributed PV case. They use the Poisson discretization of Zeitlin [29] to
solve the QG model. On an M !M grid the Zeitlin method conserves energy and approximations of the first M moments of
potential vorticity bCr; r ¼ 1; . . . ;M.

We generate initial conditions Q from the shifted gamma-distribution [5]:

PðrÞ ¼ 1
C2jkj

R
1
C2k

ðrþ k&1Þ; 1
C2k

2

! "
;

where Rðz; aÞ ¼ CðaÞ&1za&1e&z for z P 0 and R ¼ 0 otherwise, and

c ¼ C3

C3=2
2

¼ 2C1=2
2 k

is the skewness of the distribution. We take C2 ¼ 40 and c ¼ 0, 2, 4, and 6 to compare the results of [1] with the HPMmethod.
Fig. 4 gives the ðWi; !qiÞ loci for the time-averaged fields, for these values of c. Fig. 5 illustrates the associated mean stream

functions. The solutions are reminiscent of those reported in [1], but there are some differences due to the details of the
methods.

For the case c ¼ 0, the energy–enstrophy theory predicts a linear relation (7) between mean PV and mean stream func-
tion, as well as a layered mean stream function. These predictions are confirmed in the upper left panels of Figs. 4 and 5. For
c > 0, there is significant nonlinearity in the mean field relation and vortical structures observable in the mean stream
function.
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Fig. 6. Locus ð!qi;WiÞ for kurtotic PV distributions, d ¼ 0, 10, 50, and 90 (grey points). The theoretical prediction based on (21) is shown in red and that based
on (30) is shown in blue. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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Also shown in Fig. 4 are the theoretical mean states predicted by the discrete statistical equilibrium theories in Sections 4
and 5. The Lagrangian statistical model (20) is shown in red and the Eulerian model (32) in blue. Both models predict the
mean states very well.

6.1.2. PV distributions with kurtosis
Abramov andMajda [1] also conjecture that the higher-order moments Cr; r P 4, are statistically irrelevant for predicting

the large-scale mean flow, based on the observation that the experiments agreed well with the energy–enstrophy mean field
theory (7) in the case c ¼ 0, despite the fact that the moments bCr ; r P 4 were nonzero as arbitrarily determined by their
initialization procedure, and conserved by the method.

To investigate this conjecture we choose initial distributions Q having skewness c ¼ 0 and nonzero kurtosis (scaled fourth
moment of PV),

d ¼ C4

C2
2

" 3:

In this case we generated the initial particle PV field by first drawing the Qk from a uniform distribution and then projecting
onto the constraint set fH0 ¼ 7; C1 ¼ 0; C2 ¼ 40; C3 ¼ 0; C4 ¼ ðdþ 3ÞC2

2g.
Fig. 6 shows the mean field relations ð!qi;WiÞ for increasing d ¼ 0, 10, 50, and 90. The corresponding mean stream functions

are shown in Fig. 7. We observe that nontrivial kurtosis may also significantly influence the mean field statistics, which dis-
proves the conjecture of [1].

Again we observe in Fig. 6 that both (20) and (32) do an excellent job of predicting the mean states.

7. Conclusions

The HPMmethod, as adapted for 2D incompressible flow, conserves total energy by construction. Each particle is assigned
a constant value of potential vorticity at initialization, and this discrete PV field is conserved point-wise, as the particles
evolve in the divergence-free flow. In this sense, PV conservation induces no reduction in degrees of freedom on the dynam-
ics. At the coarse scale, the vorticity field on the mesh satisfies conservation of energy and total circulation, but exhibits sig-
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Fig. 7. Mean stream functions corresponding to Fig. 6. For nonzero skewness d– 0 the stream function is two-dimensional, despite one-dimensional
topography.

S. Dubinkina, J. Frank / Journal of Computational Physics 229 (2010) 2634–2648 2647

Refutes the conjecture, but only 
with large δ. 



Feature presentation: 
Thermostats for unresolved 

dynamics



Canonical sampling
Our models are described by Hamiltonian systems

This can be integrated with a symplectic integrator and the 
energy will be well conserved.

The system samples (≈) the microcanonical ensemble:

For a system in thermal equilibrium with a reservoir at 
temperature β-1, energy is exchanged.  Canonical ensemble:

Need a mechanism to perturb the dynamics 



Nosé Thermostat (Molecular Dynamics)

Idea of Nosé (1984), Hoover(1985):

Total energy of subsystem

New variable controls the energy flux

Alternative to Langevin dynamics:

q̇ = M−1p

ṗ = −∇V (q)− ζ p

ζ̇ = β p · M−1p−K



Sampling of arbitrary distribution F
Extended system:

Simplifying assumptions:

Solve for  

Ẋ = J∇H(X) + g(X, ζ)

ζ̇ = h(X, ζ)

ρ̃(X, ζ) ∝ exp(−βF (X)− αG(ζ))

Lρ̃ := −∇X · ρ̃(f + g)−∇ζ · ρ̃h = 0

h(X) =
1

α
(∇ · s(X)− β∇F · s(X))

Ask that the augmented distribution

be invariant under the Liouville flow

G =
ζ
T
ζ

2
h = h(X) g(X, ζ) = s(X)ζ F (X) = F (H(X))



Generalized thermostats
For the canonical distribution:

Mixing can be ‘encouraged’ by adding Langevin noise & diss.

∇ · s(X) = 0 ⇒ Langevin (degenerate)



R

Point Vortex Model

A point vortex model for N vortices in a cylinder

Onsager, 1949 “Statistical Hydrodynamics”
Oliver Bühler,  2002: a numerical study

+ boundary terms

Γiẋi = J∇xiH



Statistical Mechanics

E

Unbounded energy range, bounded phase space, gives rise to 
positive and negative temperature states.

β>0

β≈0

β<0

Ω(H) Temperature 
inversely 
proportional to 
slope.



Onsager’s Predictions

Positive temperatures:

Strong vortices of opposite sign tend to approach 
each other

Negative temperatures:

Strong vortices of the same sign will cluster

“... vortices of the same sign will tend to cluster---preferably the 
strongest ones---so as to use up excess energy at the least possible 
cost in terms of degrees of freedom ... the weaker vortices, free to 
roam practically at random will yield rather erratic and disorganized 
contributions to the flow.”



Oliver Bühler’s (2002) simulation

4 strong, 96 weak vortices, sign indefinite,
0 net circulation in each group, fixed ang. mom.

Simulation results support Onsager’s predictions

β>0 β≈0 β<0



Canonical Statistical Mechanics

Bühler discusses his simulations in terms of canonical 
statistical mechanics, i.e. the system of strong vortices in contact 
with a reservoir of weak ones.

We replaced the 96 small vortices by the stochastic-dynamic 
thermostat, achieving very similar phenomenologies for the 
large vortices.

Infinite reservoir allows arbitrarily close approaches
of same sign vortex pairs, not observed in Bühler’s simulations.  
β is restricted to a finite interval.

ρ(X) ∝ e−βH(X)



Derivation of canonical ensemble

H(XA, XB) = HA(XA) +HB(XB)

S(E) = lnΩ(E)

Assume the subsystem and reservoir variables decoupled in the Hamiltonian

Notation:

Then:

To apply the Taylor expansion, we need the reservoir entropy to be slowly 
varying over the energy range of the resolved dynamics.

Ω(E) = vol{X |H(X) ∈ [E,E + dE)}

Prob{XA|H = E} ∝ ΩB(E −HA(XA))

= exp(SB(E −HA))

= exp(SB(E)− S
�
B(E)HA + S

��
B(E)H2

A + · · · )
∝ exp(−βHA + γH

2
A + · · · )



Finite reservoir effects

Assume the subsystem and reservoir variables decoupled in the Hamiltonian

Central limit Thm:

Then:

E = EA + EB

p0(EB) =
1

σB

√
2π

exp

�
−E2

B

2σ2
B

�

β = − E

σ2
B

γ =
1

2σ2
B

= − β

2E

Prob{XA|H = E} ∝ p0(EB = E − EA)

∝ exp

�
−(E − EA)2

2σ2
B

�

∝ exp

�
EEA

σ
2
B

− E
2
A

2σ2
B

�
= exp(−βEA − γE

2
A)



Finite reservoir model

Modified control law:

+ noise + diss.

Allows direct comparison with Bühler’s results

+ noise + diss.

ρfinite ∝ e−βH−γH
2

F = H +
γ

β
H

2



Angular momentum

For point vortices we take:

• This choice preserves the angular momentum

• It yields generalized Langevin dynamics
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β = −0.00055t ∈ [0, 1000]

β ∈ {−0.006,−0.00055, 0.01}

α = 0.5, σ =
√
0.4

γ = − β

2E0
, E0 ∈ {628, 221,−197}

t ∈ [1500, 12000]



β>0 β≈0 β<0

∞

<∞

Distance between like signed vortices |xi − xj |++

Buhler ’02



β>0 β≈0 β<0

∞

<∞

Distance between opposite signed vortices |xi − xj |+−

Buhler ’02



β>0 β≈0 β<0

∞

<∞

|xi|Radial position of vortices

Buhler ’02



Vortex clustering, N=12



Summary

• General thermostat for preserving a desired 
distribution.

• Flexibility of the scheme allows to model either 
infinite or finite reservoirs.

• Using a simple scalar thermostat, we are able to 
reproduce the statistical behavior of a set of 
vortices in ‘thermal’ contact with a reservoir.

• Future work:  how this approach can be extended 
to PDE/grid-point models.  



the End


