IPAM, 13 Apr 2010




Reservoir of unresolved dynamics

Grid-based
model

Particle/point-
vortex model

......

Exchange with
Reservoir

Exchange with
Reservoir



Canonical sampling

Our models are described by Hamiltonian systems
X =JVH(X)

This can be integrated with a symplectic integrator and the
energy will be well conserved.

The system samples (=) the microcanonical ensemble:
p(X) o S(H(X) — Hy)

For a system in thermal equilibrium with a reservoir at
temperature 3-', energy is exchanged. Canonical ensemble:

p(X) o< exp(—BH (X))

Need a mechanism to perturb the dynamics



‘ Interlude:
- Mean fields for discretizations .
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Equilibrium Statistical Mechanics of Discretizations

QG potential vorticity model - incompressible flow over topography

¢ +VY-Vg=0, Ap=q—h
Hamiltonian PDE with Poisson structure and energy functional

Hz—%/w(q—h)dw

Family of Casimirs

Cf[Q]Z/f(q)d:B Cr[q]Z/qrd:v Z

Area preservation

oG _
ot

&

0, G(o,t) = meas{x € Q|q(x,t) < o}



Equilibrium statistical theories for ideal fluids

A lot* of work has been done on determining the equilibrium
distribution for 2D ideal fluids. The various theories differ in their
treatment of vorticity conservation laws.

The fine scale vorticity field is modelled by a probability distribution

p(x, o) = probability of observing PV value near o at x

The coarse-grain, or mean vorticity field is the ensemble average

(q) = / op(x,o)do, A{p)={(q)—h

The mean fields are functionally related (steady states)

* Kraichnan 75, Salmon et al. 76, Carnevale & Frederiksen 87, Miller 91, Miller, Weichman & Cross
92, Robert 91, Robert & Sommeria 91, Ellis, Haven & Turkington 02, Majda & Wang 2006



Mean field predictions

lgnoring PV altogether; E conservation leads to a mean field prediction

@) =0
Energy-enstrophy theory (E-Z) yields a linear mean field relation
(@) = ()

Robert/Miller theory enforces conservation of PV level set ‘area’:
[ plaa)de = g(0). pw.) ox A1
(microcanonical)

Ellis, Haven & Turkington enforce only energy and circulation, but include
a prior distribution on fine scale vorticity (canonical)

p(z,0) x e P¥Io=a](g)



Mean fields for discretizations

* Problem setup of Abramov & Majda (2003)

L=2r, M=22, h(x,y)=0.2cosx+ 0.4cos2x, FEp =7, Zy =20

* |[nstead of ensemble averages, we look at the time average over an
interval [10°, T} for T = 10°

1 _ 1
g n — n NyeAt =T —10°
qr NTZ';C.Ia @DT NT;w, T

* Assuming sufficient ergodicity,

lim qgr = (q), lim Y = (V)

T'— o0 T'— o0



Mean fields for Arakawa '’66 schemes

* Comparison of classical schemes by Arakawa 66 conserving discrete
approximations of energy (E), enstrophy (Z), or both (EZ). T = 10°

BZ-disc, o =-0.731 B-disc, p =-225 Z-disc, p =-0.0629




Hamiltonian particle-mesh (HPM) method*

A set of K discrete particles with lumped vorticity (circulation)

(Xe(t) €R2, Qu(t) = Qu(0); k=0,... K}

Coarse-grain vorticity on a uniform grid obtained by summing the overlapping
particle distributions

q; = ZQ/M(%‘ — Xr(t), Ay¥Y,;=q —h;
k
Hamiltonian dynamics with H(X;,... Xx) = —% Z U, (q; — hy)

QrXp = JEL, T=[94¢]

Time integration with a symplectic integrator (implicit midpoint)

*Developed in the context of SWEs: [F, Gottwald & Reich 02, F. & Reich ’03, Cotter & Reich
03 04 06, Cotter, F. & Reich 04]



Poisson integrator with N conserved quantities

® Abramov & Majda (2003) used Zeitlin’s (1991) Poisson truncation of the
ideal fluid, which preserves M+1 integrals on an MxM grid, to study the
statistical relevance of the higher moments of vorticity

® A nonzero third moment is “statistically relevant”

® Conjecture that higher moments irrelevant
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Fig.3.  The scatter plots § vs. § for the 23 X 23 sine-bracket truncation, layered topography, (s =0, 2, 4, 6. Fig. 4. The contour plots of the mean stream function, 23 X 23 sine-bracket truncation, layered topography, ¢;=0,246.



Skew and Flat distributions - HPM method

or excess kurtosis (no skew.) -

Draw the vorticity from

Qr ~ 11(0o)

with skewness
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We derived and compare with ..

Lagrangian and Eulerian
analytical models.

Comparison with time
averaged loci. T = 104,

Refutes the conjecture, but only
with large 0.
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Feature presentation:
Thermostats for unresolved
dynamics
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Canonical sampling

Our models are described by Hamiltonian systems
X =JVH(X)

This can be integrated with a symplectic integrator and the
energy will be well conserved.

The system samples (=) the microcanonical ensemble:
p(X) o S(H(X) — Hy)

For a system in thermal equilibrium with a reservoir at
temperature 3-', energy is exchanged. Canonical ensemble:

p(X) o< exp(—BH (X))

Need a mechanism to perturb the dynamics



Nose Thermostat (Molecular Dynamics)

ldea of Nose (1984), Hoover(1985):

¢ = M 'p
p = —VVig)—Cp
¢ = fBp-M 'p—K

Total energy of subsystem

H=:p-M 'p+V(g)

New variable controls the energy flux

dH

e — _(p- M1
o §e p

Alternative to Langevin dynamics:

X =JVH(X) - §ZETVH +IW



Sampling of arbitrary distribution F

Extended system: Ask that the augmented distribution
X = JVH(X)+g(X,) p(X,¢) ox exp(=BF(X) — aG(())
¢ = h(X,0)

be invariant under the Liouville flow
Lp:=—-Vx-p(f+g)—V¢-ph=0
Simplifying assumptions:
G=SC h=h(X) g(X.0)=s(X) F(X)=F(H(X)

2

Solve for h(X) = %(V - 5(X) — BVFE - 5(X))



Generalized thermostats
For the canonical distribution:
X
4

JVH(X)+ (s(X)
o H[BVH-s(X)—V-s(X)]

Mixing can be ‘encouraged’ by adding Langevin noise & diss.

X = JVH(X)+(¢s(X)

oo
¢+ ow

2

( = a7t BVH-s(X)—V-s(X)]

V-s(X)=0 = Langevin (degenerate)



Point Vortex Model

A point vortex model for N vortices in a cylinder

H———ZI‘P In(|z; — z;]°)

1<J
+ boundary terms

3 Di; = JV,. H

Onsager, 1949 “Statistical Hydrodynamics”
Oliver Buhler, 2002: a numerical study



Statistical Mechanics

Unbounded energy range, bounded phase space, gives rise to
positive and negative temperature states.

~ Te
Q(H) p=0 Jepere

proportional to
slope.

80 70 0 ss
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Onsager’s Predictions

“.. vortices of the same sign will tend to cluster—preferably the
strongest ones—so as to use up excess energy at the least possible

cost in terms of degrees of freedom ... the weaker vortices, free to
roam practically at random will yield rather erratic and disorganized
contributions to the flow.”

Positive temperatures:

Strong vortices of opposite sign tend to approach
each other

Negative temperatures:

Strong vortices of the same sign will cluster



Oliver Buhler’s (2002) simulation

4 strong, 96 weak vortices, sign indefinite,
0 net circulation in each group, fixed ang. mom.

b ,|‘ g . 4
05} ! ) \ 1
| N,
11| Py e . \*

1500 -1000  -500 0 SO0 1000 1500
(a) E

Simulation results support Onsager’s predictions



Canonical Statistical Mechanics

Buhler discusses his simulations in terms of canonical

statistical mechanics, i.e. the system of strong vortices in contact
with a reservoir of weak ones.

p(X) oc e PN

We replaced the 96 small vortices by the stochastic-dynamic

thermostat, achieving very similar phenomenologies for the
large vortices.

Infinite reservoir allows arbitrarily close approaches

of same sign vortex pairs, not observed in Buhler’s simulations.
f is restricted to a finite interval.



Derivation of canonical ensemble

Assume the subsystem and reservoir variables decoupled in the Hamiltonian

H(XA,XB) :HA(XA)—I—HB(XB)

Notation: Q(F)=vo{X |H(X) e |[E,E+dE)}
S(E)=1InQ(F)

Then: Prob{Xs|H = FE} «x Qp(E— Ha(X4))
)

= exp(Sp(E — HA)
= exp(Sp(E) — Sp(E)Ha + Sp(E)H; + - --)
x exp(—BHA+~vHZ+ )

To apply the Taylor expansion, we need the reservoir entropy to be slowly
varying over the energy range of the resolved dynamics.



Finite reservoir effects

Assume the subsystem and reservoir variables decoupled in the Hamiltonian

E=FEjr+ Ep

1 -y
Central limit Thm: Er) = ex B)
" i) = e (5]

Then: Prob{X4|H=E} o po(Ep=F — E4)

EE 4 B4 5
= —6E 4 —~vE
X exp( O% 20%> exp(—BEs —vEY)
B — E 1 I5;
N 0% T 2(7%3 - 2F



Finite reservoir model

Pfinite X €

—BH—~H?

Modified control law:
JVH(X)+ (s(X)
o '[BVH-s(X)—V-s(X)]

X =

e
|

B

v

Y
1+ -H
g

F=H+-L1H?

B

+ noise + diss.

)VH -s(X) -V - s(X)-

+ noise + diss.

Allows direct comparison with Biihler’s results



Angular momentum

X = JVH(X)+(¢s(X)
( = a'[BVH-s(X) -V s(X)]

For point vortices we take:

1 1
x T
x) — (21 N

* This choice preserves the angular momentum

* |t yields generalized Langevin dynamics



Experimental parameters

B € {—0.006, —0.00055,0.01}

a=0.9, oc=v04

t € [1500, 12000

0.4 T T T T T T T

0.35

0.3

0.25

0.15

0.1

0.05

-6 -4 -2 0 2 4 6 5

t € (0,1000 = —0.00055

is Gaussian



Distance between like signed vortices |%;
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Distance between opposite signed vortices |&; — Zj|+—
p>0 p=0 p<0
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Radial position of vortices ‘CCZ
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Vortex clustering, N=12

Vortices Stream function Lnergy
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Summary

General thermostat for preserving a desired
distribution.

Flexibility of the scheme allows to model either
infinite or finite reservoirs.

Using a simple scalar thermostat, we are able to
reproduce the statistical behavior of a set of
vortices in ‘thermal’ contact with a reservoir.

Future work: how this approach can be extended
to PDE/grid-point models.



the End



