

Klima-Exzellenz in Hamburg

Zentrum für Marine und Atmosphärische Wissenschaften

Max-Planck-Institut für Meteorologie

GKSS Forschungszentrum Geesthacht

Deutsches Klimarechenzentrum

Efficient Adaptive Methods for Multi-Scale Geophysical Applications

16.04.2010

Jörn Behrens

Universität Hamburg

Multiple scales – Tsunami

Spatial Scales:

Tides:

- Ocean-wide/ global range
- O(10000) km
- Tsunami Wave Propagation:
 - Typical Wave Length
 - O(100) km
- Near-shore waves:
 - Shoaling effect
 - O(1-10) km
- Inundation (Parameterized):
 - No resolution of buildings, etc.
 - O(0.01-0.1) km

Multiple scales – Cloud Entrainment

Spatial Scales:

- Cloud cluster:
 - One single (tropical) cloud cluster
 - O(10) km³
- Mixing processes at boundary:
 - Entrainment
 - O(1) m³
- Microphysics:
 - Droplets, nucleation, etc.
 - O(10⁻³-10⁻⁶) m³

Multiple scales – Computational consequences

Computational cost uniform refinement

- Cloud cluster:
 - 10⁴ grid points per dimension
 - (10⁴)³ = 10¹² grid points!
 - That is without microphysics!
- 📕 Tsunami:
 - 10⁵ grid points per dimension
 - $(10^5)^2 = 10^{10}$ grid points
 - That does not resolve streets, etc.

Adaptive Methods – Key Questions

- When to apply an adaptive method?
- What is needed for numerical efficiency?
- What is needed for computational efficiency?

Model for adaptive efficiency

Example:

Universität Hamburg

- Area of refinement large (α=3/4)
- Overheads large:
 - Refinement criterion (χ =1/2 of a computational step)
 - Numerics slow (ω = 10 times slower as uniform comp.)
 - o Mesh management demanding (μ = 3 times a comp. step)

Model for adaptive efficiency – small adaptive area

Now:

- Area of refinement small (α=1/10)
- Rest unchanged

Model for adaptive efficiency – small adaptive area

Now:

- Area of refinement large (α=3/4)
- But efficient grid management and numerics!

Simulation overview

💾 Universität Hamburg

Shallow Water Equations

Continuity equation (flux form)

$$\frac{\partial \zeta}{\partial t} + \nabla \cdot (\mathbf{v}(\zeta + H)) = 0$$

Radiation boundary condition (open/liquid boundary)

$$\mathbf{v}\cdot\mathbf{n}=\sqrt{rac{g}{H+\zeta}}\;\zeta$$

No-slip boundary condition (solid boundary)

 $\mathbf{v}\cdot\mathbf{n}=0$

Note: inundation boundary conditions according to Lynett/Wu/Liu (2002)

Inundation boundary conditions

Extrapolation of wave height

Extrapolation based on neighbors

Initial conditions

Complex slip distribution

Babeyko (2007)

1. Efficient Mesh Refinement Strategy

2. Efficient Refinement Criterion

Gradient based criterion

 $\begin{array}{ll} \text{refine if} & \nabla h|_{\tau} > \theta_{\text{ref}} \max(\nabla h|_{\tau}) \\ & \theta_{\text{ref}} \text{ threshold value} \end{array}$

- Simple
- Easy to compute
- Not robust

3. Efficient Programming Framework

- Triangular grids with boundary
- Object oriented + gather/scatter
- Built in SFC ordering
- Simple programming interface
- Generic FEM/SEM support
- Coupling capability
- Parallel
- 2D plane and spherical geometries
- Documentation, open source
- http://www.amatos.info

4. Efficient and robust (!) numerical scheme

 $P^1-P^1_{NC}$ finite element combination

Conforming linear for
$$\zeta$$
 and H:
 \hat{h} : $\hat{h}_1 = 1 - x - y$; $\hat{h}_2 = x$; $\hat{h}_3 = y$
Non-Conforming linear for v
 \hat{v} : $\hat{v}_1 = 1 - 2y$; $\hat{v}_2 = 2x + 2y - 1$; $\hat{v}_3 = 1 - 2x$
Hanert et al. (2005)

Exact discrete mass conservation

4. Efficient and robust (!) numerical scheme

Explicit RK nodal DG method (See Giraldo)

Adaptive mesh refinement – simple example

Andaman-Sumatra Rupture

Instead of

$$\begin{array}{ll} \text{refine if} & \nabla h|_{\tau} > \theta_{\text{ref}} \max(\nabla h|_{\tau}) \\ & \theta_{\text{ref}} \text{ threshold value} \end{array}$$

Use

$$\begin{array}{lll} \eta &=& \|h|_{\tau} - \bar{h}\|, \quad \text{with } \bar{h} = \frac{1}{A} \sum_{\text{neighbors t}} h|_{t}, \\ \text{refine if} & \eta &>& \theta_{\text{ref}} \bar{\eta}, \quad \text{with } \bar{\eta} \text{ mean error} \\ & & \theta_{\text{ref}} \text{ threshold value} \end{array}$$

Simple

- Easy to compute
- ☑ Robust

Instead of

 $\begin{array}{ll} \text{refine if} & \nabla h|_{\tau} > \theta_{\text{ref}} \max(\nabla h|_{\tau}) \\ & \theta_{\text{ref}} \text{ threshold value} \end{array}$

Use

 $\begin{array}{ll} \text{refine if} & h|_{\tau} > \theta_{\text{ref}} \max(h|_{\tau}) \\ & \theta_{\text{ref}} \text{ threshold value} \end{array}$

- ☑ Even simpler
- Even easier to compute
- Robust for this application!

Andaman-Sumatra Rupture

5. Efficient Data Management

We need data to stay local!

Space-filling curve (Sierpinski)

UΗ

💾 Universität Hamburg

Optimization Hierarchy Level 1: Parallel Partitioning

METIS

SFC

Load Balancing and Edge Cut for Tracer Experiment

Load balancing

SFC: J. B., J. Zimmermann (2000), Metis: G. Karypis, V. Kumar (1998)

Structure of matrix

tree-sorted

quotient minimum degree

reverse Cuthill-McKee

reverse SFC

- System with ~200.000 unknowns
- Utilizes preconditioned BiCGStab
- ILU pre-conditioning
- J. B., N. Rakowski, S. Frickenhaus, et al. (2003)

Optimization Hierarchy Level 3: Cache Optimization

Nearest neighbor communication (vertex-wise)

Connectivity matrix with different orderings

Optimization Hierarchy Level 3: Cache Optimization

Connectivity matrix with different orderings

Distance structure

Optimization Hierarchy Level 3: Cache Optimization

Nearest neighbor communication (element-wise)

Observation 1: Refinement tree

1110100111000100...

Refinement tree as bitstream

Observation 2: Element-wise computation

Observation 3: Nodal computations

- not yet accessed
- just being computed
- waiting for further computation
- computations finished

Observation 4: Tabulated element types

- Linearize grid structure by depth-first-traversal/Sierpinski curve
- Take element types for computing order
- Use heap data structures for storing intermediate values
- 🛛 Use input/output stream

Mehl, Zenger (2004)

KlimaCampus

Preliminary result Reentrant corner

- Poisson's eq. with local refinement
- Solver: MG preconditioned CG
- Refinement criterion: hierarchical basis based (Deuflhard)

Preliminary result Reentrant corner

Preliminary result Reentrant corner

99% cache hits

Results for SWE

Bader et al. (2010)

Memory requirements

and and	number of		memory [in MB]		bytes per element	
level	elements	unknowns	float	double	float	double
16	131,072	393,216	7.7	14	60	112
18	524,288	1,572,864	27	53	54	106
20	2,097,152	6,291,456	106	210	53	105
22	8,388,608	25,165,824	422	838	53	105
16	131,072	1,179,648	11	22	88	176
18	524,288	4,718,592	43	85	86	170
20	2,097,152	18,874,368	170	338	85	169
22	8,388,608	75,497,472	678	1355	85	169

TABLE 4.1

Memory requirement for solving the shallow equations on uniformly refined grids. The data in the upper half was obtained when using constant ansatz functions for ξ , ξu , and ξv (3 unknowns per element); the results in the lower half are for linear ansatz functions (3 × 3 unknowns per element).

Bader et al. (2010)

Runtime

	number of		runtime [in s]		throughput
level	elements	unknowns	total	per element	[in MB/s]
16	131,072	393,216	0.072	$5.49 \cdot 10^{-7}$	390
18	524,288	1,572,864	0.282	$5.38 \cdot 10^{-7}$	376
20	2,097,152	6,291,456	1.217	$5.80 \cdot 10^{-7}$	345
22	8,388,608	25,165,824	5.068	$6.04 \cdot 10^{-7}$	331
16	131,072	1,179,648	0.147	$1.12 \cdot 10^{-6}$	299
18	524,288	4,718,592	0.579	1.10 - 10-6	294
20	2,097,152	18,874,368	2.308	$1.10 \cdot 10^{-6}$	293
22	8,388,608	75,497,472	9.376	$1.12 \cdot 10^{-6}$	289

TABLE 4.2

Execution times to compute the shallow equations on uniformly refined grids using constant (upper half) and linear basis (lower half) functions in double precision. Given is the average runtime for one time step, the respective runtime per grid element, and the resulting memory bandwidth used.

Bader et al. (2010)

Future application – wave interaction and tsunamis

Future application – cloud simulation

Universität Hamburg

Conclusions

- Multiple scales need numerical representation
- Model for adaptive computation gain
- 5 Efficiency ingredients (meshing, refinement, programming, numerics, data management)
- 3 Hierarchies of optimization
- Radical approach with SFC
- Future applications

