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tutorial (n) 1. schooling on a topic of common knowledge. 2. opinion offered with incomplete
proof or illustration.

These are notes for a lecture intended to introduce a primarily mathematical audience to the
idea of balanced dynamics in geophysical fluids, specifically in relation to climate modeling. A
more formal presentation of some of this material is in McWilliams (2003).

1 A Fluid Dynamical Hierarchy
The vast majority of the kinetic and available potential energy in the general circulation of the
ocean and atmosphere, hence in climate, is constrained by approximately “balanced” forces, i.e.,
geostrophy in the horizontal plane (Coriolis force vs. pressure gradient) and hydrostacy in the
vertical direction (gravitational buoyancy force vs. pressure gradient), with the various external and
phase-change forces, molecular viscosity and diffusion, and parcel accelerations acting as small
residuals in the momentum balance. This lecture is about the theoretical framework associated
with this type of diagnostic force balance.

Parametric measures of dynamical influence of rotation and stratification are the Rossby and
Froude numbers,

Ro =
V

fL
and Fr =

V

NH
. (1)

V is a characteristic horizontal velocity magnitude, f = 2Ω is Coriolis frequency (Ω is Earth’s
rotation rate), N is buoyancy frequency for the stable density stratification, and (L, H) are (hor-
izontal, vertical) length scales. For flows on the planetary scale and mesoscale, Ro and Fr are
typically not large. Furthermore, since for these flows the atmosphere and ocean are relatively
thin, the aspect ratio,

λ =
H

L
, (2)

is small.
Consider a hierarchical sequence of fluid dynamical PDE systems for rotating, density stratified

flows, motivated by planetary atmospheres and oceans (Fig. 1): compressible, anelastic, Boussi-
nesq (incompressible), Primitive (hydrostatic), gradient-wind balanced, and Quasigoestrophic.
They are ordered in an increasing degree of physical simplification and approximately ordered
in their relevance to flows with increasing spatial and temporal scales.

This hierarchy involves a succession of physically justifiable approximations that progressively
limit the range of solution behaviors and increase the equation solvability, hence theoretician’s
utility. (N.b., it’s all turbulence and their are no general solutions, not even proofs of regularity,
existence, uniqueness). There is also advantage in computational efficiency to advancing in this hi-
erarchy, although the present practice of realistic climate simulations has settled on a mid-sequence
model, the Primitive Equations, to be relatively safe in the dynamical approximations.
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From a mathematical perspective these steps transform prognostic equations of the type,

dC

dt
= F (C) . (3)

into a diagnostic “balanced” approximation:

F (C) = 0 . (4)

This implies a reduction in the available modes of the system when linear analyses are made.
For example, consider simple thermodynamics with some state variable a such that density ρ =
ρ[a, p], then the compressible system at the top of this hierarchy has 3 momentum equations for
u = (u, v, w), an a equation, and a mass continuity equation, all in the form of (3) above; i.e., it
is a 5th order PDE system in time. In contrast, the Quasigeostrophic (QG) system at the bottom of
the hierarchy is 1st order in time.

In this hierarchy the PDE types become progressively less hyperbolic and more elliptic, with
fewer propagating wave modes and more ”balance” relations. For example, in the first step from
compressible to anelastic equations, acoustic waves are excluded from the solution space, and
certain pressure forces have instantaneous action at a distance rather than evolve into this spatial
distribution through acoustic wave propagation. Sound speeds are typically very rapid for most
fluid systems (i.e., the Mach number is not large), so the mass-continuity balance approximation
excises the fastest wave mode and the largest time derivative in the PDE system. This allows a
computational time step to be much larger.

A narrower definition of balance refers to the momentum equations, a.k.a. diagnostic force bal-
ance. Thus, the hydrostatic balance approximation drops ∂tw in the vertical momentum equation
— where ẑ is parallel to gravity and the rotation vector — in favor of

∂zp = − gρ . (5)

Analogously, the geostrophic balance approximation in x̂⊥ drops (or at least demotes in a multi-
scale asymptotic sense) ∂tu and ∂tv in favor of

fv =
1

ρ0

∂xp , fu = − 1

ρ0

∂yp . (6)

In this hierarchy the two most consequential steps in solution behavior are to go beyond com-
pressibility, excising “very fast” acoustic waves, and beyond the Primitive Equations, excising
“fast” inertia-gravity waves (IGW) while retaining advective and Rossby-wave modes. The ocean
and atmosphere are full of acoustic and inertia-gravity waves. They are mostly generated by fast
events like a falling tree, a convective thunderstorm, or the tide, and it has been very difficult to
establish that they have an important energy exchange with the general circulations, hence that
they need to be a central component of a climate model.

2 Two Realms: Balanced and Unbalanced Flows
The Boussinesq equations are

Du

Dt
+ f ẑ× u = − 1

ρ0

∇∇∇p− gρẑ
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Dρ

Dt
= 0

∇∇∇ · u = 0 . (7)

Gravity and rotation axis are aligned with ẑ. The equation of state is very simple, ρ = ρ[a]. Inviscid
and adiabatic assumptions are also made for simplicity, although of course diffusion is needed in
solutions in which energy and density variance evolve toward small scales. The Coriolis frequency
is locally approximated as f = f0 + βy. The advective time derivative is

D

Dt
= ∂t + u · ∇∇∇ . (8)

With this PDE system we follow an asymptotic path toward Quasigeostrophic theory. First,
define a mean stratification and its deviation density field:

ρ = ρ(z, t) + ρ′(x, t) . (9)

Next, specify geostrophic, hydrostatic, advective scaling estimates and non-dimensionalization
for the model variables: given characteristic values for ρ0, V , H , L, f0, β, N0, then

x, y ∼ L , z ∼ H , t ∼ L/V ,

u, v ∼ V , w ∼ RoV H/L ,

p ∼ ρ0f0V L , ρ′ ∼ ρ0f0V L/gH , ρ ∼ ρ0N
2
0H/g . (10)

Assume a small parameter:
Ro, Fr, β/Lf0 = ε→ 0 . (11)

With geostrophic scaling the non-dimensional Boussinesq equations are

ε
Du

Dt
+ (1 + εy)v = − ∂xp

ε
Dv

Dt
− (1 + εy)u = − ∂yp

ε2λ2Dw

Dt
= − ∂zp− ρ′

∂tρ+ ε

(
Dρ′

Dt
+ w∂zρ

)
= 0

∇∇∇⊥ · u⊥ + ε∂zw = 0 , (12)

with
D

Dt
= ∂t + u⊥ · ∇∇∇⊥ + εw∂z . (13)

Leading order in ε balances are geostrophic, hydrostatic, and with horizontally non-divergent flow,
which comprises an under-determined system for (u, v, p, ρ′), with constant mean stratification,
ρ(z). To close leading the leading order dynamics, eliminate w at O(ε) between the curl of hori-
zontal momentum, density, and continuity equations and obtain the QG potential vorticity equation,
which has the single time derivative in the QG PDE system for (u, v, p, ρ′):

∂tq + J⊥[p, q] = 0 , q = ∇∇∇2
⊥p+ ∂z

(
∂zp

∂zρ

)
+ y . (14)
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J⊥[a, b] = ∂xa∂yb − ∂ya∂xb is the horizontal Jacobian operator. This system has solutions with
Rossby waves, baroclinic and barotropic instabilities, and geostrophic turbulence with inverse en-
ergy cascade and forward enstrophy (q variance) cascade (Charney, 1971). It is the essential the-
oretical basis for initialization of weather forecasts and for the dynamical interpretation of the
general circulation.

An alternative model-derivation path toward inertia-gravity wave (IGW) dynamics can also be
made with small ε. Non-dimensionalize the Boussinesq equations as above except assume with
t ∼ 1/f0 and w ∼ V H/L and with λ = 1 (WLOG):

∂tu+ ε(u · ∇∇∇)u+ (1 + εy)v = − ∂xp

∂tv + ε(u · ∇∇∇)v − (1 + εy)u = − ∂yp

∂tw + ε(u · ∇∇∇)w = − ∂zp− ρ′

∂tρ+ ε (∂tρ
′ + ε(u · ∇∇∇)ρ′ + w∂zρ) = 0

∇∇∇⊥ · u⊥ + ∂zw = 0 . (15)

The ε→ 0 asymptotic system again has ρ(z) and linear inertia-gravity wave solutions,

(u, v, w, p, ρ′) ∝ exp[i(kx+ `y +mz − ωt)] , ω = ±
√
∂zρ(k2 + `2) +m2

k2 + `2 +m2
, (16)

in the WKB limit. We see that the lowest possible frequency for an IGW is one, i.e., f dimension-
ally. Since the dimensional evolutionary rate for balanced flows is εf , we call the former “fast”
and the latter “slow”. At finite ε nonlinear evolution also occurs for inertia-gravity waves, most
dramatically when wave breaking occurs. The cascade of IGW energy is forward to small-scale
dissipation.

Smaller scale flows characteristically have large ε values, since V does not decrease as rapidly
as L and H do. Thus, their dynamics lies largely outside the realms of balanced flows and inertia-
gravity waves. In a broad sense this is the realm of Kolmogorov’s isotropic, homogeneous turbu-
lence, with forward energy cascade and efficient material mixing. These flows complete the route
to dissipation and material mixing energized from larger scales flows with small ε.

3 Accuracy of Balance Models
Advective evolutionary rates are slower than IGW rates whenever Ro, Fr < 1. The concept of
the slow manifold is the subset of all possible solutions to the fundamental fluid equations that
evolve only on the slow rates of advection, V/L ∼ εf , or potential-vorticity differences (e.g.,
Rossby waves with ω ∼ βL ∼ εf ), thereby excluding all the faster acoustic wave and IGW
solution behaviors. Balanced dynamics denotes the processes controlling the evolution on the
slow manifold, and Balance Equations (BE) are a PDE system that manifests balanced dynamics
only.

Obviously, QG is a BE, and at a conceptual level it is a very important model because it mani-
fests the paradigmatic properties of the BE family. It is also computationally easy to solve. How-
ever, the asymptotic accuracy of QG is only O(ε0), and it turns out that in many situations with
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small but finite ε, QG solutions are not particularly accurate, e.g., compared to Primitive or Boussi-
nesq solutions with adequately balanced initial conditions and forcing. Thus, a necessary condi-
tion for BE accuracy is higher-order asymptotic validity. The design of alternative higher-order
BE systems has been a very popular activity, with, e.g., notable early contributions from many able
scientists (e.g., Lorenz, 1960; Charney, 1962). It turns out that higher-order asymptotic accuracy
is a necessary but not sufficient for good solution behavior, and that several differently defined
BE systems show good behavior, i.e., their design is not unique. I will skip over the physical and
mathematical aesthetics of alternative good balance models.

A common property for the good BE models is a generalization of geostrophic balance for
what is called gradient-wind balance (also called nonlinear balance). For a simple axisymmetric
flow with azimuthal velocity V(r,z), gradient-wind balance includes a centrifugal force correction
to the Coriolis force in the radial momentum equation, i.e.,

1

ρ0

∂p

∂r
= fV +

V 2

r
. (17)

More generally, if we make Helmholtz decomposition of the horizontal velocity in an incompress-
ible flow,

u⊥ = ẑ× ∇∇∇⊥ψ + ∇∇∇⊥χ, (18)

then a good BE must encompass the following approximation to the divergence of the horizontal
momentum equations:

1

ρ0

∇2
⊥p = ẑ · ∇∇∇⊥ × fu⊥ + 2J⊥[u, v]

≈ ∇∇∇⊥ · (f∇∇∇⊥ψ) + 2J⊥[∂xψ, ∂yψ] . (19)

ψ is the streamfunction associated with vertical vorticity, and χ is the divergence potential associ-
ated with vertical velocity. Balance models typically are based on χ� ψ (cf., the small w scale in
(10)). At one higher level of differentiation than (17) the same terms can be identified: pressure-
gradient, Coriolis, and a centrifugal effect along curved parcel trajectories. In many examples BE
solutions have been shown to be highly accurate even beyond what might be expected from their
provable O(ε1) asymptotic accuracy. Within the sampling estimation errors in measurements and
obfuscation by regularization choices in general circulation models (e.g., eddy viscosity), the true
level of inaccuracy of balance dynamics has not been well determined.

Some form of BE is necessary for accurate weather forecasts. A widely-used operational means
of accomplishing this is called nonlinear-normal mode initialization (NNMI). Its idea is that the
linear normal modes of a model for a stratified resting state provide a complete basis set for a
general fluid model can be decomposed into two groups, slow (or Rossby) modes R and fast (or
IGW) modes G. Under the hypothesis that weather evolution occurs on the slow manifold, or at
least very close to it, then initial data should be projected onto R directly and onto G with some
form of balanced constraint, F ]G, R] = 0 (with F a nonlinear differential functional), rather than
being allowed to evolve freely as IGW (Daley, 1991). The latter relation is sometimes referred to
as “slaving” G to R. This projection operation is equivalent to defining a dynamically consistent
initial condition for a BE system, but then using it for integration of a more general fluid model (the
Primitive equations for most weather forecasting). In QG theory the slaving relation is equivalent
to the “omega equation” that determines w (hence χ) from the primary fields.
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4 Limits to Balance
Finally, in a necessarily cursory way in a tutorial lecture, I briefly mention some of the modern
ideas about balanced dynamics. The story is still unfolding ...
• No satisfactory asymptotic theory as a regular expansion in powers of ε has ever been estab-

lished for the coupling (e.g., energy exchange) between R and G modes. This supports an
approximate view that their dynamics are superimposable: coexistence with mutual indepen-
dence. However, this is not a defensibly exact view for the reasons described in the rest of this
section.

• Is the slow manifold an inertial manifold for finite ε? I.e., does an initial state on the putative
manifold stay there as it it evolves? An early indication that this might not be true is that oper-
ational NNMI procedures were implemented by iterative solution of their defining nonlinear
PDE systems, and, while several iterations often sufficed to make the subsequent evolution
seem mostly slow, it proved generally impossible to achieve a high degree of iteration conver-
gence.

• Speaking loosely, the slow manifold can be called a fuzzy manifold (Warn, 1996). The idea
is that the solution phase space for more fundamental models has regions where the evolution
is mostly slow and consistent with good BE systems, but the solution is not exactly slow and
balanced. In an ODE system motivated by fluid PDEs, Vanneste and Yavneh (2004) show that
the inescapable fast component of the solution as a relative amplitude ∝ ε−1/2 exp[−α/ε] for
ε� 1, with α a positive constant. Here the fuzz has a very small nap indeed, smaller than any
power of ε.

• A non-asymptotic mathematical analysis of PDE type was performed for one accurate BE
system (McWilliams et al., 1998). It shows that the PDE operator that must be inverted for
time integration loses its ellipticity if any of three conditions fail to be satisfied everywhere
in the flow domain: stable density stratification (N > 0 locally), positive potential vorticity
(q > 0, where q is Ertel potential vorticity, a generalization of the QG quantity in (14)), and
positivity ofA−S, whereA = f+ ẑ ·∇∇∇×u is the absolute vertical vorticity and S is the strain
rate for the horizontal shear. Each of these conditions can be violated only when ε = O(1).
The implication is that, if a good BE system cannot be integrated further in time, then some
non-slow, unbalanced behavior must arise. These conditions suggest that the best places to
look for balance breakdown events are weak stratification, anticyclonic vorticity, high strain,
and small q.

• The energy requirement for achieving climate equilibrium is strongly suggestive of significant
energy leakage from the slow manifold. Large-scale forces (e.g., differential planetary rota-
tion, surface wind stress) input energy to the slow manifold, and the resulting mean circulation
is unstable primarily to balanced synoptic and mesoscale eddies within the slow manifold. If
balanced turbulence leads primarily to inverse energy cascade, then how does its energy cycle
connect with viscous dissipation occurring on very small scales, ∼ 0.1-1 cm? While several
dissipation routes are conceivable (e.g., turbulent boundary layers), an appealing hypothesis is
that finite-ε breakdown of balance occurs often enough to provide an important route for the
general circulation. When and how?
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• One means of realizing fuzziness and leakage from the slow manifold is through an
ageostrophic or unbalanced instability of a balanced flow. Two of the three BE integrability
conditions above are known as critical instability onset conditions: N < 0 leads to convec-
tion, and q < 0 leads to centrifugal instability. The third condition, A − S < 0, is not known
to be associated with an instability onset, but several examples have been adduced where it
seems relevant (e.g., Taylor-Couette flow, where the growth rate has exponential smallness
∝ exp[−α/ε] for small ε; Yavneh et al., 2001). Other agesotrophic instability examples are
Kelvin-Helmholtz instability and Ripa’s (1983) second criterion, both of which require finite
values of Fr. Once an agoestrophic instability occurs it is plausible that it will evolve to
finite-amplitude turbulent behavior and forward energy cascade.

• Another means is the super-exponentially rapid scale contraction that occurs for density
fronts and filaments under the influence of the strain field in balanced flows (Hoskins, 1982;
McWilliams et al., 2009). Scale contraction implies that the local ε value increases with time.
Ageostrophic “secondary” flows arise in the cross-frontal plane and accelerate the scale con-
traction. Furthermore, sharp fronts and filaments are potentially vulnerable to ageostrophic
instability.

• Rotating and/or stably stratified flows do manifest a forward energy cascade that has dual
inertial ranges in kinetic and available potential energy (Lindborg, 2006; Molemaker et al.,
2010). This provides a dynamical route to small-scale turbulence and dissipation when energy
leaks off the slow manifold into this type of cascade.

• Balanced flows with finite ε sometimes spontaneously emit IGW, e.g., at strong fronts or within
a strong dipole vortex (Snyder et al., 2009).

These fragmentary perspectives comprise the scientific frontier for balanced advective dynam-
ics. Apart from turbulence itself, the nature of balance is perhaps the deepest issue in natural
fluid dynamics. Its mysteries are manifested most strongly in flows with intermediate scales and
intermediate ε values, and a full understanding still lies ahead of us.
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