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Overview of tutorial 2 

•  Evaluation techniques and selected dynamical 
core test cases 

•  Physical challenges: conservation, positive 
tracer advection 

•  Hidden features in the design process:  
subgrid-scale diffusive and filtering processes 

•  Computational aspects, computer architectures, 
scalability, efficiency, how it determines science 
decisions 

•  Trends in GCM modeling 



Proposed Dynamical Core Test Suite used 
during the 2008 NCAR ASP Colloquium 

1.  Steady-state test case (various rotations α)  
2.  Evolution of a baroclinic wave (various rotations α)  
3.  3D advection experiments (various rotations α)   
4.  3D Rossby-Haurwitz wave with wavenumber 4 

5.  Mountain-induced Rossby wave train    

6.  Pure gravity waves and inertial gravity waves 

•  All tests are formulated on the sphere 
•  Some have multiple test variants, e.g. rotation angle α 

Examples of the 
red test cases are 
shown today 



NCAR 2008  
ASP Colloquium 



Test 2: Baroclinic Waves 
•  850 hPa temperature field (in 

K) of an idealized baroclinic 
wave at model day 9 

•  Initially smooth temperature 
field develops strong 
gradients associated  
with warm and cold fronts 

•  Explosive cyclogenesis after 
day 7 

•  Baroclinic wave breaks after 
day 9 

•  Models start converging at 1° 
Jablonowski and Williamson (QJ, 2006) 



Test 2: Model Intercomparison, ps at Day 9 

hPa 

GEOS-FV GEOS-FVCUBE GME 

HOMME ICON OLAM 

BQ (GISS) CAM-FV-isen CAM-EUL 

 with α=0°, resolution ≈ 1°×1°L26 



Test 3: 3D Advection Tests 

•  Prescribe the 3D wind field: Solid body rotation in  
  2D plus an overlaid vertical velocity 
•  Use different rotation angles α 

•  Prescribe two 3D tracer distributions: z-ϕ cross section


Smooth: Cosine bell  Non-smooth: Slotted ellipse 

Jablonowski et al. (2008) 



Test 3: Vertical advection 

Tracers undergo 3 wave cycles in the vertical


Tracers return to initial position after 12 days: 
Allows assessment of the diffusion




Test 3: Slotted Ellipse after 12 Days 

HOMME 

Initial state 

CAM-EUL GISS-BQ 

GEOS-FVCUBE 

ICON OLAM 

GME 

CAM-FV isen 

with α=0°, (≈1°×1°L60, dz=250 m) 



Test 3: Slotted Ellipse after 12 Days 

OLAM 

H
ei

gh
t 
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≈1°×1°L60, dz=250 m 

CAM-EUL 

OLAM 

CAM-EUL 

α=0° 

α=0° α=45° 

α=45° 

Rotation angles can matter  
Most insensitive: models GISS-BQ, FVCUBE, HOMME 



Test 6: Pure Gravity Waves (time series) 

6 hr 24 hr 

72 hr 
96 hr 

check 
sharpness 

CAM-EUL T106 L20 with standard diffusion, Θ’ cross section along equator 

CAM-EUL 

CAM-EUL 



Test 6: Θ’ cross section along the equator 
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GEOS-FV GEOS-FVCUBE GME 

HOMME ICON OLAM 

BQ (GISS) CAM-FV-isen CAM-EUL 

Day 4, (≈1°×1°L20) Check sharpness 
amplitude, speed 



What are the subgrid-scale (diffusive) 
processes that are included in  

dynamical cores? �
•  Dynamical cores need diffusive processes for 

physical and numerical (stability) reasons 
•  These are the subgrid-scale processes in 

dynamical cores that are often hidden: 

1) Implicit Numerical Diffusion 
2) Explicit diffusion such as hyperdiffusion, 2nd-order  
    diffusion, divergence damping or Rayleigh friction  
3) Numerical filters in space and/or time 
4) ad-hoc Fixers that ensure conservation principles




•  Too much heavy rain: add divergence damping 
•  Too warm in the troposphere and too cold in the 

stratosphere: add a mass fixer 
•  Cold bias at the tropopause: add strong explicit 

diffusion 
•  Rely on tracer advection?  

Understand what you get 

some provocative approaches from the  
dynamical core perspective (be careful!) 

Engineering (unphysical) climate change 

Tracer: Analytic CAM-EUL 

GEOS-FVCUBE CAM-FV We take a systematic look at 
the subgrid-scale diffusion 
processes and their impact in 
dry dynamical cores.  



Diffusion, Filters and Fixers 
•  Equations of motion: diabatic effects 
•  Diffusion 

–  Explicit horizontal diffusion (neglecting vertical diffusion) 
–  Implicit numerical diffusion 
–  Divergence damping (2D or 3D) 
–  External mode damping 

•  Spatial filters: 
–  Polar filters / Fourier filters 
–  Digital filters: e.g. Shapiro filters 

•  Time filters: Asselin-filter 
•  a posteriori Fixers: 

–  Mass 
–  Energy 



The 3D Primitive Equations: 
 diabatic effects 
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Equation of state (with moisture effects): 
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Continuity equation: 
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Q Q: diabatic heating 

Conservation of water vapor (specific humidity) q: 
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The 3D Primitive Equations: 
diabatic effects 

+ Conservation laws for liquid water + ice 



•  Diffusion applied to the prognostic variables 
–  Regular diffusion ∇2 - operator 
–  Hyper-diffusion ∇4, ∇6, ∇8 - operators: more scale-

selective 
–  Example: Temperature diffusion, i = 1, 2, 3, …  

–  K: diffusion coefficients, e-folding time dependent on 
the resolution 

–  Choice of the prognostic variables and levels 
•  Divergence damping 

Explicit Horizontal Diffusion 
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Effects of Horizontal Diffusion 
•  Comparison of the 700 hPa zonal wind at day 25 in 

CAM FV and CAM EUL with mountain-wave test (5) 

CAM FV 1ºx1ºL26 CAM EUL T106L26 

with standard horizontal diffusion with monotonicity constraint, 
divergence damping 



Horizontal Diffusion Coefficients 
•  Diffusion coefficients are scale-dependent 
•  Are guided by the so-called e-folding time: How quickly are 

the fastest waves damped so that their amplitude decrease 
by a factor of ‘e’? 

•  Typical 4th-order diffusion coefficients K4 for CAM EUL 



      ζ850  c) Day 7                  ζ850  d) Day 9      

Impact of Explicit Diffusion: Baroclinic Waves 
•  EUL T85L26 with standard K4 = 1015 m4/s diffusion coefficient 
•  Spectral noise (Gibb’s oscillations) 

ps T850 a) Day 9 b) Day 9 



Impact of Explicit Diffusion: Baroclinic Waves 
•  EUL T85L26 with K4 increased by a factor of 10 (1016 m4/s) 
•  No spectral noise, but severe damping of the circulation 

ps T850 

ζ850 ζ850 



•  Consider a second-order diffusion mechanism 
applied to the horizontal momentum equations (here 
u) and allow the diffusion coefficient K to vary: 

•  Example of ‘nonlinear’ diffusion 
•  The ‘art’ is to define the nonlinear coefficient 
•  Smagorinsky (1963) proposed (deformation-based): 

•  Others proposals are (Andrews et al. 1983) 

Explicit Horizontal Diffusion: 
Smagorinsky-type for the velocities 
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See Becker and Burkhardt 
(MWR, 2007) for overview 

Problems in spherical 
geometry ! 



Implicit / Numerical Diffusion 

•  Implicit diffusion: diffusion that is inherent in the 
numerical scheme 

•  Sources of implicit / numerical diffusion: 
– Order of accuracy: 1st order, 2nd order, 3rd order, 

…,  higher order schemes  
– The higher the order, the less diffusive 
– Monotonicity constraints 
– Decentering parameters in semi-implicit time-

stepping schemes 



Implicit diffusion: Order of accuracy 
•  Third order 

(PPM) 

•  Second order 
(van Leer)  

•  First order 
upwind 
scheme 

Baroclinic wave test 2 
CAM FV 1°x 1.25° L26  
ps at day 9 



Implicit diffusion: Order of accuracy 

•  Third order 
(PPM) 

•  Second order 
(van Leer)  

•  First order 
upwind 
scheme 

Baroclinic wave test 2 
CAM FV 1°x 1.25° L26  
T850 hPa at day 9 



Implicit diffusion: Order of accuracy 

•  Time-averaged 
kinetic energy 
spectrum at two 
different horizontal 
resolutions 

•  Third order (PPM) 
•  Second order (van 

Leer scheme)  
•  Tail of 2nd order 

scheme drops 
faster 

Baroclinic wave test 
CAM FV  

provided by 
D. Williamson (NCAR) 



Implicit diffusion: Monotonicity constraints  
in Finite Volume Methods 

•  Linear subgrid distribution (van Leer scheme) 

•  Parabolic subgrid distribution (PPM) with cross terms 

Reconstruction: 

Slopes: 

Slope  
limiter: 



Implicit diffusion: Monotonicity constraint 

Error PPM constrained Error PPM unconstrained 

•  2D Rossby-Haurwitz wave 
•  Initial u field at 2°x 2.5° 
•  Split cells to 1°x 1.25° grid 

and interpolate via a PPM 
reconstruction, compare to 
analytical solution (error)  

Errors cluster near the extrema where the 
monotonicity constraint is strongest 

Errors are reduced, but over- or  
undershoots are possible 



2D Divergence damping 
•  Example: 2D shallow water momentum equation 

Momentum equation: 

Horizontal divergence: 

Semi- 
discretized: 

Divergence damping coefficients divided 
by metric terms, different in both directions  

coefficient 



2D Divergence damping 
•  Divergence damping diffuses the divergent part of the flow 

2nd order  
diffusion 
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Divergence damping 

•  Example: 2D SW 
steady state test case 
with α=90°, model FV 

•  Difference field at day 
10 compared to 
analytical solution 

•  Contour interval is 
0.05 m/s 

•  Why is the polar 
region always 
smooth? Because of 
other filters (here 
polar Fourier filter)


without divergence damping 

with divergence damping 



Divergence damping: Effects 

•  Example: 3D gravity 
wave test 

•  Model CAM FV 1°x 1° 
L20 at day 4, cross 
section at equator 

•  with standard 
divergence damping 
coefficients (top) 

•  without divergence 
damping (bottom) 

•  Clear difference in the 
amplitudes of the 
gravity wave 



All types of diffusion change the solution 
•  Example: 3D gravity 

wave test, cross section 
at the equator at day 4 

•  Model CAM EUL 
T106L20 with explicit ∇4 
diffusion (top) 

•  Model CAM FV 1°x 1° 
L20, no divergence 
damping (bottom) 

•  Clear difference in the 
shape of the potential 
temperature perturbation 

•  Check sharpness of 
leading edge 



Divergence damping: Needed for stability? 
•  Example: alternative  

3D inertio-gravity wave 
test with background 
flow 

•  Model CAM FV 1°x 1° 
L20 at day 5.5, lat-lon 
cross section at 850 hPa 

•  Numerical stability of 
CAM FV depends on  
the resolution- and time 
step dependent choice 
of the divergence 
damping coefficient c 

no divergence damping 

divergence damping 



Divergence Damping 
•  Effects of the divergence damping and order of accuracy 

on the Kinetic Energy spectrum (baroclinic wave) 

Blue: PPM, no  
divergence damping 

Green: PPM, standard  
divergence damping 

Model: CAM FV, 
plot provided by  
D. Williamson (NCAR) 

Very harmful: 
Accumulation of 
energy at small  
scales without  
divergence damping 



Divergence Damping 
•  Without diffusion (here divergence damping): 

divergent part of the flow responsible for the hook 

plots provided by D. Williamson (NCAR) 

CAM FV CAM EUL 



3D Divergence damping 
•  Often used in non-hydrostatic models 
•  Highly specific to filtering the acoustic modes 
•  Same idea as the 2D divergence damping: add a term 

to each of momentum equations that is proportional to 
the gradient of the 3D divergence:  

•  Introduces a 2nd-order diffusion of the 3D divergence 
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Example: Skamarock and Klemp (MWR, 1992) 



External mode damping 
•  In hydrostatic models the fastest propagating modes 

(waves) are so-called external (barotropic) modes: 
e.g. external gravity wave or the Lamb wave 
(horizontally propagating sound wave) 

•  Can be damped via a mechanism called external 
mode damping (rarely used) 

•  Similar to 2D divergence damping 
•  Damps the horizontal velocities via an integrated 

approach (vertical integral of the 2D divergence)  

•  The ‘art’ is to set the damping coefficient ’c’ 
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Computational grids (horizontal) 

Cubed sphere 

Icosahedral 
grid 

Latitude-longitude  
grid: needs polar 
filtering due to 
convergence of 
meridians No polar 

filter required 



Spatial filters 
•  Most popular and most effective polar filter: 1D Fourier filter 

(spectral filter), used in the zonal (x) direction 
•  Basic idea:  

–  Transform the grid point data into spectral space via 
Fourier transformations 

–  Eliminate or damp high wave numbers (noise) by either 
setting the spectral coefficients to 0 or multiplying them 
with a damping coefficient ∈ [0,1] 

–  Transform the field back from spectral space into grid 
point space: result is a filtered data set 

•  Filter strength is determined by the spectral damping 
coefficients, can be made very scale-selective and 
dependent on the latitude (e.g. less strong towards equator) 

•  Drawback: needs all data along latitude ring (poor scaling) 



Polar Fourier Filters 
•  A Fourier filter application for all zonal wavenumbers k can 

be written as: 

where           are the Fourier coefficients and a(k) are the 
filter coefficients 

•  The filter coefficients depend on latitude ψ, they are e.g. 
defined by (with n: # grid points in the zonal direction) 

•  Coefficients become small (or zero) at high latitudes and for 
high wave numbers. Filter becomes inactive (a(k)=1) at 
latitude ψ0 (often chosen to be between 30-45 degrees N/S). 
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Digital filters 
•  Digital or algebraic filters are local grid-point filters that only 

take neighboring grid points into account 
•  Examples are the Shapiro filters (Shapiro, 1975) 
•  4th order (n=2) Shapiro filter (i is the grid point index): 

•  The filter response/damping function is (Shapiro, 1971) 

2n: order 



Digital filters: Response function  

•  Response function of different Shapiro filters after (a) 1 
application and (b) 1000 applications. 2n indicates the order 
of the Shapiro filter. Higher orders need more data points. 



Digital filters 

•  Can provide a 
strong damping 
effect 

•  Use very 
selectively 

•  Example: SW 
simulation, digital 
filtering in y- 
direction applied 
near the pole 
points 

Damping is good 



Spatial Filters 
•  Can provide a strong 

damping effect 
•  Example: Rossby-

Haurwitz wave in SW FV 
model, height at day 14 

•  (a) Fourier (90º-75º N/S) 
and digital Shapiro 
filtering (75º-60º N/S) 

•  (b) Digital Shapiro filter 
also applied between 
60ºN - 60ºS, very 
diffusive, not suitable 

Too much damping 



Time filters 

•  Used in models with 3-time level schemes (e.g. 
Leapfrog) 

•  Most often used: Robert-Asselin filter (Asselin, 1972) 
•  Avoids that the even and odd time steps separate 
•  Basic idea: Second-order diffusion in time 
•  Example with time levels n-1, n, n+1: 

•  Filter strength is determined by the coefficient α 
•  Often used α ≈ 0.05 



Sponge layers and Rayleigh friction 
•  Often desired: a wave-absorbing layer near the top of 

a GCM 
•  Prevents wave reflections of upward traveling waves 

that would normally leave the domain 
•  Some upper boundary conditions, e.g. that the model 

top is placed at a fixed height and w=0 m/s, are 
perfect reflectors, undesirable 

•  Practical approaches: Sponge layer near the model 
top, needs to be deep (at least 1-2 scale heights) 

•  Examples are enhanced 2nd-order diffusion or 
Rayleigh friction, e.g. of the types: 
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Conservation of Mass: Mass fixers 

•  Some dynamical cores are not mass-conserving by design 
•  But: Conservation of mass is needed in long-term climate 

simulations, less important in short weather prediction runs 
•  These models might apply an a posteriori mass fixer 
•  Basic idea behind the mass fixer: adjust the mean value of 

ps after each time step, adjustment modifies all grid points 
at the surface 

•  This technique does not (!) alter the pressure gradients 
which are the driving force in the momentum equations 

•  Sounds okay? Let’s see (next slide): 



Conservation of Mass:  
The potential impact of mass fixers 

•  Weather forecast model IFS run with the Held-Suarez test 
•  Compare the time-mean zonal-mean temperature of a run 

with and without mass fixer 

Temperature 
(without mass fixer) 

Temperature difference 
(with mass fixer - without) 

cooling 

warming 

w 

w 



Conservation of Total Energy 
•  There are many forms of the Total Energy (TE or E) 

Equation that depend on the choice of the fluid dynamics 
equations and the vertical coordinate (see Appendix F) 

•  An example for hydrostatic models with the height coordinate 
z in the vertical direction is (with A: horizontal integral) 

•  In general: The TE equation is a global integral of the kinetic, 
thermal and potential energy in the model. 

•  The global integral is conserved in the continuous equations. 



Conservation of Total Energy 

•  The question is whether TE is a conserved quantity 
in a dynamical core with numerical discretizations. 

•  Should we care? 
–  in Weather Prediction Models  

•  The answer is ‘not necessarily’ 
–  in Climate Models 

•  The answer is ‘yes’ 
•  When running for long times the violation of the total 

energy conservation leads to artificial drifts in the 
climate system (e.g. ocean heat fluxes) 



Total Energy Fixer 

•  In nature:  
–  conservation of total energy 
–  energy lost by molecular diffusion provides heat 

•  In atmospheric models:  
–  Energy is lost due to explicit or implicit (numerical) diffusion 

processes 
–  Molecular diffusion is not represented on the model grid 

(spatial scale in models in way too big) 
–  Numerical scheme might also lead to increase in total 

energy 
•  Therefore: some models provide an a posteriori 

energy fixer that restores the conservation of total 
energy by modifying the temperature 



A posteriori Total Energy Fixer 

•  Goal: Total energy at each time step should be 
constant 

•  Compute the residual: 

•  Compute the total energy before (-) and after (+) 
each time step 



A posteriori Total Energy Fixer 

•  Idea: Correct the temperature field to achieve the 
conservation of  total energy (mimics heating by 
molecular diffusion) 

•  Option: Fixer 1, correction proportional to the 
magnitude of the local change in T at that time step 

•  Option: Fixer 2, correction is constant everywhere 

•  Fixer 1 looks physical, but leads to wrong results 



Energy Fixer: Surprising Consequences 
•  Baroclinic wave,  

ps at day 10  
•  CAM SLD with a 

‘wrong’ and 
‘corrected’ 
choice of an 
energy fixer 

•  Wrong choice 
leads to wrong 
circulation 
pattern 

wrong energy fixer 

corrected energy fixer 

Williamson, Olson & Jablonowski, 
(MWR, 2009) 



Trends in dynamical core design 

•  Alternative computational meshes (maybe with nested grids 
  or AMR with good scaling characteristics on parallel computers 

•  Built-in conservation laws (especially mass) 
•  Slightly higher order (maybe 3rd or 4th), no need to go  
  to really high order (e.g. 8th) since the dynamics- 
  physics coupling is 1st order 
•  Higher physical consistencies: better tracer advection 

Colors represent 
processor allocation (CSU model) 



Computational Performance 
•  The computational and parallel performance is a 

decisive factor in the design 
•  Motivates the push towards new grids 
•  Example: parallel scalability of the FV lat-lon and FV 

cubed-sphere dynamical core (NCAR, NASA) 

Number of processors 
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Analysis on  
the DoE Cray  
machine  
Jaguar 

by Art Mirin 
(summer ‘09) 

better scalability 



Trends:  
increasing horizontal 
resolutions of GCMs 

2007 

2001 

1995 

1990 

Source: IPCC AR4 report (2007) 

Soon climate model  
are likely to run with  
grid spacings of about 50 km 

Global weather models  
are likely to run with  
grid spacings of about 10 km 

But be careful: resolution  
is not identical to grid spacing! 
The scale of resolved features 
is about 7 x Δx. 



Trends: 
Increased 
complexity 
in climate  
models 

Source: IPCC AR4 report, WG 1 
(2007) 

2007 2001 

1995 1990 



Summary (I) 
•  Physical arguments need to drive your choices in the 

design of a dynamical core 
•  Set your priorities: mass conservation, consistent 

and monotonic tracer advection, etc. 
•  Designing a dynamical core is a co-design task: 

balance the scientific, numerical and computational 
constraints 

•  These constraints pull the developer in different 
directions, e.g. 
–  a highly accurate dynamical core is maybe too 

expensive to run (so nobody will use it) 
–  a cheap dynamical core is maybe too diffusive to be 

useful (so nobody will use it) 



Summary (II) 
•  Diffusion and filters help maintain the numerical 

stability 
•  Some diffusion (either explicit or implicit) is always 

needed to prevent an accumulation of energy at the 
smallest scale (due to truncated energy cascade) 

•  But: Use the techniques selectively and know their 
consequences. 

•  Test and intercompare as much as possible 
•  Word of caution: It is very easy to compute nice-

looking smooth, highly diffusive, but very inaccurate 
solutions to the equations of motion. 

•  But remember: No sweat, no fun! Tackling the 
challenges is rewarding. Just be persistent. 


