

Columnar Clouds and Internal Waves

Daniel Ruprecht¹, Andrew Majda², Rupert Klein¹

¹Mathematik & Informatik, Freie Universität Berlin ²Courant Institute, NYU

Oswald Knoth

Oliver Bühler

(IfT, Leipzig)

(Courant Institute, NYU)

Multiscale Modelling Framework

Scalings and Expansion Scheme

Exact Closure for the Small Scales

Results

Nonlinearity for Weak Undersaturation

Conclusions

Scales

$$u_{i} : u \cdot \nabla u : wu_{z} : \nabla \pi = S_{u}$$

$$w_{i} : u \cdot \nabla w : ww_{z} : \pi_{\pi} = -\theta' : S_{u}$$

$$\theta'_{i} : u \cdot \nabla \theta' : w\theta'_{z} = S'_{\theta}$$

$$\nabla \cdot (\rho_{i} u) : (\rho_{i} w) : z = 0$$

$$\theta = 1 + \varepsilon^{4} \theta'(x, z, t) + o(\varepsilon^{4})$$

$$(\partial_{\tau} + u^{(0)} \cdot \nabla) q = 0$$

$$q - \zeta^{(0)} + \Omega_{2i} \beta_{\eta} + \frac{\Omega_{3}}{\rho^{0} \partial z} \left(\frac{\rho^{(0)}}{d\epsilon^{i} \partial z^{i}} \right)$$

$$\zeta^{(0)} = \nabla^{2} \pi^{(0)}, \quad \theta^{(0)} = -\frac{1}{\Omega} \frac{k \times \nabla \pi^{(0)}}{k}$$

$$\frac{\partial Q_{t}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_{T} - S_{T}$$

$$\frac{\partial Q_{0}}{\partial t} + \nabla \cdot F_$$

Scales

Three-dimensional compressible flow equations

$$\rho_{t} + \nabla \cdot (\rho \boldsymbol{v}) = 0$$

$$(\rho \boldsymbol{v})_{t} + \nabla \cdot (\rho \boldsymbol{v} \circ \boldsymbol{v}) + \nabla p + \boldsymbol{\Omega} \times \rho \boldsymbol{v} = \boldsymbol{S}_{\rho \boldsymbol{v}} - \rho g \boldsymbol{k}$$

$$(\rho e)_{t} + \nabla \cdot (\boldsymbol{v} [\rho e + p]) = S_{\rho e}$$

$$(\rho Y_{j})_{t} + \nabla \cdot (\rho Y_{j} \boldsymbol{v}) = S_{\rho Y_{j}}$$

$$(\rho e) = \frac{p}{\gamma - 1} + \frac{1}{2} \rho \boldsymbol{v}^{2} + \rho \sum_{j=1}^{N} Q_{j} Y_{j}$$

How are the various reduced models related to this system ?

Motivation

Key ingredients	a = 6	$6 \cdot 10^6 \text{ m}$
1. Identification of	$\Omega =$	10^{-4} 1/s
	g =	9.81 m/s ²
 uniformly valid system scales 	~	10^{5} l_{rg}/mc^{2}
• non dimensional narameters	$p_{ m ref} =$	10 kg/ms
• non-unnensional parameters	$\Gamma_{\rm ref}$ — $\Lambda \theta$ —	50 K
 distinguished limits 	$\Delta 0 =$	50 K
	R =	$287 \text{ m}^2/\text{s}^2\text{K}$
2. Specializations of a multiple scales ansatz	$\gamma~=$	1.4

Key ingredients

- 1. Identification of
 - uniformly valid system scales
 - non-dimensional parameters
 - distinguished limits

2. Specializations of a multiple scales ansatz

$$\frac{c_{\text{ref}}}{\Omega a} \sim 0.5$$
$$\frac{a \Omega^2}{g} \sim 6 \cdot 10^{-3}$$
$$\frac{\Delta \theta}{T_{\text{ref}}} \sim 1.6 \cdot 10^{-1}$$
$$\left(c_{\text{ref}} = \sqrt{\gamma R T_{\text{ref}}}\right)$$

Key ingredients

- 1. Identification of
 - uniformly valid system scales
 - non-dimensional parameters
 - distinguished limits
- 2. Specializations of a multiple scales ansatz

$$h_{
m sc}~=~p_{
m ref}/g
ho_{
m ref}$$

Scaled governing equations

$$\rho_{t} + \nabla \cdot (\rho \boldsymbol{v}) = 0$$

$$(\rho \boldsymbol{v})_{t} + \nabla \cdot (\rho \boldsymbol{v} \circ \boldsymbol{v}) + \frac{1}{\boldsymbol{\varepsilon}^{4}} \nabla p + \boldsymbol{\varepsilon} \, \boldsymbol{\Omega} \times \rho \boldsymbol{v} = \boldsymbol{S}_{\rho \boldsymbol{v}} - \frac{1}{\boldsymbol{\varepsilon}^{4}} \rho g \, \boldsymbol{k}$$

$$(\rho e)_{t} + \nabla \cdot (\boldsymbol{v} [\rho e + p]) = S_{\rho e}$$

$$(\rho Y_{j})_{t} + \nabla \cdot (\rho Y_{j} \boldsymbol{v}) = \boldsymbol{\varepsilon}^{\mu_{i}} S_{\rho Y_{j}}$$

$$(\rho e) = \frac{p}{\gamma - 1} + \frac{\boldsymbol{\varepsilon}^{4}}{2} \rho \boldsymbol{v}^{2} + \rho \sum_{j=1}^{N} \boldsymbol{\varepsilon}^{\nu_{j}} Q_{j} Y_{j}$$

Ready for asymptotics in $\boldsymbol{\varepsilon}$

Recovered classical single-scale models:

 $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(\frac{t}{\epsilon}, \boldsymbol{x}, \frac{z}{\epsilon})$ $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(t, \boldsymbol{x}, z)$ $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(\boldsymbol{\varepsilon} t, \boldsymbol{\varepsilon}^2 \boldsymbol{x}, z)$ $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(\boldsymbol{\varepsilon}^2 t, \boldsymbol{\varepsilon}^2 \boldsymbol{x}, z)$ $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(\boldsymbol{\varepsilon}^2 t, \boldsymbol{\varepsilon}^2 \boldsymbol{x}, z)$ $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(\boldsymbol{\varepsilon}^2 t, \boldsymbol{\varepsilon}^{-1} \boldsymbol{\xi}(\boldsymbol{\varepsilon}^2 \boldsymbol{x}), z)$ $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(\boldsymbol{\varepsilon}^{3/2}t, \boldsymbol{\varepsilon}^{5/2}x, \boldsymbol{\varepsilon}^{5/2}y, z)$

Linear small scale internal gravity waves

Anelastic & pseudo-incompressible models

Linear large scale internal gravity waves

Mid-latitude Quasi-Geostrophic Flow

Equatorial Weak Temperature Gradients

Semi-geostrophic flow

Kelvin, Yanai, Rossby, and gravity Waves

Asymptotic Expansions & Classical Results

Scaling Regimes

Multiscale Modelling Framework

Scalings and Expansion Scheme

Exact Closure for the Small Scales

Results

Nonlinearity for Weak Undersaturation

Conclusions

Characteristic (inverse) time scales

Scaling for the equatorial region:*

$$\frac{h_{\rm sc}}{\overline{\theta}} \frac{d\overline{\theta}}{dz} = O(\boldsymbol{\varepsilon}^2) \qquad \text{implies}$$

$$t_{\rm sound} \sim \boldsymbol{\varepsilon} t_{\rm internal} \sim \boldsymbol{\varepsilon}^2 t_{\rm adv}$$

* Majda & Klein, JAS, (2003)

Columnar clouds / internal wave time scales*

general expansion scheme

$$\mathbf{U}(\boldsymbol{x}, z, t; \boldsymbol{\varepsilon}) = \sum_{i} \boldsymbol{\varepsilon}^{i} \mathbf{U}^{(i)}\left(\boldsymbol{\eta}, \boldsymbol{x}, z, \tau\right)$$

horizontal velocity scaling

$$\boldsymbol{u}^{(0)}(\boldsymbol{\eta}, \boldsymbol{x}, z, \tau) \equiv \boldsymbol{u}(\boldsymbol{x}, z, \tau)$$

$$oldsymbol{\eta} = oldsymbol{x}/oldsymbol{arepsilon}$$
 $au = t/oldsymbol{arepsilon}$

$$oldsymbol{x} = rac{oldsymbol{x}'}{h_{
m sc}}\,, \qquad t = rac{t' u_{
m ref}}{h_{
m sc}}$$

$$\boldsymbol{u}_{\tau} + \nabla_{\boldsymbol{x}} \boldsymbol{\pi} = 0$$
$$\overline{\boldsymbol{w}}_{\tau} + \boldsymbol{\pi}_{z} = \overline{\boldsymbol{\theta}}$$
$$\overline{\boldsymbol{\theta}}_{\tau} + \overline{\boldsymbol{w}} N^{2} = \frac{\Gamma L^{**}}{p_{0}} \overline{\boldsymbol{C}}$$
$$\rho_{0} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{u} + (\rho_{0} \overline{\boldsymbol{w}})_{z} = 0$$

Cloud column scale

$$\left(\partial_{ au} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) \widetilde{w} = \widetilde{ heta}$$

 $\left(\partial_{ au} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) \theta + \widetilde{w} N^2 = rac{\Gamma L^{**}}{p_0} \widetilde{\boldsymbol{C}}.$

Moisture coupling

 $\boldsymbol{C} = H(q_{\rm c}) \ \boldsymbol{C}_{\rm d} + [1 - H(q_{\rm c})] \ \boldsymbol{C}_{\rm ev}$

Saturated Air

$$\begin{aligned} \boldsymbol{C}_{\mathbf{d}} &= C_{\mathbf{d}}^{**} \, \underline{\delta q_{\mathbf{v}}^{(n^*)}} \, q_{\mathbf{c}} \,=\, -\left(\widetilde{w} + \overline{w}\right) \frac{dq_{\mathbf{vs}}}{dz} \\ &\left(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) q_{\mathbf{c}} \,=\, H(q_{\mathbf{c}}) \, C_{\mathbf{d}} - C_{\mathbf{cr}}^{**} q_{\mathbf{r}} \, q_{\mathbf{c}} \\ &\left(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) q_{\mathbf{r}} \,=\, 0 \end{aligned}$$

Undersaturated Air

$$\begin{aligned} \boldsymbol{C}_{ev} &= -C_{ev}^{**} \left(q_{vs}(z) - q_{v} \right) \, q_{r}^{1/2} \\ \left(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}} \right) q_{v} &= 0 \\ \left(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}} \right) q_{r} &= 0 \end{aligned}$$

Multiscale Modelling Framework

Scalings and Expansion Scheme

Exact Closure for the Small Scales

Results

Nonlinearity for Weak Undersaturation

Conclusions

Convective scale $(\boldsymbol{x}, z, \tau)$ $\boldsymbol{u}_{\tau} + \nabla_{\boldsymbol{x}} \pi = 0$ $\overline{w}_{\tau} + \pi_z = \overline{\theta}$ $\overline{\theta}_{\tau} + \overline{w}N^2 = \frac{\Gamma L^{**}}{\overline{C}}$ p_0 $\rho_0 \nabla_{\boldsymbol{x}} \cdot \boldsymbol{u} + (\rho_0 \overline{w})_z = 0$ Cloud column scale $(\boldsymbol{\eta}, \boldsymbol{x}, z, \tau)$ $(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{n}}) \, \widetilde{w} \, = \, \widetilde{\theta}$ $(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}) \theta + \widetilde{w} N^2 = \frac{\Gamma L^{**}}{\mathcal{D}_{\tau}} \widetilde{\boldsymbol{C}}.$

$$\boldsymbol{C} = H(q_{\rm c}) \ \boldsymbol{C}_{\rm d} + [1 - H(q_{\rm c})] \ \boldsymbol{C}_{\rm ev}$$

$$\boldsymbol{u}_{\tau} + \nabla_{\boldsymbol{x}} \boldsymbol{\pi} = 0$$
$$\overline{\boldsymbol{w}}_{\tau} + \boldsymbol{\pi}_{z} = \overline{\boldsymbol{\theta}}$$
$$\overline{\boldsymbol{\theta}}_{\tau} + \overline{\boldsymbol{w}} N^{2} = \frac{\Gamma L^{**}}{p_{0}} \overline{\boldsymbol{C}}$$
$$\rho_{0} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{u} + (\rho_{0} \overline{\boldsymbol{w}})_{z} = 0$$

Analytical microscale closure I

$$\boldsymbol{C}_{ev} = -C_{ev}^{**} (q_{vs}(z) - q_v) q_r^{1/2}$$

$$\overline{[1 - H(q_c)] \boldsymbol{C}_{ev}} = -\overline{C}(\boldsymbol{x}, z)$$

Cloud column scale

$$\left(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) \widetilde{w} = \widetilde{\theta}$$

 $\left(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) \theta + \widetilde{w} N^2 = \frac{\Gamma L^{**}}{p_0} \widetilde{\boldsymbol{C}}.$

$$\boldsymbol{C} = H(q_{\rm c}) \boldsymbol{C}_{\rm d} + [1 - H(q_{\rm c})] \boldsymbol{C}_{\rm ev}$$

$$\boldsymbol{u}_{\tau} + \nabla_{\boldsymbol{x}} \boldsymbol{\pi} = 0$$
$$\overline{\boldsymbol{w}}_{\tau} + \boldsymbol{\pi}_{z} = \overline{\boldsymbol{\theta}}$$
$$\overline{\boldsymbol{\theta}}_{\tau} + \overline{\boldsymbol{w}} N^{2} = \frac{\Gamma L^{**}}{p_{0}} \overline{\boldsymbol{C}}$$
$$p_{0} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{u} + (\rho_{0} \overline{\boldsymbol{w}})_{z} = 0$$

Analytical microscale closure I

$$C_{ev} = -C_{ev}^{**} (q_{vs}(z) - q_v) q_r^{1/2}$$

$$\overline{[1 - H(q_c)]} C_{ev} = -\overline{C}(\boldsymbol{x}, z)$$

$$C_{d} = -(\widetilde{w} + \overline{w}) \frac{dq_{vs}}{dz}$$

Cloud column scale

1

$$\left(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) \widetilde{w} = \widetilde{\theta}$$

 $\left(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) \theta + \widetilde{w} N^2 = \frac{\Gamma L^{**}}{p_0} \widetilde{\boldsymbol{C}}.$

$$\boldsymbol{C} = H(q_{\rm c}) \ \boldsymbol{C}_{\rm d} + [1 - H(q_{\rm c})] \ \boldsymbol{C}_{\rm ev}$$

$$\boldsymbol{u}_{\tau} + \nabla_{\boldsymbol{x}} \boldsymbol{\pi} = 0$$
$$\overline{\boldsymbol{w}}_{\tau} + \boldsymbol{\pi}_{z} = \overline{\boldsymbol{\theta}}$$
$$\overline{\boldsymbol{\theta}}_{\tau} + \overline{\boldsymbol{w}} N^{2} = \frac{\Gamma L^{**}}{p_{0}} \overline{\boldsymbol{C}}$$
$$\rho_{0} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{u} + (\rho_{0} \overline{\boldsymbol{w}})_{z} = 0$$

Cloud column scale

$$egin{aligned} &(\partial_{ au}+oldsymbol{u}\cdot
abla_{oldsymbol{\eta}})\,\widetilde{w}\ =\ \widetilde{ heta}\ &(\partial_{ au}+oldsymbol{u}\cdot
abla_{oldsymbol{\eta}})\, heta+\widetilde{w}N^2\ =\ rac{\Gamma L^{**}}{p_0}\widetilde{oldsymbol{C}}\,. \end{aligned}$$

Moisture coupling

$$\boldsymbol{C} = H(q_{\rm c}) \ \boldsymbol{C}_{\rm d} + [1 - H(q_{\rm c})] \ \boldsymbol{C}_{\rm ev}$$

Analytical microscale closure I

$$C_{ev} = -C_{ev}^{**} (q_{vs}(z) - q_v) q_r^{1/2}$$

$$\overline{[1 - H(q_c)]} C_{ev} = -\overline{C}(\boldsymbol{x}, z)$$

$$C_{d} = -(\widetilde{w} + \overline{w}) \frac{dq_{vs}}{dz}$$

$$\overline{H(q_c)} C_{d} = -\left(\overline{H(q_c)} \overline{w} + \overline{H(q_c)} \overline{w}\right) \frac{dq_{vs}}{dz}$$

. ...

$$\boldsymbol{u}_{\tau} + \nabla_{\boldsymbol{x}} \boldsymbol{\pi} = 0$$
$$\overline{\boldsymbol{w}}_{\tau} + \boldsymbol{\pi}_{z} = \overline{\boldsymbol{\theta}}$$
$$\overline{\boldsymbol{\theta}}_{\tau} + \overline{\boldsymbol{w}} N^{2} = \frac{\Gamma L^{**}}{p_{0}} \overline{\boldsymbol{C}}$$
$$\rho_{0} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{u} + (\rho_{0} \overline{\boldsymbol{w}})_{z} = 0$$

Cloud column scale

$$\left(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) \widetilde{w} = \widetilde{\theta}$$

 $\left(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) \theta + \widetilde{w} N^2 = \frac{\Gamma L^{**}}{p_0} \widetilde{\boldsymbol{C}}.$

Moisture coupling

$$\boldsymbol{C} = H(q_{\rm c}) \ \boldsymbol{C}_{\rm d} + [1 - H(q_{\rm c})] \ \boldsymbol{C}_{\rm ev}$$

Analytical microscale closure I

$$C_{ev} = -C_{ev}^{**} (q_{vs}(z) - q_v) q_r^{1/2}$$

$$\overline{[1 - H(q_c)]} C_{ev} = -\overline{C}(\boldsymbol{x}, z)$$

$$C_{d} = -(\widetilde{w} + \overline{w}) \frac{dq_{vs}}{dz}$$

$$\overline{H(q_c)} C_{d} = -(\overline{H(q_c)} \overline{w} + \overline{H(q_c)} \overline{w}) \frac{dq_{vs}}{dz}$$

$$\overline{H(q_c)} C_{d} = -(w' + \sigma(\boldsymbol{x}, z) \overline{w}) \frac{dq_{vs}}{dz}$$

1 -

$$\boldsymbol{u}_{\tau} + \nabla_{\boldsymbol{x}} \boldsymbol{\pi} = 0$$
$$\overline{\boldsymbol{w}}_{\tau} + \boldsymbol{\pi}_{z} = \overline{\boldsymbol{\theta}}$$
$$\overline{\boldsymbol{\theta}}_{\tau} + \overline{\boldsymbol{w}} N^{2} = \frac{\Gamma L^{**}}{p_{0}} \overline{\boldsymbol{C}}$$
$$\rho_{0} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{u} + (\rho_{0} \overline{\boldsymbol{w}})_{z} = 0$$

Cloud column scale

$$(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}) \, \widetilde{w} = \widetilde{\theta}$$
$$\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}) \, \theta + \widetilde{w} N^2 = \frac{\Gamma L^{**}}{p_0} \widetilde{\boldsymbol{C}}$$

Moisture coupling

$$\boldsymbol{C} = H(q_{\rm c}) \boldsymbol{C}_{\rm d} + [1 - H(q_{\rm c})] \boldsymbol{C}_{\rm ev}$$

Analytical microscale closure I

$$C_{ev} = -C_{ev}^{**} (q_{vs}(z) - q_v) q_r^{1/2}$$

$$\overline{[1 - H(q_c)]} C_{ev} = -\overline{C}(\boldsymbol{x}, z)$$

$$C_{d} = -(\widetilde{w} + \overline{w}) \frac{dq_{vs}}{dz}$$

$$\overline{H(q_c)} C_{d} = -(\overline{H(q_c)} \overline{w} + \overline{H(q_c)} \overline{w}) \frac{dq_{vs}}{dz}$$

$$\overline{H(q_c)} C_{d} = -(w' + \sigma(\boldsymbol{x}, z) \overline{w}) \frac{dq_{vs}}{dz}$$

New averaged microscale variables

$$w'(\boldsymbol{x}, z, \tau) = \overline{H(q_{c}) \, \widetilde{w}}$$

 $\sigma(\boldsymbol{x}, z) = \overline{H(q_{c})}$

$$\boldsymbol{u}_{\tau} + \nabla_{\boldsymbol{x}} \boldsymbol{\pi} = 0$$
$$\overline{\boldsymbol{w}}_{\tau} + \boldsymbol{\pi}_{z} = \overline{\boldsymbol{\theta}}$$
$$\overline{\boldsymbol{\theta}}_{\tau} + \overline{\boldsymbol{w}} N^{2} = \frac{\Gamma L^{**}}{p_{0}} \overline{\boldsymbol{C}}$$
$$\rho_{0} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{u} + (\rho_{0} \overline{\boldsymbol{w}})_{z} = 0$$

Cloud column scale

$$egin{aligned} &(\partial_{ au}+oldsymbol{u}\cdot
abla_{oldsymbol{\eta}})\,\widetilde{w}\ =\ \widetilde{ heta}\ &(\partial_{ au}+oldsymbol{u}\cdot
abla_{oldsymbol{\eta}})\, heta+\widetilde{w}N^2\ =\ rac{\Gamma L^{**}}{p_0}\widetilde{oldsymbol{C}}\,. \end{aligned}$$

Moisture coupling

$$\boldsymbol{C} = H(q_{\rm c}) \ \boldsymbol{C}_{\rm d} + [1 - H(q_{\rm c})] \ \boldsymbol{C}_{\rm ev}$$

Analytical microscale closure II

$$(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}) H(q_{c}) = 0$$
$$(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}) H(q_{c}) \widetilde{w} = H(q_{c}) \widetilde{\theta}$$
$$(\overline{H(q_{c})} \widetilde{w})_{\tau} = \overline{H(q_{c})} \widetilde{\theta}$$
$$w_{\tau}' = \theta'$$

$$\boldsymbol{u}_{\tau} + \nabla_{\boldsymbol{x}} \boldsymbol{\pi} = 0$$
$$\overline{\boldsymbol{w}}_{\tau} + \boldsymbol{\pi}_{z} = \overline{\boldsymbol{\theta}}$$
$$\overline{\boldsymbol{\theta}}_{\tau} + \overline{\boldsymbol{w}} N^{2} = \frac{\Gamma L^{**}}{p_{0}} \overline{\boldsymbol{C}}$$
$$\rho_{0} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{u} + (\rho_{0} \overline{\boldsymbol{w}})_{z} = 0$$

Cloud column scale

$$\left(\partial_{ au} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) \widetilde{w} = \widetilde{ heta}$$

 $\left(\partial_{ au} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) \theta + \widetilde{w} N^2 = \frac{\Gamma L^{**}}{p_0} \widetilde{\boldsymbol{C}}.$

Moisture coupling

 $\boldsymbol{C} = H(q_{\rm c}) \ \boldsymbol{C}_{\rm d} + [1 - H(q_{\rm c})] \ \boldsymbol{C}_{\rm ev}$

Analytical microscale closure II

$$(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}) H(q_{c}) = 0$$
$$(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}) H(q_{c}) \widetilde{w} = H(q_{c}) \widetilde{\theta}$$
$$(\overline{H(q_{c})} \, \widetilde{w})_{\tau} = \overline{H(q_{c})} \, \widetilde{\theta}$$
$$w_{\tau}' = \theta'$$

analogously

$$\theta'_{\tau} + \sigma w' N^2 = \sigma \left[(1 - \sigma) \overline{w} N^2 + \overline{C} \right]$$

where

$$egin{aligned} & heta'(oldsymbol{x},z, au) \ &= \ \overline{H(q_{
m c})\,\widetilde{ heta}} \ & w'(oldsymbol{x},z, au) \ &= \ \overline{H(q_{
m c})\,\widetilde{w}} \end{aligned}$$

Coupled micro-macro dynamics on convective scales

$$u_{\tau} + \nabla_{x} \pi = 0$$

$$\overline{w}_{\tau} + \pi_{z} = \overline{\theta}$$

$$\overline{\theta}_{\tau} + (1 - \sigma) \overline{w} N^{2} = w' N^{2} - \overline{C}$$

$$\rho_{0} \nabla_{x} \cdot u + (\rho_{0} \overline{w})_{z} = 0$$

$$w'_{\tau} = \theta'$$

$$\theta'_{\tau} + \sigma w' N^{2} = \sigma (1 - \sigma) \overline{w} N^{2} + \sigma \overline{C}.$$

where

 $\sigma(\boldsymbol{x},z), \overline{C}(\boldsymbol{x},z), N(z)$ are prescribed

Coupled micro-macro dynamics on convective scales (with mean advection)

$$D_{\tau} \boldsymbol{u} + \nabla_{\boldsymbol{x}} \boldsymbol{\pi} = 0$$

$$D_{\tau} \overline{\boldsymbol{w}} + \pi_{z} = \overline{\theta}$$

$$D_{\tau} \overline{\theta} + (1 - \boldsymbol{\sigma}) \overline{\boldsymbol{w}} N^{2} = \boldsymbol{w'} N^{2} - \overline{C}$$

$$\rho_{0} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{u} + (\rho_{0} \overline{\boldsymbol{w}})_{z} = 0$$

$$D_{\tau} \boldsymbol{w'} = \theta'$$

$$D_{\tau} \theta' + \sigma \boldsymbol{w'} N^{2} = \sigma (1 - \sigma) \overline{\boldsymbol{w}} N^{2} + \sigma \overline{C}$$

where

 $D_{\tau} = \partial_{\tau} + \boldsymbol{u}^{\infty} \cdot \nabla_{\boldsymbol{x}}$ and $\sigma(\boldsymbol{x}, z), \overline{C}(\boldsymbol{x}, z), N(z)$ are prescribed

Multiscale Modelling Framework

Scalings and Expansion Scheme

Exact Closure for the Small Scales

Results

Nonlinearity for Weak Undersaturation

Conclusions

Clouds may narrow the spectrum of lee waves

Lee waves over sin(x) + sin(2x)-topography

Vertical velocity at t = 20.0, U=0.5

Dry flow over a hill, w

Moist flow over a hill, q_c

Moist flow over a hill, \boldsymbol{w}

Multiscale Modelling Framework

Scalings and Expansion Scheme

Exact Closure for the Small Scales

Results

Nonlinearity for Weak Undersaturation

Conclusions

Convective scale

$$\boldsymbol{u}_{\tau} + \nabla_{\boldsymbol{x}} \boldsymbol{\pi} = 0$$
$$\overline{\boldsymbol{w}}_{\tau} + \boldsymbol{\pi}_{z} = \overline{\boldsymbol{\theta}}$$
$$\overline{\boldsymbol{\theta}}_{\tau} + \overline{\boldsymbol{w}} N^{2} = \frac{\Gamma L^{**}}{p_{0}} \overline{\boldsymbol{C}}$$
$$\rho_{0} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{u} + (\rho_{0} \overline{\boldsymbol{w}})_{z} = 0$$

Cloud column scale

$$(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}) \, \widetilde{w} = \widetilde{\theta}$$
$$\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}) \, \theta + \widetilde{w} N^2 = \frac{\Gamma L^{**}}{p_0} \widetilde{\boldsymbol{C}}$$

Moisture coupling

$$\boldsymbol{C} = H(q_{\rm c}) \boldsymbol{C}_{\rm d} + [1 - H(q_{\rm c})] \boldsymbol{C}_{\rm ev}$$

Analytical microscale closure I

$$C_{ev} = -C_{ev}^{**} (q_{vs}(z) - q_v) q_r^{1/2}$$

$$\overline{[1 - H(q_c)]} C_{ev} = -\overline{C}(\boldsymbol{x}, z)$$

$$C_{d} = -(\widetilde{w} + \overline{w}) \frac{dq_{vs}}{dz}$$

$$\overline{H(q_c)} C_{d} = -(\overline{H(q_c)} \widetilde{w} + \overline{H(q_c)} \overline{w}) \frac{dq_{vs}}{dz}$$

$$\overline{H(q_c)} C_{d} = -(w' + \sigma(\boldsymbol{x}, z) \overline{w}) \frac{dq_{vs}}{dz}$$

New averaged microscale variables

$$w'(\boldsymbol{x}, z, \tau) = \overline{H(q_{c}) \, \widetilde{w}}$$

 $\sigma(\boldsymbol{x}, z) = \overline{H(q_{c})}$

$$\boldsymbol{u}_{\tau} + \nabla_{\boldsymbol{x}} \boldsymbol{\pi} = 0$$
$$\overline{\boldsymbol{w}}_{\tau} + \boldsymbol{\pi}_{z} = \overline{\boldsymbol{\theta}}$$
$$\overline{\boldsymbol{\theta}}_{\tau} + \overline{\boldsymbol{w}} N^{2} = \frac{\Gamma L^{**}}{p_{0}} \overline{\boldsymbol{C}}$$
$$\rho_{0} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{u} + (\rho_{0} \overline{\boldsymbol{w}})_{z} = 0$$

Analytical microscale closure II

$$(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}) H(q_{c}) \neq 0$$
$$(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}) H(q_{c}) \widetilde{w} = ??$$
$$(\overline{H(q_{c})} \widetilde{w})_{\tau} = !!$$

Cloud column scale

$$\left(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) \widetilde{w} = \widetilde{\theta}$$

 $\left(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}\right) \theta + \widetilde{w} N^2 = \frac{\Gamma L^{**}}{p_0} \widetilde{\boldsymbol{C}}.$

$$\boldsymbol{C} = H(q_{\rm c}) \ \boldsymbol{C}_{\rm d} + [1 - H(q_{\rm c})] \ \boldsymbol{C}_{\rm ev}$$

New formulation for the saturation indicator function $H(q_c)$:

Total moisture conservation

$$(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{\eta}}) \left[H(q_{\rm c}) q_{\rm c}^{(1)} + (1 - H(q_{\rm c})) q_{\rm v}^{(1)} \right] + w^{(0)} \frac{dq_{\rm vs}^{(0)}}{dz} = 0$$

ζ: First-order vertical displacement with $(\partial_{\tau} + \boldsymbol{u} \cdot \nabla_{\eta}) \boldsymbol{\zeta} = w^{(0)}$

By choice of initial data:

$$H(q_{\rm c}) \equiv H(\boldsymbol{\zeta})$$
 and $\sigma \equiv \overline{H(\boldsymbol{\zeta})}$

 $\overline{H(q_c)}\,\widetilde{w}$ = area-integral of \widetilde{w} over saturated domain.

As in finite volumes with moving boundary:

$$\left(\overline{H(q_{\rm c})\,\widetilde{w}}\right)_{\tau} = \overline{H(q_{\rm c})\,\widetilde{\theta}} + \int\limits_{\partial A} \widetilde{w}\,v_n\,d\sigma$$

Observation for undersaturated regions

$$egin{aligned} &(\partial_{\tau}+oldsymbol{u}\cdot
abla_{oldsymbol{\eta}})\,\widetilde{w}\ =\ \widetilde{ heta}\ &(\partial_{\tau}+oldsymbol{u}\cdot
abla_{oldsymbol{\eta}})\,\widetilde{ heta}+\widetilde{w}N^2\ =\ -\overline{C_{\mathrm{d}}}(\underline{ au},oldsymbol{x},z) \end{aligned}$$

Suggestive assumption:

$$\widetilde{w}|_{\partial A} \equiv \widetilde{w}_{\mathrm{us}}(\tau, \boldsymbol{x}, z)$$

Coupled micro-macro dynamics on convective scales

$$u_{\tau} + \nabla_{x} \pi = 0$$

$$\overline{w}_{\tau} + \pi_{z} = \overline{\theta}$$

$$\overline{\theta}_{\tau} + (1 - \sigma) \overline{w} N^{2} = w' N^{2}$$

$$\rho_{0} \nabla_{x} \cdot u + (\rho_{0} \overline{w})_{z} = 0$$

$$w'_{\tau} = \theta' + \widetilde{w}_{us} \frac{\partial \sigma}{\partial \tau}$$

$$\theta'_{\tau} + \sigma w' N^{2} = \sigma (1 - \sigma) \overline{w} N^{2} + \widetilde{\theta}_{us} \frac{\partial \sigma}{\partial \tau}$$

$$\frac{\partial \sigma}{\partial \tau} = (\overline{w} + \widetilde{w}_{us}) \frac{\partial \sigma_{0}}{\partial \zeta} (\zeta, x, z)$$

 $\widetilde{w}_{\mathrm{us}}, \widetilde{\theta}_{\mathrm{us}}$ are particular solutions of

$$\widetilde{w}_{ au} \ = \ \widetilde{ heta} \ \widetilde{ heta}_{ au} + \widetilde{w} N^2 \ = \ -oldsymbol{\sigma} \ w' rac{dq_{
m vs}}{dz}$$

Multiscale Modelling Framework

Scalings and Expansion Scheme

Exact Closure for the Small Scales

Results

Nonlinearity for Weak Undersaturation

Conclusions