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Overview of the 2 tutorials

Today:
» Scientific and numerical aspects in the design
process

* Review different forms of the equations and
variables

« Computational meshes, staggering options, the
characteristics and accuracy of numerical
discretizations

« Suitable time-stepping schemes and vertical
coordinates



Overview of the 2 tutorials

Tomorrow:

* Physical and computational challenges:
conservation, positive tracer advection, stability

« Computational aspects, computer architectures,
scalability, efficiency, how it determines science
decisions

* Hidden features in the design process:
subgrid-scale diffusive and filtering processes

« Evaluation techniques and selected dynamical
core test cases



The pursuit of the ‘perfect’ dynamical
core: Design aspects

Our scientific and numerical wish list:
* Accurate

« Stable

« Simple

« Computationally efficient

* Obeys physical constraints: conservation
properties (which ones?), positive-definite tracer
advection

* Truthful representation of the subgrid-scale



What is a dynamical core?

Fluid dynamics component of every weather or
climate model

Based on equations of motion, they may be
approximated

Describes the resolved adiabatic motions on a
computational grid

Contains filters and diffusion processes,
mostly for numerical purposes, physical
justification may be weak

Determines the choice of the prognostic
(forecast) variables



Components of an Atmospheric General
Circulation Model (AGCM)
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Modular design of NASA's General
Circulation Model GEOS-5
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The dynamics and
physics are coupled.

Coupling is a research
topic by itself (its
complexities are often
neglected)



Does the dynamical core matter?

* Provocative: the fluid dynamics problem is
solved, physics parameterizations matter most

* Let's take a look at 9 dynamical cores that
participated in an intercomparison project during
the 2008 NCAR Summer Colloquium




Mountain-triggered Rossby waves
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Mountain-triggered Rossby waves
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The choice of the equations of motion

* The governing equations are the 3D Euler
equations, but we never use them in their
original form

 We make simplifications (e.g. the Earth is a
perfect sphere) and use scaling arguments to
simplify the dynamical core design

* The Euler equations contain 6 equations:
— Three momentum equations
— Continuity equation (mass conservation)

— Thermodynamic equation
— |ldeal gas las

* 6 equations, 6 unknowns: u,v,w,T,p,p



Choice of the Equations:
Common design decisions

Deep or shallow atmosphere:
Is the distance ‘r’ to the center of the Earth
represented as the constant radius ‘a’?

Hydrostatic or non-hydrostatic.
Is forecast equation for w maintained?

Filtered equations? Anelastic, Boussinesq,
pseudo-incompressible, unified

Which prognostic variables are suitable?

Which coordinate system is suitable:
— Spherical coordinates
— Local coordinates, Cartesian coordinates



Non-hydrostatic equations of motion
(deep atmosphere, spherical coordinates)
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Quasi-hydrostatic equations of motion
(deep atmosphere, spherical coordinates)
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Shallow atmosphere approximation

Approximate distance r = a+z to the center of the
Earth with the constant mean radius of the Earth a

Replace r by a and d/0r by d/0z, where z is height
above mean sea level

Omit all the metric terms not involving tan ¢

Omit those Coriolis terms that vary as the cosine
of the latitude

Neglect all variations of the gravity g (constant)
Neglect the vertical component of the diffusion

All is necessary to guarantee energy and absolute
momentum conservation on a shallow Earth



Non-hydrostatic equations of motion
(shallow atmosphere)
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Non-hydrostatic equations of motion
(shallow atmosphere)
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Hydrostatic equations of motion (shallow
atmosphere): Primitive Equations
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Design choices

The hydrostatic shallow atmosphere equations
are called Primitive Equations (PE)

PE most popular choice in today’'s GCMs
Vertically propagating sound waves are removed

But note: acoustic modes can also be removed
by selecting filtered equation sets

Filtered equations are sometimes used for
special purposes like cloud models, meso-scale
models

Word of caution: filtered equations are not a
good choice for global GCMs



Filtered equations:
Getting rid of sound waves

Vertically propagating sound waves are a nuisance
in weather and climate models (not important)

They propagate at high speed and require small
time steps in numerical schemes (stability
constraints)

The hydrostatic approximation filters vertically
propagating sound waves

If non-hydrostatic equations need to be used, a
filtered equation set might be a choice (just be
careful and know the limitations: e.g. shallow flows,
static stability requirements)



Filtered equations: Boussinesq

* Boussinesq approximation: set the density to a
constant unless it is multiplied with the gravity
term

« Continuity equation becomes:
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ot

acos¢| A )

=0

)
%)

<

<Vey=0

* Flow is non-divergent
 Limited to shallow flows in the boundary layer



Filtered equations: Anelastic

Anelastic approximation: the density varies
according to a prescribed vertical profile p(z)

Continuity equation becomes:

% 1 [d(ﬁu)_l_&(ﬁvcosqﬁ)]_l_&(ﬁw):o
ot acos¢| A o) 0z

< Ve (p(z)v)=0

Justification from scale analysis: density
variations in the vertical direction are bigger than
horizontal variations

Problem: Specifying a generic profile is difficult,
sometimes p(z) assumes isentropic conditions
Ogura and Phillips (1962)



Filtered equations. Pseudo-incompressible

* Neglects the influence of perturbation p’ on p’

* The continuity equation includes the steady
reference fields 6(x,y,z) and p(x,y,z) that need to
obey the equation of state

Po

P = Dy

« Continuity equation becomes:

Ve(p6V)=0
* Less severe restriction, wider application range
* Not used in GCMs

Durran (JAS, 1989)



More design decisions:
The form of the equations

Lagrangian versus Eulerian form
Advective form versus flux form
Model variables

Vertical coordinate transformations



Lagrangian versus Eulerian framework

» Lagrangian form: The variations are observed
following a moving particle, requires the total
derivative, e.g. the continuity equation is:
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* Eulerian form: The variations are observed at a
fixed location and snapshot in time, requires
partial derivatives, e.g. the continuity equation is:
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Advective form versus the flux form

Consider a tracer advection equation for tracer q:

This is the so-called advective form

The flux form can be formed by incorporating the

continuity equation:
i(pq)

ot

+V°(pq17)=0

The flux form has great advantages concerning
mass conservation, especially in finite-volume
models



Mass conservation in flux form

The continuity equation in the Eulerian framework
IS also an equation in flux form

Jp
—+Ve
P (ov)=0

For simplicity, let us assume the equation is 1D:

ap
— + — 0
ot ¥ ox (pu)

The finite-difference discretization (numerical
scheme) for this PDE may be (n time index):

o -pl ]

Mass-conserving by design




Mass conservation in flux form

* Rewrite the equation with numerical fluxes F In
the x direction:
nel _ o A
Pi =P, _E
* The density variations at the next time step n+1
are determined by the balance of incoming and

outgoing fluxes at the grid interfaces with
indices 1+1/2, i-1/2

(F/L/z B Fiill/z)

» Picture this:  F._}, Fioy
assume u >0 |:> | >
| o) I
i-1/2 | i+1/2
< >




Choice of the model variables

We can choose (within limits) the model variables

Hydrostatic models lose the ability to forecast the
vertical velocity (becomes diagnostic)

The choices are also determined by the numerical
schemes (e.g. vertical coordinate system)

A common setisu, v, T, p,,p

Another common setis ¢, 6, T, p,, p where (, 0
are the relative vorticity and horizontal divergence

The thermodynamic variable is sometimes the
potential temperature O instead of T

Advantage: built-in conservation i(po) +V o (p6i) =0
ot




Choice of the vertical coordinate

* First decision to make:

Orography-intersecting model levels or
orography-following coordinate?

Most common choice: orography following, e.g.

 Pressure-based, so-called o-coordiante:

0 = (P-Py)/(Ps-Py)
with p, (p at the model top), p. is surface pressure

* Hybrid o-p coordinate called n-coordinate:
N=Ap,+Bps
with prescribed coefficients A and B (dependent

on vertical position), constant p,=1000 hPa, used
iIn many GCMs



Hybrid (n) vertical coordinates
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Floating Lagrangian vertical coordinate

e 2D transport calculations, let layers expand
« Layers are material surfaces, no vertical advection
* Periodic re-mapping of the Lagrangian layers

onto reference grid
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X-Z crosssection of the atmosphere



Choice of the vertical coordinate

Other choices might be:
— Height based coordinates
— Floating Lagrangian coordinate (Lin (2004))
— Isentropic based (hybrid 6-p)
— Shaved cells, step coordinate

* Requirement: the new vertical coordinate needs
to be monotonic

 Whatever we choose it requires a coordinate
transformation and modifies the equations of

motion, e.g. see the example on the next slide for
a pressure-based coordinate s=p



Vertical coordinate transformations

Pressure gradient along ‘s’:

).~ aelan) )
ox/, odz\dx/, \odx/,

Coordinate s

Example: (a_p) - %2 a_p(%)
Fors = p: ? P

e erl) A5 AR,




Vertical coordinate transformations

New vertical coordinates introduce new vertical
velocities

Example: in a pressure-based system the
vertical velocity becomes

dp .
) =—=
a7
In a hybrid o-p (n) system the vertical velocity
becomes . dn
77 _——
dt

The new vertical velocity enters the equations of

motion, e.g. D()=&()+ " d()+ZM+ J( )

Dt gt acos¢p A a JP

on

n—r_




The pursuit of the ‘perfect’ model grid

* How to distribute grid points over the sphere: yet
to be solved

* Possible design criteria:
— Highly uniform coverage
— Orthogonal
— Structured versus unstructured
— Adaptive mesh



Platonic solids - Regular grid structures

« Platonic solids can be enclosed in a sphere
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Latitude-Longitude Grid

* Popular choice in the
past

* Meridians converge:
requires polar filters
or/and
small time steps

* Orthogonal




Adaptive Mesh Refinements (AMR)

AMR on a cubed-sphere AMR on a latitude-
mesh longitude grid

St-Cyr, Jablonowski, et.al (MWR, 2008)
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Other non-uniform (nested) grids
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Why do we might want AMR grids in
GCMs?

GEOS-5 Modeled Clouds at
7 km Global Resolution for
Aug 17, 2009 21z through Aug 26, 2009 21z

NASA/GSFC:

Dr. Bill Putman

Dr. Max Suarez
Greg Shirah




The pursuit of the ‘perfect’ positions of
variables in the discrete system

* Having decided on the basic distribution of grid
points, a choice has to be made as to how to
arrange the different prognostic variables on the
grid

» Most obvious choice of representing all variables
at the same point has disadvantages

* There are many choices, called:
A, B, C, D, E, ZorZM grid (the first five are
based on a classification by Akio Arakawa
(UCLA))



Example: Grid staggerings

Many choices how to place scalars and vector
winds in the computational grid

Examples are

) C grid
A grid B grid
u,v u,v \:
T,p,u,v Tp Tp
o o UC o
u,v u,v v

Staggerings determine properties of the numerical
schemes: dispersion and diffusion properties

Additional staggering options in the vertical



Vertical grid staggerings: Lorenz

Level Interface index
index
]  dssssssssssssssssEsssssssEEEEEEsEEEEEEEEEEEEEEEEEEs
2
2 lllllllllllllllllllllllllllllllllllllllllllllllllll
.
( ]
k-1 — M,P (interface)
| T e L {7 U,V,e (fuII |eve|)
[ )
( ]
2 Good conservation
/\ properties.

But contains a
plev _
/\ computational

lev + 1
p mode




Vertical grid staggerings: Charney-Phillips
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The pursuit of the ‘perfect’ numerical
scheme

We want: high order of accuracy, but
computationally cheap method

We need: discretizations in space and time
Many space discretization philosophies:

— Finite difference methods (FD)

— Finite volume methods (FV)

— Finite (spectral) element methods (FE, SE)
— Spectral methods

Sometimes different spatial methods are used in
the horizontal and vertical directions



The pursuit of the ‘perfect’ numerical
scheme

Phase errors and damping should be small
(often a compromise)

Explicit scheme is ‘easy’ to program, but it will
only be conditionally stable and so the choice of
time step is limited

Implicit schemes are absolutely stable; however
at every time step a system of simultaneous
equations has to be solved

More than two time levels: additional
computational modes and possibly separation of
the solution at odd and even time steps. Higher
storage (memory) requirements.



Discretizations in time:
explicit versus implicit

The earlier example used a so-called explicit time
stepping scheme with two time levels n+1 and n

n+ n At n n
P; = Pi — E(Fin/z - Fi-1/2)
How about rewriting this equation as an implicit
SCheme n+ n At n+ n+
P; = Pi — E(Fin/lz - Fi—1/12)

It uses the (unknown) fluxes at the future time
step, requires sophisticated numerical methods to
solve (more expensive, e.g. iterative methods)

Big advantage: increased numerical stabillity,
allows longer time steps



Multi-level time discretizations

We can increase the order of accuracy of a time

stepping scheme by using multiple time levels,
e.g. three time levels n+1, n, n-1

Picture an equation like (describes Rayleigh friction)




Multi-level time discretizations

Leapfrog is a popular choice in today’'s GCMs

Uses 3 time levels and computes the forcing (here
friction) at the center time with index n, forcing is
applied over a time span of 2At

u" = u"" = 2Attu"

2nd_order accurate

Unfortunately, the Leapfrog method can be
numerically unstable (has a computational mode,
separates odd and even time steps)

But it then can be stabilized by applying a time filter
that mimics diffusion in time (Asselin filter)



Time-splitting

Sometimes is equations are separated into two
parts (e.g. horizontal and vertical part) and solved
independently (in a time-split fashion)

Example: Consider the tracer conservation equation

aq
—q+v°Vq=O

ot
Can be splitlike ¢ =¢"" +2At(V,*V,q)"

(using Leapfrog) 3a\"
g =q +2At (w (y—q)
<

Allows to use different techniques for the horizontal
(h) and vertical advection, introduces a splitting error



The flavor of FV spatial discretizations

* Finite volume discretization are based on an
integrated version of the equations of motion

* Consider 2D example with h (=height of shallow
water system), this is a conservation law:
M ¥ o (hv)=0
ot
« Conservation equation can be integrated over
spatial domain Q with “volume™ (here an area) A,

and time t

tn+1 a
— dQ dt dt dS) =
/&l /sz (gih) vt + / / =0



The flavor of FV spatial discretizations

* Integration over spatial domain Q with area/volume
A, and time t, can be rearranged:

/tt_ (gth)dt—l—A—Q/V Fdo=0

« QOverbar denotes the spatial mean, F denotes time
averaged fluxed across the interface of a volume

* Apply Gauss’ divergence theorem to second term:

oy At [ =
h) dt + F.-dn=0
~/tn (at ) AQ 852

Introduces line integral, 7z is the line segment vector normal to the boundary



The flavor of FV spatial discretizations

Leads to discretized forecast equation:

Where /. denotes the length of a line segment,
n. 1s the unit vector normal to the boundary ‘i

The future time step is determined by the sum of all
fluxes across the boundaries of a finite volume

Order of accuracy determined by the fluxes 13 rely
on subgrid-scale representations (constant, linear,
quadratic, cubic) of transported variable (here h)

ldea: express subgrid structure of h with polynomials



The flavor of spectral transform models

Spectral transform methods on latitude-longitude
grids have been very popular in the past

Some GCM (ECHAM, ECMWF’s weather model
IFS) still use it

|dea:

— Use a model formulation with vorticity and divergence as
prognostic variables

— Use Fourier and Legendre transformation to transform/
represent the flow in spectral space

— Solve the linear parts of the Egs. in spectral space (exact)
— Solve the nonlinear parts in grid point space

Highly accurate, but suffers from Gibb’s ringing, non-
local discretization



The flavor of spectral transform models

Spectral representations of variable q:

Triangular wave number M  N(m)

range m, n q(A@,t) = E E q, (DY, (A,@)
n
A m=-M n=‘m‘

Spherical harmonics

Y" (L) =P (singp)exp(iml)

7 R
> m associated Legendre Fourier modes
functions
Structure of the global basis functions:
/ N
£ \, ‘,,./ 2
J | / \ | \‘
| | |
. ‘ 7\ f
\ / /
‘ \\\ / \ /
(m=0, n=6) (m=3, n=6.)~ e (m=6, n=6) = <~



The flavor of spectral transform models

Latitude-
Longitude
grid

............

* Triangular truncation T... with N(m)=M is unique,

provides uniform spatial resolution over the entire
surface of the sphere, e.g. M=42, 85, 170

* Eliminates pole problem in latitude-longitude grids
 Allows reduced grids with fewer points towards poles



Summary

Today we reviewed:

» Scientific and numerical aspects in the design
process

» Different forms of the equations and variables
« Computational meshes, staggering options

« Characteristics (and accuracy) of numerical
discretizations

« Suitable time-stepping schemes and vertical
coordinates



