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Motivation (I): Data  

Inverse problem: data-based identification of model parameters 

Challenges: 

VERY LARGE (~Tb size) , non-Markovian (memory), 
 non-stationary (trends), multidimensional, ext. influence 

time series of vectors 
(continous, finite dim.) 

time series of regimes 
(discrete, finite dim.) 

anticyclonic 

other 

cyclonic 

time series of functions 
(continuous, infin. dim.) 



Motivation (II): Models  

Inverse problem: data-based identification of model parameters 

Challenges:  

existence and uniqueness, robustness, conditioning 

Models 

Dynamical 
(f.e., deterministic, stochastic, ...)  

Geometrical 
(f.e, essential manifolds, ...) 

Mixed 
(f.e., MTV, PIP/POP, ...) 



Plan for Today (stationary case) 

•  “eagle eye“ perspective on stochastic processes from the viewpoint of 

   deterministic dynamical systems 

•   geometric model inference: EOF/SSA 

•   multivariate dynamical model inference: VARX 

•  handling the ill-posed problem 

•   motivation for tomorrow : examples where stationarity assumption 

   does not work 
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Classification of Stochastic Process 

Stochastic  Processes 

Discrete State Space, 
Discrete Time: 
Markov Chain 

Discrete State Space, 
Continuous Time: 
Markov Process 

Continuous State Space, 
Discrete Time: 
Autoregressive Process 

Continuous State Space, 
Continuous Time: 
Stochastic Differential Equation 



Realizations of the process:                              

Markov-Property: 

 Example:    

Discrete Markov Process… 
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Discrete Markov Process… 

Realizations of the process:                             

Markov-Property: 

 State Probabilities: 

This Equation is Deterministic  
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Continuous Markov Process… 

infenitisimal  
generator                             



Continuous Markov Process… 

infenitisimal  
generator                             

This Equation is Deterministic: ODE  



Continuous State Space 

Stochastic  Processes 

Discrete State Space, 
Discrete Time: 
Markov Chain 

Discrete State Space, 
Continuous Time: 
Markov Process 

Continuous State Space, 
Discrete Time: 
AR(1) 

Continuous State Space, 
Continuous Time: 
Stochastic Differential Equation 



Deterministic Markov Process in R 

Realizations of the process:                             

 Process:                                              Flow operator: 

      Properties: 
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Deterministic Markov Process in R 

Realizations of the process: 

Liouville Theorem: let             be the flow (              ), given as  a solution   of 

If                is defined as       

then  the following equation is fulfilled: 
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      Properties:   



Deterministic Markov Process in R 

Realizations of the process: 

Liouville Theorem: let             be the flow (              ), given as  a solution   of 

If                is defined as       

then  the following equation is fulfilled: 

 Process:                                              Flow operator: 

      Properties:   

Excercise 1: think of the proof (hint: use the partial integration ), think  
about the Hilbert space H and appropriate boundary conditions  



Realizations of the process:                             

 Process: 

This Equation is Deterministic  

(follows from 
 Ito‘s lemma) 

Stochastic Markov Process in R 



Infenitisimal Generator:                             

Markov Process Dynamics:  

This Equation is Deterministic: PDE  

Stochastic Markov Process in R 



Numerics of Stochastic Processes 

Discrete State Space, 
Discrete Time: 
Markov Chain 

Discrete State Space, 
Continuous Time: 
Markov Process 

Continuous State Space, 
Discrete Time: 
Autoregressive Process 

Continuous State Space, 
Continuous Time: 
Stochastic Differential Equation 



Numerics of Stochastic Processes 

Deterministic Numerics of ODEs and PDEs! 

Discrete State Space, 
Discrete Time: 
Markov Chain 

Discrete State Space, 
Continuous Time: 
Markov Process 

Continuous State Space, 
Discrete Time: 
Autoregressive Process 

Continuous State Space, 
Continuous Time: 
Stochastic Differential Equation 



Conclusions 
1) Numerical Methods from ODEs and (multidimensional) PDEs like 
     Runge-Kutta-Methods, FEM and (adaptive) Rothe particle methods  
     are applicable to stochastic processes 

2) Monte-Carlo-Sampling of resulting p.d.f.‘s 

 Stochastic Numerics = ODE/PDE numerics + Rand. Numb. Generator 

3) Concepts from the Theory of Dynamical Systems are Applicable (Whitney 
    and Takens theorems, model reduction by identification of attractors) 

H./Weiser, JCC 24(15), 2003  
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EOF/PCA/SSA/...: Geometrical methods 

For   a  given   time   series           we   look  for  a    

minimum  of the    reconstruction error 

µ 

(X-µ) 

TT (X-µ) T 

T 
x t 

t 

t 



EOF/PCA/SSA/...: Geometrical methods 

For   a  given   time   series           we   look  for  a    

minimum  of the    reconstruction error 

µ 

(X-µ) 

TT (X-µ) T 

T 
x t 

t 

t 



EOF/PCA/SSA/...: Geometrical methods 

For   a  given   time   series           we   look  for  a    

minimum  of the    reconstruction error 

µ 

(X-µ) 

TT (X-µ) T 

T 
x t 

t 

t 



EOF/PCA/SSA/...: Geometrical methods 

For   a  given   time   series           we   look  for  a    

minimum  of the    reconstruction error 

µ 

(X-µ) 

TT (X-µ) T 

T 
x t 

t 

t 

Excercise 2: think of the proof (hint: use the Lagrange multipliers ), think  
of the estimate of projection error 
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Predicting Stochastic Processes 

Deterministic Numerics of ODEs and PDEs! 

Discrete State Space, 
Discrete Time: 
Markov Chain 

Discrete State Space, 
Continuous Time: 
Markov Process 

Continuous State Space, 
Discrete Time: 
Autoregressive Process 

Continuous State Space, 
Continuous Time: 
Stochastic Differential Equation 



Predicting the Dynamics: VAR(p)  



Estimating VAR(p) : least squares 
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Estimating VAR(p) : least squares 



Estimating VAR(p) : least squares 

Excercise 3: think of the proof (hint: use the 
 matrix function derivatives from the Matrix Coockbook: 
 www2.imm.dtu.dk/pubdb/views/edoc_download.../imm3274.pdf)) 
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Estimating VAR(p) : regularization 

A.  N. Tikhonov 
(http://en.wikipedia.org)  
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Lorenz96: “order zero“ atmosph. model  
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• Lorenz, Proc. Of. Sem. On Predict.,  1996  
• Majda/Timoffev/V.-Eijnden, PNAS, 1999  
• Orell, JAS, 2003 
• Wilks, Quart.J.Royal Met.Soc., 2005 
• Crommelin/V.-Eijnden, Journal of Atmos. Sci., 2008 

VARX (standard stationary stochastic Model)  

stationary model 
(time-independent parameters) 



Lorenz96: “order zero“ atmosph. model  

??? 

+                    = 
non-stationary model 

(time-dependent parameters) 
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Lorenz96: “order zero“ atmosph. model  

??? 

+                    = 
non-stationary model 

(time-dependent parameters) 

Predictors of Lorenz‘96-Model 

VARX (standard stationary stochastic Model)  

• Lorenz, Proc. Of. Sem. On Predict.,  1996  
• Orell, JAS, 2003 
• Wilks, Quart.J.Royal Met.Soc., 2005 
• Crommelin/V.-Eijnden, Journal of Atmos. Sci., 2008 
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Tomorrow: Non-stationarity in TSA 

Direct problem: 

Inverse problem: 

Example:  


