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Goals of Epidemic Modeling

To predict disease spread or outbreaks in large population structures.

Predict the occurrence of natural or unnatural disease outbreaks in the
presence of uncertainties in population structure and biological
parameters.

Develop computational and analysis tools to predict (probabilistically)
disease spread, with the goal of helping to aid decision making for
disease control.
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Types of Epidemic Models
Simple to Complex
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Outline

Basic epidemic modeling
single population
single strain

Multistrain modeling
strain organization
uncovering asymptotmatics
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Single strain model
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D. Earn, et al. Science, 2000

Single strain data set
Measles in UK and US
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Modeling Simple Epidemics: Assumptions

The population:

« Assume the population is large and well mixed.
« Variables and parameters:

S:  Susceptibles
E: Exposed

I: Infectives
R:

Recovered

o~!: mean latent exposed period
o ~!: mean infectious period

u: birth and death rate

B: contact rate (for S & I)

 Normalize the population:S+E+ |+ R =1
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The standard SEIR model
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N:(!)  Noise terms

Naval Research Laboratory



Steady State Solution for Constant Contact Between
People

Reproductive rate of infection
R, = p B

~ — (Contact rate*infectious period)

G+U O

Number of additional infections one infective
will generate

R,<1 : stable disease-free steady state (/=0)
Ry,>1 : stable endemic steady state
No complex behavior
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std=0.01 . std =0.08mm

Adding Noise
Generates
Complex Dynamics

 Time series ime ime
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log(I)

Lyapunov exponents
Test for Chaotic Dynamics

* Red: std =0.01 (noisy)
e Blue: std = 0.05 (chaotic)
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Conditional Prediction of Large Outbreaks
in Stochastic Outbreaks

std = 0.03

5- | Infective Fraction as a function of Time .
Predict here

Monitor here
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Chaotic Saddle in Bi-stable Epidemic

ind 1 sadd]
Crosses here o berind 2 nnde

o petiod 3 node
e period 3 saddle

Two attractors: S and L
S is small 2 year outbreak
L is large 3 year outbreak

—12+

White is basin of S
Red is basin of L

=16
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* Noise uses the topological structure to induce “chaos”
* Noise induces single attractor by mixing two deterministic outbreaks
* Now we want to provide numerical evidence that this is the case.
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Tool to detect transport across basins
Use a Galerkin approximation of the Stochastic
Frobenius-Perron Operator to detect the flux across
basin boundaries and predict the most probable
regions of transport created by noise.

Phase space

S

Galerkin matrix
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Transport Operator

Add noise using a random variable h (mean=0 and
standard deviation o)

F:M>M,x = F(x)+n
Frobenius-Perron operator — acting on a probability density

function r:
| p(x)ydx = [P [p(x)] dx

F (M)

Stochastic Frobenius-Perron operator acting on a probability
density function r (after differentiation):

PoIp(0)]= | M F QNP

M
Stochastic kernal describing the noise
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Transport Matrix

« Stochastic Frobenius-Perron operator
lx-F (p)II>

1
Py [p(x)] = [ 2 p(y) dy
A2 s’
Y \ Can use any

noise distribution!

« Galerkin approximation

Ai,j: (Pr[o;], (Pj) = IPF [9,(x)] (Pj(x) dx
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Probability Distribution of Outbreaks

Small Noise in Population Large Noise in Population

STD=0.001000

STD=0.030000

log(S)

Lora Billings, Erik M. Bollt, and Ira B. Schwartz, Phase space transport of stochastic chaos in population
dynamics of virus spread,PHYS REV LETT 88 (23): art. no. 234101 ]
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PDF Flux for epidemic model
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Stochastic Prediction and Control

5- | Infective Fraction as a function of Time .
Predict here

Monitor here
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Stochastic Prediction and Control of Large Outbreaks

PDF Flux Location, STD=0.03 x 107
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Color Bar: Probability a large outbreak occurs next given small amplitude
infectives observed
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Controlling size of epidemics
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l. B. Schwartz, L. Billings, and E.M. Bollt, Epidemic outbreak suppression using stochastic prediction and
control, Phys. Rev. E., 2005
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Multistrain Modeling
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Multistrain Disease

Multistrain diseases are those with more than one co-
circulating strain or serotype
— Includes influenza, malaria, dengue

When multiple infections with different strains occuir,
can have antibody dependent enhancement (ADE)

ADE hypothesis:

— Virus forms complexes with pre-existing antibodies and
infects more cells

— Viral load is higher

ADE has been observed in vitro for HIV, Ebola,
coronaviruses, and certain bacteria
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Antibody-dependent enhancement

Primary infection is often asymptomatic

Patients with secondary infections (recovered
from one strain, later catch a second strain)
are at increased risk for DHF and
hospitalization

ADE hypothesis:

— Virus forms complexes with pre-existing
antibodies and infects more cells

— Viral load is higher
— Secondary infectives are more contagious

Goal: Predict asymptomatic individuals
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Epidemiological Data (Thailand)

Outbreaks of the 4 serotypes can occur asynchronously
(Nisalak, et.al (2003) Am. J. Trop. Med. Hyg.)
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Multistrain model with ADE
2 Serotypes

susceptible to
S all serotypes

¥

| A primary infectious

1

oo

R, R, primary recovered
'

v

L, secondary infectious

9

antibody dependent 7
enhancement (ADE) 1.2

N

R recovered

(Schwartz et al., Phys Rev E 72: 066201, 2005)
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Multistrain model, » serotypes

as _ - B(t)SZ (lk + (PZ I, k} susceptible to all » serotypes
dt ik
Tk B(t)S[[ +(PZ I, Aj ol, —ul, primary infectious, serotype &
J*k
dR, _ =], —B()R, Z[[}. +(PZ ]l,j] —UR,  primary recovered, serotype k&
J#k I#j
=B(O)R,| I, + 7 |=o7. —uy. ~ secondary infectious, infected with
=P [ (P; ] ik g serotype j then k ( jzk)
ADE factor: ¢>1
B(t) =B, constant contact rate | Birth rate: p=0.02 years™

Recovery rate: =100 years-!
seasonal forcing Contact rate: ,=400 years-"
Forcing amplitude: A=0.05

B()=P,(1+Acos2mt)
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Susceptibles (Extrema)

0.1

No seasonal forcing:
Bifurcation diagram-n=4
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Maximum Lyapunov Exponent

Close up of transition to chaos (

Lyapunov exponents
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Bifurcation Diagram with Seasonality in Contact |
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Larger ADE: Desynchronization

o 0=1.74, B;=200
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Measuring phase desynchronization

Goal: measure phase differences with respect to a
reference infective

Let Y(¢) be the reference infective and Z(¢) another infective.

{t,} = the sequence of times for local maxima of ¥(¥),
{t,} = the sequence of times for local maxima of Z(z).

For 1 et t.,}, the phase of Z relative to Y in the interval is

‘PZY(rm):ZnM . L

tk+1 - tk T tk Th tk+1
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Phase differences
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Phase differences (cont.)

frequency

nonepn ]l
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phase difference

Naval Research Laboratory

primary and secondary
infectives with same
strain

primary and secondary
infectives with different
strains



Detecting Asymptomatics using Dimension Reduction

Center manifold analysis

* Consider the system gy
— A (xy.)

b _ By +eg(x,y,¢)
dt

% _o
where dt
— the eigenvalues of A have zero real parts
— the eigenvalues of B have negative real parts

e Then for ¢ sufficiently small, there exists an
invariant manifold

y = h(x,¢)
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Center manifold equations

Shift to new set of variables X with unforced steady

state at origin

Combine secondary infectives currently infected with
strain k -
L, = Z / ik

. | ik . .
System rapidly collapses onto lower dimensional

surface

oll,-Z,]1=B|S-D R

i#k

G[(n_l)[_j,k —Z 1= B|:(”_1)1_€j _ZE/«

:|(ik +0Z,)

i#k

:|(ik +0Z,;)

*(Shaw et al., J. Math Bio. In press, nlin.CD/0607022)
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Dynamics on center manifold

* From center manifold equations, we can
show that

L) = (n=DI; (1)

(approximately... under certain conditions...)

* Explains why primary and secondary
infectives currently infected with strain &
are synchronized
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Prediction asymptomatics using center manifold

equations

Patients hospitalized for
dengue generally have a
secondary infection

Z,, the sum of secondary
infectives that currently have
strain &, might be estimated
from serology measurements
of patients

If susceptibles, recovereds,
and disease parameters are
known, primary infectives may
be estimated from CM
equations

I, (x104)

—— simulation
—— prediction

0 5I 1IIII 1I5 ZIIII 25
time (years)
¢=2.0, no seasonal
forcing, =400
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Coupled Population Models

Built model to include

Mass coupling - instantaneous mixing between infectives and susceptibles
Migration of infectives and susceptibles

Example of Migration in Population

Epidemic Model of Coupled Patches

BikSjli
Kosovo
Refugee Crisis Mass Action
BkiSkly

Nkl Migration or Transport

May 25

Figure 4. Popula Bon migration and change in population distribution
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Coupled Population Models

Indigenous population disease driven by a smaller inserted force of infection

Patch 1 Patch 2 Parameters ;
Initial conditions : o = i
of T ] r,=05
5 = 01012 h i M, = 1000000
5, =0.078725 it
= | Hy =002
|'1 = [.00022309 | : |,L2 = 0n4
= 5 1677 e-005 ‘\,__ﬂ IE%1 = 1200
i B, = 1200
v =100
J 1o dnfected 1 X 17 infected 2
3 2
2 | } ‘ I ‘
1 0 |
ot 1
[ 20 40 B0 o 0 20 40 B0 ga

L. Liebovitch and I. B. Schwartz, Migration induced epidemics:Dynamics of flux-based multi-patch
models, Phys. Letts. A, 332, 256-267 (2004)
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Low Infectivity, Moderate Transmission
R=1, periodic, r; = 0, r, = 0.3, initial off: 0.1
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off-steady-state-initial-conditions
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Red dash: small patch, Blue patch: large patch

Additional epidemics
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Preliminary Conclusion

In low infectivity periodic case epidemics occur when
infectives are injected from the small patch

Due to the large patch being sufficiently disturbed
from its steady state values.

Potential policy implication
In low infectivity parameter regime, a recurring epidemic is
produced by a covert injection from one population into another.

The presence of a later epidemic may represent a rebound of the
system, rather than a second covert event.
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Conclusions Noise Driven Basic Model

Stochastic perturbations can induce new, emergent
dynamics in models

Chaotic-like behavior can be induced in models by
additive noise

The topology reveals the mechanism that facilitates
these dynamics

We can use the topology to our advantage and

control the system
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Conclusions on Multi-strain Modeling

A new model a multistrain disease with antibody-
dependent enhancement

At realistic ADE values, outbreaks of the strains
occur asynchronously (consistent with data)

Certain primary and secondary infectives remained
synchronized even in the chaotic regime

Prediction of asymptomatic primary infectives may
lead to more effective monitoring of outbreaks




Recent References

http://pages.csam.montclair.edu/~billings/

http://pages.physics.cornell.edu/~Ishaw/

« Schwartz et al., Phys Rev E 72: 066201, 2005. “Chaotic
desynchronization of multi-strain diseases”

« Cummings et al., PNAS 102: 15259, 2005. “Dynamic effects of
antibody dependent enhancement on the fitness of viruses”
« Shaw et al., J. Math. Bio, in press. “Using dimension reduction to

improve outbreak predictability of multistrain diseases”
nlin.CD/0607022

« Billings et al., J. Theor. Bio., in press “Instabilities in multi-serotype
disease models with antibody-dependent enhancement”

Naval Research Laboratory



