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4  Cancer Facts & Figures 2013

Estimated Number* of New Cancer Cases and Deaths by Sex, US, 2013
 Estimated New Cases Estimated Deaths

 Both Sexes Male Female Both Sexes Male Female

All Sites 1,660,290 854,790 805,500 580,350 306,920 273,430

Oral cavity & pharynx 41,380 29,620 11,760 7,890 5,500 2,390
 Tongue 13,590 9,900 3,690 2,070 1,380 690
 Mouth 11,400 6,730 4,670 1,800 1,080 720
 Pharynx 13,930 11,200 2,730 2,400 1,790 610
 Other oral cavity 2,460 1,790 670 1,640 1,260 380

Digestive system 290,200 160,750 129,450 144,570 82,700 61,870
 Esophagus 17,990 14,440 3,550 15,210 12,220 2,990
 Stomach 21,600 13,230 8,370 10,990 6,740 4,250
 Small intestine 8,810 4,670 4,140 1,170 610 560
 Colon†  102,480 50,090 52,390 50,830 26,300 24,530
 Rectum 40,340 23,590 16,750   
 Anus, anal canal, & anorectum 7,060 2,630 4,430 880 330 550
 Liver & intrahepatic bile duct 30,640 22,720 7,920 21,670 14,890 6,780
 Gallbladder & other biliary 10,310 4,740 5,570 3,230 1,260 1,970
 Pancreas 45,220 22,740 22,480 38,460 19,480 18,980
 Other digestive organs 5,750 1,900 3,850 2,130 870 1,260

Respiratory system 246,210 131,760 114,450 163,890 90,600 73,290
 Larynx 12,260 9,680 2,580 3,630 2,860 770
 Lung & bronchus 228,190 118,080 110,110 159,480 87,260 72,220
 Other respiratory organs 5,760 4,000 1,760 780 480 300

Bones & joints 3,010 1,680 1,330 1,440 810 630

Soft tissue (including heart) 11,410 6,290 5,120 4,390 2,500 1,890

Skin (excluding basal & squamous) 82,770 48,660 34,110 12,650 8,560 4,090
 Melanoma-skin 76,690 45,060 31,630 9,480 6,280 3,200
 Other nonepithelial skin 6,080 3,600 2,480 3,170 2,280 890

Breast 234,580 2,240 232,340 40,030 410 39,620

Genital system 339,810 248,080 91,730 58,480 30,400 28,080
 Uterine cervix 12,340  12,340 4,030  4,030
 Uterine corpus 49,560  49,560 8,190  8,190
 Ovary 22,240  22,240 14,030  14,030
 Vulva 4,700  4,700 990  990
 Vagina & other genital, female 2,890  2,890 840  840
 Prostate 238,590 238,590  29,720 29,720 
 Testis 7,920 7,920  370 370 
 Penis & other genital, male 1,570 1,570  310 310 

Urinary system 140,430 96,800 43,630 29,790 20,120 9,670
 Urinary bladder 72,570 54,610 17,960 15,210 10,820 4,390
 Kidney & renal pelvis 65,150 40,430 24,720 13,680 8,780 4,900
 Ureter & other urinary organs 2,710 1,760 950 900 520 380

Eye & orbit 2,800 1,490 1,310 320 120 200

Brain & other nervous system 23,130 12,770 10,360 14,080 7,930 6,150

Endocrine system 62,710 16,210 46,500 2,770 1,270 1,500
 Thyroid 60,220 14,910 45,310 1,850 810 1,040
 Other endocrine 2,490 1,300 1,190 920 460 460

Lymphoma 79,030 42,670 36,360 20,200 11,250 8,950
 Hodgkin lymphoma 9,290 5,070 4,220 1,180 660 520
 Non-Hodgkin lymphoma 69,740 37,600 32,140 19,020 10,590 8,430

Myeloma 22,350 12,440 9,910 10,710 6,070 4,640

Leukemia 48,610 27,880 20,730 23,720 13,660 10,060
 Acute lymphocytic leukemia 6,070 3,350 2,720 1,430 820 610
 Chronic lymphocytic leukemia 15,680 9,720 5,960 4,580 2,750 1,830
 Acute myeloid leukemia 14,590 7,820 6,770 10,370 5,930 4,440
 Chronic myeloid leukemia 5,920 3,420 2,500 610 340 270
 Other leukemia‡ 6,350 3,570 2,780 6,730 3,820 2,910

Other & unspecified primary sites‡ 31,860 15,450 16,410 45,420 25,020 20,400

*Rounded to the nearest 10; estimated new cases exclude basal cell and squamous cell skin cancers and in situ carcinomas except urinary bladder. About 64,640 carcinoma 
in situ of the female breast and 61,300 melanoma in situ will be newly diagnosed in 2013. † Estimated deaths for colon and rectal cancers are combined. ‡ More deaths 
than cases may reflect lack of specificity in recording underlying cause of death on death certificates and/or an undercount in the case estimate.

Source: Estimated new cases are based on cancer incidence rates from 49 states and the District of Columbia during 1995-2009 as reported by the North American 
Association of Central Cancer Registries (NAACCR), represesnting about 98% of the US population. Estimated deaths are based on US mortality data during 1995-2009, 
National Center for Health Statistics, Centers for Disease Control and Prevention.

©2013, American Cancer Society, Inc., Surveillance Research



Mechanisms of MDR 65Mechanisms of Multidrug Resistance in Cancer

Fig. 4.3. Pleotropic mechanisms of multidrug resistance. (1) Drug entry. Aside from pharmaceutical factors, the primary 
obstacle that prevents a drug from reaching the intracellular compartment is the plasma membrane. Therapeutic agents 
can react with many molecules resulting in a complex speciation profile. These species represented uniformly in this 
schema as a hexagonal (D) can enter cells by passive diffusion, endocytosis, or facilitated transport (uptake transporters). 
However, drug uptake can be significantly reduced by ATP-dependent drug efflux pumps (such as the ABC transporters 
ABCB1 and G2) and alterations in lipid metabolism (ceramide pathway) usually found in multidrug-resistant cells, which 
induce modifications in the biophysical properties of the lipid bilayer. (2) Drug metabolism. Once in the intracellular com-
partment, drug metabolism enzymes are the second line of cellular resistance. This process involves three phases. Phase 
I, or oxidative metabolism is mediated mainly by cytochrome P450 enzymes (CYPs) and epoxide hydrolases. Drug species 
are metabolized and converted into highly mutagenic aromatic metabolites (epoxide) that can be conjugated by phase II 
enzymes including GSTs, UGTs, SULTs, and NATS. These conjugated metabolites are then effluxed by transporters, which 
can be considered as phase III of drug metabolism. (3) Drug sequestration. Drug species can be trapped in subcellular 
organelles such as lysosomes and endosomes through ATP7A/B, ABCA3, or ABCB5 influx and then expelled from the cell. 
“Scavenger” metallothioneins ensnare metal ions and reactive oxygen species, leading to resistance to metal-based 
therapy and radiation. (4) Mechanisms activated after nuclear entry. Drug species (newly activated in the case of a 
prodrug-based strategy) that evade the above mechanisms of resistance enter the nucleus, where they encounter sev-
eral mechanisms of resistance. Drug species can be effluxed via vault proteins into the cytoplasm and be either seques-
tered in intracellular vesicles or effluxed from the cell via ATP-dependent transport. Some drug species remain in the 
nucleus and form damaging adducts with DNA. A complex network of interacting pathways is then initiated, leading 
either to cell-cycle arrest and DNA repair or if the damage is extensive, rather than repair itself, the cell will enter one of 
these states: (1) senescence, (2) apoptosis, or (3) necrosis. (5) Evasion of drug-induced apoptosis. Disruption of apoptotic 
pathways, the hallmark of cancer, is a major obstacle to the success of chemotherapy. Blockage of apoptosis can result 
through the inhibitory effect of glycosylceramide and a myriad of pathways. (6) Microenvironment. Hypoxia upregulates 
the expression of numerous MDR-linked genes such as ABC transporters, Bcl2 family genes, glutathione, MT, etc., mainly 
through the activation of the transcription factor HIF1. It also dramatically reduces the effectiveness of chemotherapeutic 
agents that require oxidation to become cytotoxic or enhances the cytotoxicity of other agents that must undergo reduc-
tion to form active cytotoxic species. The acidic extracellular compartment also has important effects on the success of 
chemotherapy. (7) Signal transduction pathways. Cancer cells have altered signal transduction pathways, governed via 

Gillet & Gottesman, 2010



Mathematics and Drug Resistance
Lavi, Gottesman, Levy. 	


The dynamics of drug resistance: A mathematical perspective.  	


Drug Resistance Updates 15, 2012, pp.90-97.	


!

• Overcoming multidrug resistance in cancer: 35 years after the 
discovery of ABCB1	



• Contribution of tumoral & host solute carriers to clinical drug response	


• Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and 

drug resistance	


• The tumor microenvironment is a dominant force in MDR	


• Targeting MDR in breast and lung cancer	


• Drug resistance in the mouse cancer clinic



Mathematics and Drug Resistance
★ Q1: What is the optimal protocol for drug scheduling in terms of dose 

and timing?	


!

• Goal: maximize the control of the tumor while minimizing toxicity.	


!

• Solution 1: Norton & Simon.  Based on kinetic resistance (phase of the 
cell cycle).  Deliver the most effective level of drug over as short time as 
possible.  Tumors given less time to grow between treatments are more 
likely to be eradicated.	


!

• Solution 2: Goldie & Coldman. Minimize the development of drug 
resistance based on the occurrence of mutations.  When more than one 
(non cross-resistance) drug is used – treatment should alternate 
between drugs as quickly as possible.



Mathematics and Drug Resistance
• Continuous infusion vs. short pulses (Gardner, Panetta, Smieja,...).  

Continuous infusion prevents tumor regrowth between treatment.  
Exposes more cells to the drug when they are in the sensitive phase of 
the cell cycle.	



• Problem: if the drug is applied too quickly, cells that are in an 
invulnerable part of their cell cycle may escape.  If the drug is applied 
too slowly, drug resistance may develop.	


!

★ Q2: When several drugs are available, how many drugs should be used? 
Should they be used in combination or sequentially?	


!

• Komarova & Wodarz.  Study the number of the drugs that should be 
used based on the size of the tumor.  Generally, conclude that 
combination therapy is less likely to yield an advantage over single-drug 
therapy. 



Mathematics and Drug Resistance
★ Q3: How effective is chemotherapy in eradicating a tumor?	


!

★ Q4: How is early detection and early therapy connected with the 
development of drug resistance?	


!

★ Q5: What is the probability that at the time of diagnosis resistant cancer 
cells are already present?	


!

★ Q6: How fast does the subpopulation of cells that develop drug resistance 
grow?	


!

★ Q7: What function best describe the “growth law” of cancer?



Modeling Drug Resistance

The simplest possible (mathematical) model…



An elementary approach to modeling 
drug resistance in cancer (Tomasetti + DL, 2010)

★ A deterministic approach: the single drug case.	


★ Assuming (i) an exponential cancer growth (ii) a wild-type cell differentiates 

into one wild-type and one mutant cell:  	


!
!
!
!

• N(t) = # of wild-type cancer cells	


• R(t) = # of mutated cells	


• L = birth rate	


• D = natural death rate;  H= drug induced death rate.	


• u = mutation rate	



★ Initial conditions: R(0)=0, N(0)=N0

MODELING DRUG RESISTANCE IN CANCER 907

for mathematical models and experimental findings on drug induced resistance, we
refer, e.g., to [16, 40].

In this paper we introduce a new and very simple model for absolute drug re-
sistance, which we assume is caused only by random genetic point mutations. For
this particular setup, most existing mathematical models are based on stochastic
methods. In contrast, our approach is based on a compartmental system of ODEs,
whose variables are the normal cancer cell population (that is susceptible to the
drug), and the population of cancer cells that are resistant to the drug due to point
mutations. The purpose of this paper is to show that elementary ODE-based tech-
niques can be successfully used to obtain comparable results to those that were
previously derived using the substantially more complex mathematical machinery
of stochastic methods.

The structure of the paper is as follows: In Section 2, we outline the basic
modeling assumptions and develop our mathematical model of drug resistance. We
start by considering the single drug case, and proceed with the more general case of
two or more drugs. The main results that we obtain from the model are presented
in Section 3. We show that the amount of resistance generated before the beginning
of the treatment, and present at some given time afterward, always depends on the
turnover rate, no matter how many drugs are used simultaneously. We also use
our model to compare the amount of resistance that originates before and after the
treatment starts. Section 4 focuses on studying the differences between our results
and other works in the field. Concluding remarks are provided in Section 5.

The main contribution of this work is in providing an elementary way to derive
comparable results to those that were previously obtained using substantially more
complex mathematical machinery.

2. An elementary model for drug resistance. In this section we develop a
simple mathematical model for absolute drug resistance in the presence of random
genetic point mutations. Our approach is to model the process using a linear system
of ODEs. In its essence, our model enjoys similarities with the well known model of
Goldie and Coldman [13] (see also [8]). The main difference between our approach
and [13], is that we do not make any use of probability theory. Instead, we rely on
a purely deterministic system. The advantages and disadvantages of using such an
approach will be examined below.

2.1. The single-drug case. We start with the case of resistance to a single drug.
Accordingly, we follow two populations: The first group is composed of wild-type
cancer cells (cells that are sensitive to the drug). We denote the number of wild-type
cancer cells at time t, by N(t). The second group are cells that have undergone a
mutation. These cells are resistant to the drug. The number of mutated cells at
time t is denoted by R(t).

We assume that cancer grows exponentially according to the Skipper–Schabel–
Wilcox model, also known as the log kill model (see [39]). We also assume that the
drug therapy starts at t∗. Our model can then be written as:

{

N ′(t) = (L−D)N(t),
R′(t) = (L−D)R(t) + uN(t).

t ≤ t∗. (1)908 CRISTIAN TOMASETTI AND DORON LEVY

{

N ′(t) = (L−D −H)N(t),
R′(t) = (L−D)R(t) + uN(t).

t > t∗. (2)

The system (1) describes the pre-treatment phase, while the system (2) follows the
dynamics after the treatment starts. The difference between both systems is the
introduction of H , the drug-induced death rate, a term that appears only after the
treatment starts, i.e., in (2). In both systems, L, D, and u denote the birth, death,
and mutation rates, respectively. We assume that 0 ≤ D < L and 0 < u ≪ 1.
The system (1) is written assuming that mutations occur as a result of a wild-
type cell differentiating into one wild-type and one mutant cell. This is a standard
assumption, see, e.g., [23].

The initial conditions for the pre-treatment system (1) are given as constants
N(0) = N0 ̸= 0 and R(0) = 0. The initial conditions for the system (2) are N(t∗)
and R(t∗), which are the solutions of (1) at t = t∗.

Remark 1. In this model we assume that both the wild-type and the resistant
(mutated) cells have the same birth and death rates. This assumption is made
in order to simplify the initial presentation, and can be easily modified to model
situations where the resistant cancer cells R have a relative fitness advantage or
disadvantage with respect to the wild-type cancer cells N . Indeed it is increasingly
recognized that resistance to chemotherapy comes at a fitness cost, see for example
[10]. We refer to Appendix C for the more general case where different birth and
death rates are assumed for the wild-type and the mutated cells.

Remark 2. Another modification could be to replace the exponential growth of
cancer by a different model such as the gompertzian growth, which was empirically
shown to provide a better fit (see the Norton-Simon hypothesis in [31], [32], [33]).

Remark 3. We assume that mutations happen only in one direction, i.e., wild-type
cells mutate and become resistant but not vice versa. This seems to be a reasonable
assumption in the case in which the focus is on point mutation resistance and not
on resistance caused by gene amplification. Indeed, the probability of reversal of a
point mutation is much smaller than the probability of the point mutation itself,
and can therefore be neglected (see [6, 29, 20, 23]).

Remark 4. The time of the beginning of the treatment, t∗, can be related to the
size of the tumor at that time. If we assume that the total number of cancer cells at
time t∗ is M , we can use the exponential growth of cancer and the relatively small
mutation rate u to estimate t∗ as

t∗ ≈
1

L−D
ln

M

N0
. (3)

2.2. The 2-drug case. We now consider the case of a treatment in which two
drugs are being simultaneously used. We denote by R1(t) and R2(t), the mutant
cancer cell populations that mutated by time t so that they are resistant only to
the first or to the second drug, respectively. We reserve the notation R(t) for the
population of cells that are resistant to both drugs at time t. With these notations,



The single-drug case
• t* = Time treatment starts 	


• M = Total # of cancer cells at the beginning of the treatment 	



★ Assuming small mutation rate:	


!
!
!
The amount of resistance present at the time when the treatment starts:	


!
!
!

• R depends on the turnover rate (!)
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{

N ′(t) = (L−D −H)N(t),
R′(t) = (L−D)R(t) + uN(t).

t > t∗. (2)

The system (1) describes the pre-treatment phase, while the system (2) follows the
dynamics after the treatment starts. The difference between both systems is the
introduction of H , the drug-induced death rate, a term that appears only after the
treatment starts, i.e., in (2). In both systems, L, D, and u denote the birth, death,
and mutation rates, respectively. We assume that 0 ≤ D < L and 0 < u ≪ 1.
The system (1) is written assuming that mutations occur as a result of a wild-
type cell differentiating into one wild-type and one mutant cell. This is a standard
assumption, see, e.g., [23].

The initial conditions for the pre-treatment system (1) are given as constants
N(0) = N0 ̸= 0 and R(0) = 0. The initial conditions for the system (2) are N(t∗)
and R(t∗), which are the solutions of (1) at t = t∗.

Remark 1. In this model we assume that both the wild-type and the resistant
(mutated) cells have the same birth and death rates. This assumption is made
in order to simplify the initial presentation, and can be easily modified to model
situations where the resistant cancer cells R have a relative fitness advantage or
disadvantage with respect to the wild-type cancer cells N . Indeed it is increasingly
recognized that resistance to chemotherapy comes at a fitness cost, see for example
[10]. We refer to Appendix C for the more general case where different birth and
death rates are assumed for the wild-type and the mutated cells.

Remark 2. Another modification could be to replace the exponential growth of
cancer by a different model such as the gompertzian growth, which was empirically
shown to provide a better fit (see the Norton-Simon hypothesis in [31], [32], [33]).

Remark 3. We assume that mutations happen only in one direction, i.e., wild-type
cells mutate and become resistant but not vice versa. This seems to be a reasonable
assumption in the case in which the focus is on point mutation resistance and not
on resistance caused by gene amplification. Indeed, the probability of reversal of a
point mutation is much smaller than the probability of the point mutation itself,
and can therefore be neglected (see [6, 29, 20, 23]).

Remark 4. The time of the beginning of the treatment, t∗, can be related to the
size of the tumor at that time. If we assume that the total number of cancer cells at
time t∗ is M , we can use the exponential growth of cancer and the relatively small
mutation rate u to estimate t∗ as

t∗ ≈
1

L−D
ln

M

N0
. (3)

2.2. The 2-drug case. We now consider the case of a treatment in which two
drugs are being simultaneously used. We denote by R1(t) and R2(t), the mutant
cancer cell populations that mutated by time t so that they are resistant only to
the first or to the second drug, respectively. We reserve the notation R(t) for the
population of cells that are resistant to both drugs at time t. With these notations,
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the model for drug resistance with two drugs can be written as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

N ′(t) = (L −D)N(t),
R′

1(t) = (L−D)R1(t) + uN(t),
R′

2(t) = (L−D)R2(t) + uN(t),
R′(t) = (L −D)R(t) + uR1(t) + uR2(t).

t ≤ t∗. (4)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N ′(t) = (L −D −H)N(t),
R′

1(t) = (L−D −H)R1(t) + uN(t),
R′

2(t) = (L−D −H)R2(t) + uN(t),
R′(t) = (L −D)R(t) + uR1(t) + uR2(t).

t > t∗. (5)

Similarly to the single-drug case, also in the 2-drug case we distinguish between the
pre-treatment dynamics (described by (4)) and the dynamics after the treatment
started, which is given by (5).

Remark 5. Note that we assume that if a cell is already resistant to one drug it
does not make it any less vulnerable to the combination of drugs (i.e., H remains
unchanged). Such an assumption can be justified given that for cells that are
resistant only to one drug, the second drug is still effective. This assumption can
be easily modified to account for matters of physical or chemical nature that can
influence the level of resistance that a cell (that is already resistant to one drug)
may develop to the second drug.

Remark 6. We assume that the probability of a point mutation, and consequently
the mutation rate u, is the same for any non fully resistant state in which a cell
may be, an assumption that can also be easily modified.

Extending the 2-drug model (4)–(5) to the setup of n drugs is straightforward.
The resulting general n-drug case is given in Appendix A.

3. Analysis and results. In this section we discuss the main results that can
be obtained by analyzing the models for drug resistance that were introduced in
Section 2.

3.1. Dependence on the turnover rate D/L. Our first result is that the amount
of resistance present at the time when the treatment starts, t∗, always depends on
the turnover rate D/L no matter how many drugs are simultaneously used. This
result is easily obtained by considering the solutions of R(t∗) in the single-drug
systems (1), the two-drug system (4), and the n-drug system (17). For details on
the derivation of the solutions we refer to Appendix B.

For the single drug case the solution is (using (3) to evaluate t∗)

R(t∗) = N0ut
∗e(L−D)t∗ ≈

Mu ln(M/N0)

L(1−D/L)
, (6)

where M is the total number of cancer cells when the therapy begins. Similarly, for
the two-drug therapy we have the following

R(t∗) = N0(ut
∗)2e(L−D)t∗ ≈ M

[

u ln(M/N0)

L(1−D/L)

]2

. (7)

The extension to the general n-drug case is obvious:

R(t∗) = N0(ut
∗)ne(L−D)t∗ ≈ M

[

u ln(M/N0)

L(1−D/L)

]n

. (8)



The 2-drug case
!
!
!
!
!
!
!
!

• Ri(t) = resistant to drug i.        R(t) = resistant to both drugs	


The amount of resistance present at the time when the treatment starts:
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⎩
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does not make it any less vulnerable to the combination of drugs (i.e., H remains
unchanged). Such an assumption can be justified given that for cells that are
resistant only to one drug, the second drug is still effective. This assumption can
be easily modified to account for matters of physical or chemical nature that can
influence the level of resistance that a cell (that is already resistant to one drug)
may develop to the second drug.

Remark 6. We assume that the probability of a point mutation, and consequently
the mutation rate u, is the same for any non fully resistant state in which a cell
may be, an assumption that can also be easily modified.

Extending the 2-drug model (4)–(5) to the setup of n drugs is straightforward.
The resulting general n-drug case is given in Appendix A.

3. Analysis and results. In this section we discuss the main results that can
be obtained by analyzing the models for drug resistance that were introduced in
Section 2.

3.1. Dependence on the turnover rate D/L. Our first result is that the amount
of resistance present at the time when the treatment starts, t∗, always depends on
the turnover rate D/L no matter how many drugs are simultaneously used. This
result is easily obtained by considering the solutions of R(t∗) in the single-drug
systems (1), the two-drug system (4), and the n-drug system (17). For details on
the derivation of the solutions we refer to Appendix B.

For the single drug case the solution is (using (3) to evaluate t∗)

R(t∗) = N0ut
∗e(L−D)t∗ ≈

Mu ln(M/N0)

L(1−D/L)
, (6)

where M is the total number of cancer cells when the therapy begins. Similarly, for
the two-drug therapy we have the following

R(t∗) = N0(ut
∗)2e(L−D)t∗ ≈ M

[

u ln(M/N0)

L(1−D/L)

]2

. (7)

The extension to the general n-drug case is obvious:

R(t∗) = N0(ut
∗)ne(L−D)t∗ ≈ M

[

u ln(M/N0)

L(1−D/L)

]n

. (8)
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the model for drug resistance with two drugs can be written as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

N ′(t) = (L −D)N(t),
R′

1(t) = (L−D)R1(t) + uN(t),
R′

2(t) = (L−D)R2(t) + uN(t),
R′(t) = (L −D)R(t) + uR1(t) + uR2(t).

t ≤ t∗. (4)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N ′(t) = (L −D −H)N(t),
R′

1(t) = (L−D −H)R1(t) + uN(t),
R′

2(t) = (L−D −H)R2(t) + uN(t),
R′(t) = (L −D)R(t) + uR1(t) + uR2(t).

t > t∗. (5)

Similarly to the single-drug case, also in the 2-drug case we distinguish between the
pre-treatment dynamics (described by (4)) and the dynamics after the treatment
started, which is given by (5).

Remark 5. Note that we assume that if a cell is already resistant to one drug it
does not make it any less vulnerable to the combination of drugs (i.e., H remains
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be easily modified to account for matters of physical or chemical nature that can
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Remark 6. We assume that the probability of a point mutation, and consequently
the mutation rate u, is the same for any non fully resistant state in which a cell
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The various expressions for R(t∗), (6)–(8), contain the turnover ratio D/L. We can
thus conclude that the slower the growth of the cancer is (i.e., the closer the turnover
rate D/L is to 1) the larger is the pre-treatment drug resistance. Conversely, the
faster the tumor grows (i.e., the closer the turnover rate is to zero) the smaller is
the resistance that develops prior to the beginning of the treatment. This result is
independent of the number of drugs.

3.2. How much resistance originates before the treatment? Assume that
mutations could be terminated after time t∗ so that the only drug resistance that is
present after t∗ would be the “progeny” of the resistance generated before therapy
started. We refer to such resistance as the “pre-treatment resistance at time t”
and denote it by Rp(t). We would like to compare Rp(t) with the resistance that is
generated exclusively by mutations that occur during treatment, which we denote by
Rd(t), and refer to as the “during-treatment resistance at time t”. Mathematically
we can stop the mutations by setting u = 0.

Our second result is that for any t > t∗, the pre-treatment resistance is greater
than the during-treatment resistance, i.e., Rp(t) ≥ Rd(t). This result holds under
the assumptions that (L−D) < H and M/N0 ≥ C, where the constant C depends
on the number of drugs. For example we will see that in the one-drug case, C = e,
and in the two-drug case C = exp(1 +

√

(3)).
Indeed, in the single drug case, the solution of the system (2), subject to the

initial conditions N(0) = M and R(0) = 0, is given by

Rd(t) = M
u

H
[e(L−D)t − e(L−D−H)t]. (9)

Here, to simplify the notations, time is measured from the beginning of the treat-
ment, i.e., t = 0 refers to what we previously considered to be t = t∗.

On the other hand, Rp(t) is the solution of (1) at time t∗ that is then multiplied
by an exponential term e(L−D)t that accounts for the growth of this resistance
during treatment,

Rp(t) =
Mu ln(M/N0)

L−D
e(L−D)t. (10)

Thus, clearly Rp(t) ≥ Rd(t) for any t ≥ 0. Moreover, for sufficiently large t, we
have

Rp(t)

Rd(t)
≈

H

L(1−D/L)
ln(M/N0) = Ht∗, (11)

which nicely illustrate the key players in determining the proportion between the
two populations. We would like to stress that in the case of mutagenic drugs, where
the mutation rates are much higher during treatment, the result may be easily
reversed, i.e., the resistance generated after the beginning of the treatment may
exceed the pre-treatment resistance.

For two drugs, the solution of the system (5), subject to the initial conditions
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

N(0) = M,

R1(0) =
Mu ln(M/N0)

L−D
,

R2(0) =
Mu ln(M/N0)

L−D
,

R(0) = 0,
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Abstract

Recent mathematical models have been developed to study the dynamics of chronic myelogenous leukemia (CML) under
imatinib treatment. None of these models incorporates the anti-leukemia immune response. Recent experimental data
show that imatinib treatment may promote the development of anti-leukemia immune responses as patients enter
remission. Using these experimental data we develop a mathematical model to gain insights into the dynamics and
potential impact of the resulting anti-leukemia immune response on CML. We model the immune response using a system
of delay differential equations, where the delay term accounts for the duration of cell division. The mathematical model
suggests that anti-leukemia T cell responses may play a critical role in maintaining CML patients in remission under imatinib
therapy. Furthermore, it proposes a novel concept of an ‘‘optimal load zone’’ for leukemic cells in which the anti-leukemia
immune response is most effective. Imatinib therapy may drive leukemic cell populations to enter and fall below this
optimal load zone too rapidly to sustain the anti-leukemia T cell response. As a potential therapeutic strategy, the model
shows that vaccination approaches in combination with imatinib therapy may optimally sustain the anti-leukemia T cell
response to potentially eradicate residual leukemic cells for a durable cure of CML. The approach presented in this paper
accounts for the role of the anti-leukemia specific immune response in the dynamics of CML. By combining experimental
data and mathematical models, we demonstrate that persistence of anti-leukemia T cells even at low levels seems to
prevent the leukemia from relapsing (for at least 50 months). As a consequence, we hypothesize that anti-leukemia T cell
responses may help maintain remission under imatinib therapy. The mathematical model together with the new
experimental data imply that there may be a feasible, low-risk, clinical approach to enhancing the effects of imatinib
treatment.
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Introduction

Chronic myelogenous leukemia (CML) results from the
uncontrolled growth of white blood cells due to up-regulation of
the abl tyrosine kinase [1]. The standard first-line therapy against
CML is imatinib, a molecular-targeted drug that inhibits the abl
tyrosine kinase [2]. Under imatinib, nearly all patients attain
hematologic remission (HR) [3] and 75% achieve cytogenetic
remission (CR) [4]. However, imatinib does not completely
eliminate residual leukemia cells and patients inevitably relapse
after stopping treatment [4]. We note that for a hematologic
remission (also known as complete hematologic response) the
following must be present: Platelet count 450,000/mL, WBC count
,10,000/mL, WBC differential: no immature granulocytes and
,5% basophils, Spleen nonpalpable. Cytogenetic remission (or
response) is defined with the following sub-categories. None: Ph+
cells .95%; Minimal: Ph+ cells 66–95%; Minor: Ph+ cells 36–
65%; Partial: Ph+ cells 1–35%; Complete: Ph+ cells 0%.

In this paper, we model the dynamics of T cell responses to
CML. Insights gained from this model were used to develop a
possible combination between imatinib and immunotherapy, in
the form of cancer vaccines, to enhance the efficacy of imatinib
treatment and potentially eliminate leukemia for a durable cure.
Various papers have proposed hypotheses concerning the effects

of imatinib treatment on leukemia cells from a dynamical systems
perspective. In a recent work, Michor et al. develop a model for the
interaction between leukemia and imatinib [5]. In their model,
they assume that leukemia cells differentiate through four stages of
their life cycle, beginning with leukemia stem cells. Imatinib
functions by reducing the rate at which leukemia cells pass from
one stage to the next, causing a rapid drop in the leukemia
population. Based on their assumptions and analysis, they propose
that leukemia inevitably persists, because imatinib hinders the
differentiation of differentiated leukemia cells, but does not affect the
leukemia stem cells. In particular, Michor et al. hypothesize that there
is always a steadily growing population of leukemia stem cells despite
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What is Leukemia?
★ Normal state: 	


	

 Stem cells turn into mature cells	


★ Leukemia: 	


	

 A malignant transformation of a 

stem cell or a progenitor cell	


• Myeloid or Lymphocytic	


• Acute or Chronic



CML
★ 3 phases	



• Chronic: uncontrolled proliferation	


• Accelerated	


• Acute: Aggressive.  Uncontrolled 

proliferations.  Cells do not mature	


!

★ Philadelphia chromosome	


• Translocation (9;22)	


• Oncogenic BCR-ABL gene fusion	


• The ABL gene expresses a tyrosine 

kinase.   Growth mechanisms	


• Easy to diagnose	


• Drug targeting this genetic defect (a 

tyrosine kinase inhibitor)



★ Chemotherapy	


★ Bone Marrow / Stem Cell transplant	



• Chemo + radiotherapy + 
transplantation	



★ Imatinib (Gleevec)	


• Molecular targeted therapy - 

suppresses the corrupted control 
system	



• $30K/yr (‘01) – $98K/yr (‘13)

Treating Leukemia

May 28, 2001



Incorporating the immune response

★ Shown: the specific anti-leukemia immune response	


• Different patients, Imatinib, 50 months, each dot = one blood test	



★ A different immune response for each patient.  However:	


• At the beginning of the treatment: no immune response	


• Peak: around 6-12 months (after starting the drug treatment)	


• Later: waning immune response	


!

Question: What is the relation between the dynamics of the 
cancer, the drug, and the immune response?

Patient #4 Patient #12



A mathematical model

★ Ingredients:	


• Leukemia cells: stem cells, …, fully functional cells	


• Mutations	


• Drug (Imatinib)	


• Anti leukemia immune response	



★ Michor et al. (Nature ’05) + immune response	


Cronkite and Vincent (69), Rubinow (69), Rubinow & Lebowitz (75), Fokas, Keller, and Clarkson (91), Mackey et al (99,...), Neiman (00), Moore & Li 
(04), Michor et al (05), Komarova & Woodarz (05).



Michor’s model + immune response

• Cells without 
mutations	


!
!

• Cells with mutations	


!
!
!

• Anti-Cancer T cells
Ṫ = st − dtT − p(C, T )C + 2nqT p(Cnτ , Tnτ )Cnτ

ż0 = [rz − d0]z0 − qcp(C, T )z0

ż1 = azz0 + d1z1 − qcp(C, T )z1

ż2 = bzz1 + d2z2 − qcp(C, T )z2

ż3 = czz2 + d3z3 − qcp(C, T )z3

ẏ0 = [ry(1 − u) − d0]y0 − qcp(C, T )y0

ẏ1 = ayy0 − d1y1 − qcp(C, T )y1

ẏ2 = byy1 − d2y2 − qcp(C, T )y2

ẏ3 = cyy2 − d3y3 − qcp(C, T )y3

p(C, T ) = p0e
−cnCkT, C =

∑
(yi + zi), Cnτ = C(t − nτ)



Accounting for the immune response
★ Dots: data from a patient	


★ Dashed line: remission	


!

★ Results of mathematical simulations	


• 50 months	


• Cancer load without an immune 

response	


• Cancer load with an immune 

response	


• The immune response 0 10 20 30 40 50
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Stopping imatinib (simulation)
★ Stopping Imatinib treatment after one year	


★ The disease relapses within months	


★ Validation: The mathematical simulation agrees with the medical 

experiments



!

Biological conclusion from the math
Conclusion: remission is the result of a complex interaction between 
cancer, imatinib, and the immune response	



!
★ Surprising	



• The role of the immune response	


• Non-intuitive conclusion of the mathematical analysis	


!

Questions: Why does the immune response not cure the disease?  Can 
we do something to cure it?	


!
Idea: augment the immune response

!
!



Stimulating the immune response
!
!
!
!
!
!

★ Experimental design:	


• Irradiate the blood of the patient that was frozen when the disease was 

diagnosed	


• Mix it with blood taken from the patient at a later time point after the 

treatment has started	


• Measure the anti-leukemia immune response	



★ Result:	


• It works.   Consequently we propose “Cancer vaccines”



Cancer Vaccines: a mathematical design
★ A vaccination plan	


★ Solving a mathematical optimization 

problem:	


• Dosage	


• Timing	



★ Individual planning: based on the 
immune response of each patient	



★ Remission / cure

Ṫ = st − dtT − p(C, T )(C + V ) + 2np(Cnτ , Tnτ )(qT Cnτ + Vnτ )

V̇ = −dV V − qcp(C, T )V + sV (t)

• Inactivated leukemia cells

• Anti-Cancer T cells 



Mathematical models of drug resistance 
in cancer (Tomasetti + DL, PNAS 2010)

A Tale in 3 Acts



CML: studying drug resistance

“Six-year follow-up of patients receiving imatinib for the first-line treatment of 
chronic myeloid leukemia”, Hochhaus et al. (Leukemia 2009)



Act I

On the probability of developing drug resistance 
by the time a tumor is diagnosed



Mathematical models of drug resistance 
in cancer
★ Goldie & Coleman;  Iwasa, Nowak, & Michor;  Komarova;  Roeder; ...	


★ Iwasa, Novak, & Michor (Genetics, 2006):	



• The probability of developing resistance by the time a tumor is 
diagnosed:	


!
!

✴ L & D = birth & death rates;  u = mutation rate	


✴ M = total number of cancer cells (!)	



• The expected # of resistant cancer cells that are present at detection 
(when              )

P = 1� exp

✓
�MuL

D
ln

L

L�D

◆

Mu ⌧ 1

Ȳ ⇡ lnM

(L/D � 1) ln (L/(L�D))

!
!

!
!



What is wrong with these estimates?
★ Actual values:  	


!

• The probability of developing resistance by the time a tumor is 
diagnosed is greater than 0.9999	



• The expected number of resistant cancer cells that are present at 
detection is of the order of thousands	



• Conclusion: resistance should always be present in large numbers.	


• This must be wrong

M = 109, u � 10�8



Cancer Stem Cells
!

★ Leads to the Stem-Cell Hypothesis	


!

• Cancer cells (just like healthy cells) 
are not all alike	



• The tumor population is 
heterogeneous: it is comprised from 
stem cells and other cells	



• Stem cells have the ability of self-
renewal.  They are very long lived.	



• From the point of view of drug 
resistance – it is only the long 
lived cells we should care about



Cancer stem cells
★ A stem cell divide in one of the following ways:	



• Asymmetric division with probability a	


• Symmetric differentiation with probability b	


• Symmetric renewal with probability c = 1-a-b

a     b        c



Drug resistance & cancer stem cells
★ Modified Question: What is the probability that at the time of detection 

there are cancer stem cells that developed resistance to the drug?	


★ Answer (Tomasetti+DL):	


!
!
!
or (for nonzero D):

M=CSCs,  u=mutation rate,  D&L=birth&death rates

PR = 1� exp
�
�uM

�
1� a

2 � b

1� a� b

⇥⇥

PR = 1� exp
�
�uM

�
1� a

2 � b

1� a� b

⇥
1
C

ln
�

1
1� C

⇥⇥

C =
D + Lb

L(1� a� b)

a     b        c

!
!



Our result
!

★ Extension of the Iwasa result	


!

★ It is possible to calculate the refined estimates that take into account stem 
cells, due to different mathematical tools	


!

★ Brings cancer stem cells into the picture	


★ Key to obtaining the result: SIMPLIFY THE MATH



Act II

On symmetric vs. asymmetric differentiation



Case study: CML
!

★ Question: what is the probability of developing resistance at detection?	


• Stem cell population at detection:	


• The mutation probability:	


!

★ Answer: Michor et al (Nature, 2005): 13%	


• Good yet bad: fits the data but is based on the wrong formula 

(homogeneous tumor population)

M ⇥ 2.5� 105

u ⇥ 4� 10�7



★ For healthy hematopoietic stem cells the probability of an asymmetric 
division, a, is in the range 0.5-0.9 (Wu et al. Cell Stem Cell 2007)	



★ Tipping et al. (Blood 2001),  	


★ The probability of developing resistance by the time of detection (our 

estimates):

How do leukemia stem cells divide?

D/L ⇡ 0.1� 0.5

PR ⇡ 73% if a = 0.87, b = 0.01

PR ⇡ 12% if a = 0.2, b = 0.05

a     b        c



How do leukemia stem cells divide?
★ The range of a and b for which PR< 0.15.  The turnover rate is D/L = 0.1

Figure 4.4: The range of a and b for which PR < 0.15. The turnover rate
is D/L = 0.1.

the asymmetric division probability a is interesting, since it has been observed that

for healthy hematopoietic stem cells, a should be close to 1, and generally above

0.9 [5, 28].

These estimates suggest that leukemic hematopoietic stem cells should have

a much lower than normal tendency to divide asymmetrically (i.e., a low a), hence

making a substantial shift toward an increased symmetric renewal.

4.4 Discussion

The main result of Iwasa et al. [50] is given by equation (4.1). How should this

equation be understood given actual estimates of the parameters? We recall that

in (4.1), the parameter M is the total number of cells in the tumor. At present, an

64



!

How do leukemia stem cells divide?
★ Conclusion: leukemia stem cells should have a lower tendency than healthy 

stem cells to divide asymmetrically.	


!

★ Cancer Stem Cells must shift towards an increased symmetric renewal



Act III

A surprising finalé



CML: studying drug resistance

“Six-year follow-up of patients receiving imatinib for the first-line treatment of 
chronic myeloid leukemia”, Hochhaus et al. (Leukemia 2009)



!

Why do relapses stop?
Hypothesis: relapses are related to the drug response	


!

★ Two points of view in the literature:	


• Cancer Stem Cells are the only sub-population that is resistant to the 

drug (Michor & Novak)	


• Cancer Stem Cells are sensitive to the drug but shift rapidly between 

active and dormant states (Roeder)	


!

Our hypothesis: Cancer Stem Cells must be affected by the drug.  The drug 
keeps the CSCs in a dormant state	



★ Explains:	


• Why there is an immediate relapse when stopping Imatinib	


• Patients eventually relapse if they have CSCs that do not respond to the 

drug	


• Explains why there are no further relapses after 5-6 years

!



!
!

When did the resistance develop?
!

★ If resistance developed, it must have happened by the time of detection	


!

★ The results of the the mathematical calculation:	


• On average, resistance must have developed in the 3-4 months prior to 

detection	


!

★ Finalé – Clinical consequences:	


• Early detection of CML will increase the chances of survival.	


• Patients should be treated immediately.



Conclusion
!

★ Medical Applications:	


• Quantitative approach	


• Should be used in conjunction with clinical & experimental data	


• A complex biological setup – the tip of the iceberg	


!

★ Math:	


• New challenges	


• New math	


• Can potentially be useful


