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American Cancer Society — 2013

Estimated Number* of New Cancer Cases and Deaths by Sex, US, 2013
Estimated New Cases Estimated Deaths
Both Sexes Male Female Both Sexes Male Female
All Sites 1,660,290 854,790 805,500 580,350 306,920 273,430
Oral cavity & pharynx 41,380 29,620 11,760 7,890 5,500 2,390
Tongue 13,590 9,900 3,690 2,070 1,380 690
Mouth 11,400 6,730 4,670 1,800 1,080 720
Pharynx 13,930 11,200 2,730 2,400 1,790 610
Other oral cavity 2,460 1,790 670 1,640 1,260 380
Digestive system 290,200 160,750 129,450 144,570 82,700 61,870
Esophagus 17,990 14,440 3,550 15,210 12,220 2,990
Stomach 21,600 13,230 8,370 10,990 6,740 4,250
Small intestine 8,810 4,670 4,140 1,170 610 560
Colon® 102,480 50,090 52,390 50,830 26,300 24,530
Rectum 40,340 23,590 16,750
Anus, anal canal, & anorectum 7,060 2,630 4,430 880 330 550
Liver & intrahepatic bile duct 30,640 22,720 7,920 21,670 14,890 6,780
Gallbladder & other biliary 10,310 4,740 5,570 3,230 1,260 1,970
Pancreas 45,220 22,740 22,480 38,460 19,480 18,980
Other digestive organs 5,750 1,900 3,850 2,130 870 1,260
Respiratory system 246,210 131,760 114,450 163,890 90,600 73,290
Larynx 12,260 9,680 2,580 3,630 2,860 770
Lung & bronchus 228,190 118,080 110,110 159,480 87,260 72,220
Other respiratory organs 5,760 4,000 1,760 780 480 300
Bones & joints 3,010 1,680 1,330 1,440 810 630
Soft tissue (including heart) 11,410 6,290 5,120 4,390 2,500 1,890
Skin (excluding basal & squamous) 82,770 48,660 34,110 12,650 8,560 4,090
Melanoma-skin 76,690 45,060 31,630 9,480 6,280 3,200
Other nonepithelial skin 6,080 3,600 2,480 3,170 2,280 890
Breast 234,580 2,240 232,340 40,030 410 39,620
Genital system 339,810 248,080 91,730 58,480 30,400 28,080
Uterine cervix 12,340 12,340 4,030 4,030
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Mechanisms of MDR
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Mathematics and Drug Resistance

Lavi, Gottesman, Levy.

The dynamics of drug resistance: A mathematical perspective.

Drug Resistance Updates 15, 2012, pp.90-97.

Overcoming multidrug resistance 1n cancer: 35 years after the

discovery of ABCB1

Contribution of tumoral & host solute carriers to clinical drug response

Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and

drug resistance
The tumor microenvironment is a dominant force in MDR
Targeting MDR 1n breast and lung cancer

Drug resistance 1in the mouse cancer clinic



Mathematics and Drug Resistance

*  Ql: What is the optimal protocol for drug scheduling in terms of dose
and timing?

Goal: maximize the control of the tumor while minimizing toxicity.

Solution 1: Norton & Simon. Based on kinetic resistance (phase of the
cell cycle). Deliver the most effective level of drug over as short time as
possible. Tumors given less time to grow between treatments are more
likely to be eradicated.

Solution 2: Goldie & Coldman. Minimize the development of drug
resistance based on the occurrence of mutations. When more than one
(non cross-resistance) drug is used — treatment should alternate
between drugs as quickly as possible.



Mathematics and Drug Resistance

Continuous infusion vs. short pulses (Gardner, Panetta, Smieja,...).
Continuous infusion prevents tumor regrowth between treatment.
Exposes more cells to the drug when they are in the sensitive phase of
the cell cycle.

Problem: if the drug is applied too quickly, cells that are in an
invulnerable part of their cell cycle may escape. If the drug is applied
too slovvly, drug resistance may develop.

*  2: When several drugs are available, how many drugs should be used?
Should they be used in combination or sequentially?

Komarova & Wodarz. Study the number of the drugs that should be
used based on the size of the tumor. Generally, conclude that
combination therapy is less likely to yield an advantage over single-drug

therapy.



Mathematics and Drug Resistance

*  Q3: How effective is chemotherapy in eradicating a tumor?

*  Q4: How 1s early detection and early therapy connected with the
development of drug resistance?

*  (5: What is the probability that at the time of diagnosis resistant cancer
cells are already present?

*  Q6: How fast does the subpopulation of cells that develop drug resistance
grow?

*  Q7: What function best describe the “growth law” of cancer?



* Modeling Drug Resistance

The simplest possible (mathematical) model...




An elementary approach to modeling
drug resistance In cancer (fomaseti + DL, 2010)

* A deterministic approach: the single drug case.

*  Assuming (i) an exponential cancer growth (1) a wild-type cell differentiates
into one wild-type and one mutant cell:

{ N'(t) = (L = DN (1), L
R'(t) = (L — D)R(t) + uN(¢). =
R'(t) = (L — D)R(t) + ulN(2).

N(t) = # of wild-type cancer cells
R(t) = # of mutated cells
L = birth rate

D = natural death rate; H= drug induced death rate.

u = mutation rate

»  Initial conditions: R(0)=0, N(0)=No



The single-drug case

t* = Time treatment starts
M = Total # of cancer cells at the beginning of the treatment

*  Assuming small mutation rate:

1 M

t* =~ 1 .
L—D N,

The amount of resistance present at the time when the treatment starts:

Mu In(M/Ny)

Y = Naut* (L—D)t* ~
R(#") = Nout"e L(1— D/L)

R depends on the turnover rate (1)



The 2-drug case

[ N'(t)=(L - D)N(t),
Ry(t) = (L — D)Ru(t) + uN (1), .
| Bi(t) = (L~ D)Rs(t) + uN (1) =
| R(t) = (L — D)R(t) + uR:(t) + uR(2)
(N'(t) = (L— D~ H)N(),
Ri(t)=(L-D-H)R\(}) +uN(t), | .
} Ry(t)=(L—D— H)Ry(t) +uN(t), '~
| R'(t) = (L — D)R(t) + uR:(t) + uRa(2)
Ri(t) = resistant to drug ¢. R(t) = resistant to both drugs

The amount of resistance present at the time when the treatment starts:

R(t*) = No(ut*)2eL=DI" ~ M [u ln(M/NO)] 2

L(1- D/L)




How much resistance originates before

the treatment?

*  Pre-treatment resistance = the progeny of the resistance generated before
therapy started. In the single drug case:

RP(t) D

*  During-treatment resistance = resistance generated exclusively by
mutations that occur during treatment. In the single drug case:

Rd(t) _ M%[Q(L—D)t _ e(L—D—H)t].

- time zero corresponds to the beginning of treatment

- initial conditions: N(0) = M and R(0) = 0



How much resistance originates before
the treatment?

*  Main Conclusion:

RP(t) > R%(t)

The amount of resistance generated before the beginning of the treatment
depends on the turnover rate

Similar results hold for more drugs. Generally, it 1s assumed that

(L—D) < H and M/Ny > C

where C is a constant that depends on the dimension.

Generalizations: different drug-induced death rates for different drugs,...



* Application

CML
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to Chronic Myelogenous Leukemia
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Abstract

Recent mathematical models have been developed to study the dynamics of chronic myelogenous leukemia (CML) under
imatinib treatment. None of these models incorporates the anti-leukemia immune response. Recent experimental data
show that imatinib treatment may promote the development of anti-leukemia immune responses as patients enter
remission. Using these experimental data we develop a mathematical model to gain insights into the dynamics and
potential impact of the resulting anti-leukemia immune response on CML. We model the immune response using a system
of delay differential equations, where the delay term accounts for the duration of cell division. The mathematical model
suggests that anti-leukemia T cell responses may play a critical role in maintaining CML patients in remission under imatinib
therapy. Furthermore, it proposes a novel concept of an “optimal load zone” for leukemic cells in which the anti-leukemia
immune response is most effective. Imatinib therapy may drive leukemic cell populations to enter and fall below this
optimal load zone too rapidly to sustain the anti-leukemia T cell response. As a potential therapeutic strategy, the model
shows that vaccination approaches in combination with imatinib therapy may optimally sustain the anti-leukemia T cell




What 1s Leukemia?

Normal state:

Stem cells turn into mature cells
Leukemia:

A malignant transformation of a
stem cell or a progenitor cell

* Myeloid or Lymphocytic

- Acute or Chronic
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CML

* 3 phases Accelerated Phase

»
»

*  Chronic: uncontrolled proliferation Initial Rise Chronic Phase

«  Accelerated

- Acute: Aggressive. Uncontrolled
proliferations. Cells do not mature

Defective Stem Cell count

/ A

~4 yrs ~310 6 yrs | <lyr
~ 6 months

*  Philadelphia chromosome
*  Translocation (9;22)
* Oncogenic BCR-ABL gene fusion

- The ABL gene expresses a tyrosine

kinase. Growth mechanisms

- Easy to diagnose

*  Drug targeting this genetic defect (a
tyrosine kinase inhibitor)



Treating Leukemia

*  Chemotherapy

*  Bone Marrow / Stem Cell transplant
Chemo + radiotherapy +

transplantation
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Incorporating the immune response

0.06 008

Patient #4 Patient #12

0.04 o4

ation (k/uL)

o5k § 003

Cell Concentration (k/uL)

Cell Concen

0.02

-
001 I - - 0.01 -

0 10 20 30 40 50
o} 10 20 30 40 50 Time (months)
Time (months)

*  Shown: the specific anti-leukemia immune response

- Different patients, Imatinib, 50 months, each dot = one blood test
* A different immune response for each patient. However:

At the beginning of the treatment: no immune response

*  Peak: around 6-12 months (after starting the drug treatment)

* Later: waning immune response

Question: What 1s the relation between the dynamics of the
cancer, the drug, and the immune response?




A mathematical model

mdivide

' ay(ay) ' by (by) ' ' cylcy) i
Leukemic i LA Progenitor s Ll Differentiated | Cy\Cy E Terminal
stem cell (yp) cell (y,) cell (y,) cell (y3)
do +acp(CT) dq +qcp(CT) dy +qcp(CT) d3 +qcp(CT)

*  Ingredients:
*  Leukemia cells: stem cells, ..., fully functional cells
* Mutations
*  Drug (Imatinib)
- Anti leukemia immune response

* Michor et al. (Nature 05) + immune response

=P

T cells (T)

pyenCkC

Cronkite and Vincent (69), Rubinow (69), Rubinow & Lebowitz (75), Fokas, Keller, and Clarkson (91), Mackey et al (99,...), Neiman (00), Moore & Li

(04), Michor et al (05), Komarova & Woodarz (05).



Michor’s model + immune response

Yo = [ry(l — u) — dO]yO — qcp(C7 T)yo e (ells without
U1 = ayyo — diy1 — ¢p(C, Ty mutations

Yo = byy1 — day2 — q.p(C,T)y2

Y3 = cyy2 — d3yz — qcp(C, T)ys3

. e (ells with mutations
20 = [r. — dolzo — qep(C, T) 20

2
21 =az20 +d1z1 — q.p(C,T)z
Zo = byz1 + daza — qep(C,T) 22
Z3 = C 22 +d3zz — q.p(C,T)z3

' Anti- T cell

p(C,T) = poe™"“kT, C = Z(yZ +2;), Cpr =C(t —nT)



*  Dots: data from a patient

*  Dashed line: remission

*  Results of mathematical ssmulations

50 months

Cancer load without an immune
response

Cancer load with an immune
response

The immune response
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Stopping imatinib (simulation)

*  Stopping Imatinib treatment after one year
*  The disease relapses within months

*  Validation: The mathematical simulation agrees with the medical
experiments
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Biological conclusion from the math

Conclusion: remission is the result of a complex interaction between
cancer, imatinib, and the immune response

*  Surprising
* The role of the immune response

- Non-intuitive conclusion of the mathematical analysis

Questions: Why does the immune response not cure the disease? Can
we do something to cure it?

Idea: augment the immune response




Stimulating the immune response

0.04% 0.02% 46%

TNF-o.

0.07%

IFN-y

* Experimental design:
*Irradiate the blood of the patient that was frozen when the disease was

diagnosed
- Mix it with blood taken from the patient at a later time point after the

treatment has started

- Measure the anti-leukemia immune response

*  Result:

It works. Consequently we propose “Cancer vaccines”



Cancer Vaccines: a mathematical design

* A Vaccination plan 045 Leukemia cells
04}
* Solvmg a mathematical optimization o
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Mathematical models of drug resistance
* in CANCer (Tomasetti + DL, PNAS 2010)

A Tale in 3 Acts




CML: studying drug resistance

“Six-year follow-up of patients receiving imatinib for the first-line treatment of

chronic myeloid leukemia”, Hochhaus et al. (Leukemia 2009)
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 m o
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Act I

On the probability of developing drug resistance
by the time a tumor is diagnosed



Mathematical models of drug resistance

1N cancer

*  Goldie & Coleman; Iwasa, Nowak, & Michor; Komarova; Roeder; ...
*x  Iwasa, Novak, & Michor (Genetics, 2006):

The probability of developing resistance by the time a tumor 1s
diagnosed:

MulL L )

le—exp(— i) lnL i)

* [, es D = birth & death rates; « = mutation rate
* M = total number of cancer cells (!)

The expected # of resistant cancer cells that are present at detection
(when Mu < 1)

In M

Y~ G Dm@/@ - D))




What 1s wrong with these estimates?

*  Actual values: M =10°, «>10"8

The probability of developing resistance by the time a tumor 1s
diagnosed 1s greater than 0.9999

The expected number of resistant cancer cells that are present at

detection 1s of the order of thousands
Conclusion: resistance should always be present 1in large numbers.

This must be wrong



Cancer Stem Cells

*  Leads to the Stem-Cell Hypothesis

Cancer cells (Just like healthy cells)

are not all alike

The tumor population is
heterogeneous: it i1s comprised from

stem cells and other cells

Stem cells have the ability of self-

renewal. They are very long lived.

From the point of view of drug
resistance — it is only the long

lived cells we should care about




Cancer stem cells

* A stem cell divide in one of the following ways:
Asymmetric division with probability a
Symmetric differentiation with probability 4

Symmetric renewal with probability ¢ = /-a-b




Drug resistance & cancer stem cells

*  Modified Question: What is the probability that at the time of detection
there are cancer stem cells that developed resistance to the drug?

*  Answer (Tomasetti+DL):

e (213)) B & e

a

or (for nonzero D):

Pr=1-— TS k-l W S
R= 2O AT T e/ o "\1=C

D+ Lb
L(1—a—b)

C =

M=CSCs, u=mutation rate, Desl=birth&death rates



Our result

*  Extension of the Iwasa result

* It 1is possible to calculate the refined estimates that take into account stem
cells, due to different mathematical tools

*  Brings cancer stem cells into the picture

*  Key to obtaining the result: SIMPLIFY THE MATH



Act 11

On symmetric vs. asymmetric differentiation



Case study: CML

*  Question: what 1s the probability of developing resistance at detection?
Stem cell population at detection: A ~ 2.5 x 10°
The mutation probability: u ~ 4 x 1077

*»  Answer: Michor et al (Nature, 2005): 13%

Good yet bad: fits the data but is based on the wrong formula
(homogeneous tumor population)



How do leukemia stem cells divide?

*  For healthy hematopoietic stem cells the probability of an asymmetric
division, @, 1s in the range 0.5-0.9 (Wu et al. Cell Stem Cell 2007)

*  Tipping et al. (Blood 2001), D/L =~ 0.1 —0.5

*  The probability of developing resistance by the time of detection (our
estimates):

Pr~T73% if a=0.87, b=0.01
Pr~12% if a=0.2,b=0.05

woORE X
%o o e



How do leukemia stem cells divide?

*  The range of @ and 4 for which Pr< 0.15. The turnover rate is D/ = 0.1
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How do leukemia stem cells divide?

*  Conclusion: leukemia stem cells should have a lower tendency than healthy
stem cells to divide asymmetrically.

Cancer Stem Cells must shift towards an increased symmetric renewal

(Cancererous cells splitting apart)



* Act 111

A surprising finalé




CML: studying drug resistance

“Six-year follow-up of patients receiving imatinib for the first-line treatment of

chronic myeloid leukemia”, Hochhaus et al. (Leukemia 2009)
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Why do relapses stop?

Hypothesis: relapses are related to the drug response

*  Two points of view 1n the literature:

Cancer Stem Cells are the only sub-population that is resistant to the
drug (Michor & Novak)

Cancer Stem Cells are sensitive to the drug but shift rapidly between
active and dormant states (Roeder)

Our hypothesis: Cancer Stem Cells must be affected by the drug. The drug
keeps the CSCs in a dormant state

*  Explains:
Why there 1s an immediate relapse when stopping Imatinib

Patients eventually relapse if they have CSCs that do not respond to the
drug

Explains why there are no further relapses after 5-6 years



When did the resistance develop?

*  If resistance developed, it must have happened by the time of detection

* The results of the the mathematical calculation:

On average, resistance must have developed in the 3-4 months prior to
detection

Finalé — Clinical consequences:
Early detection of CML will increase the chances of survival.

Patients should be treated immediately.




Conclusion

*  Medical Applications:
Quantitative approach
Should be used in conjunction with clinical & experimental data

A complex biological setup — the tip of the iceberg

*  Math:

New challenges
New math
Can potentially be useful



