

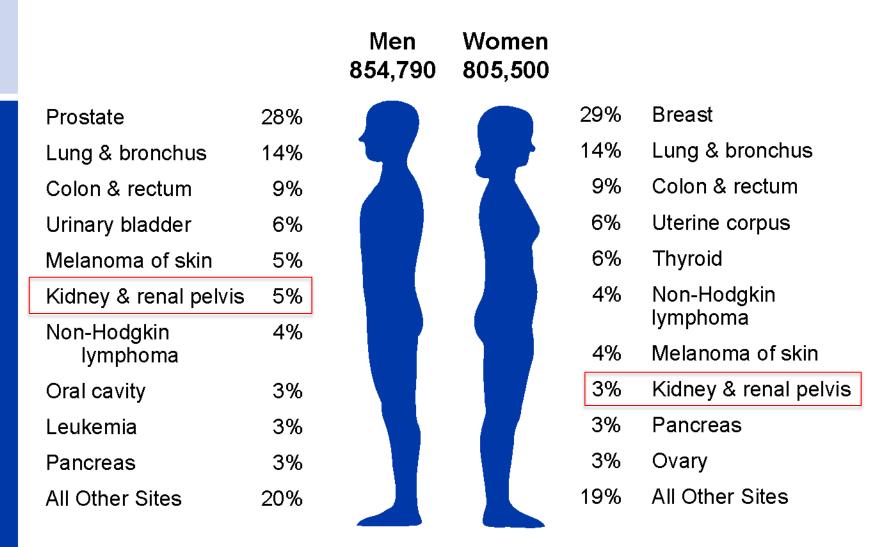
THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Datasets, Doctors, and Disease: Bridging the gap from genomics analysis to clinical change.

February 13, 2014

W. Kimryn Rathmell, MD, PhD

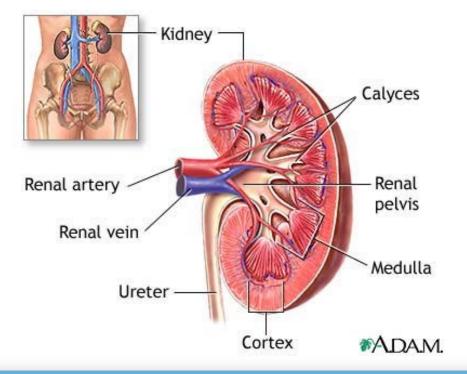
Estimated New Cancer Cases* in the US in 2013

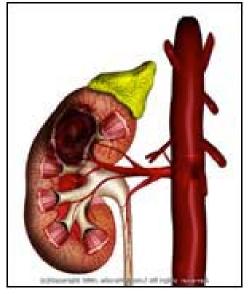


*Excludes basal cell and squamous cell skin cancers and in situ carcinoma except urinary bladder.

Renal Cell Carcinoma (RCC)

- Originates in the renal cortex
- Most common solid lesion occurring in the kidney (80-85% of all primary renal neoplasms)





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

- Appreciating differences in similar tumors.
- Using biological signatures to improve prognosis.
- The problem/opportunity of heterogeneity.
- Integrating epigenetic programs into the clinical and biological picture.

Renal Cell Carcinoma—not one disease

Subtype	Prevalence	Tumor Features	Microscopic Features
Clear cell carcinoma ccRCC	75–85%	Multinodular; large clear cells with prominent nucleoli, organized in nests surrounded by vessel bundles	
Chromophilic (papillary) carcinomas pRCC	10–15%	Ball-shaped outline, trabecular pattern, foamy macrophages, commonly multifocal	
Chromophobic carcinomas chRCC	5–10%	Bland nucleus, eosinophilic cytoplasm with central clearing.	

KIRC, KICH, KIRP

A tale of three kidney cancer genomes

TCGA: What's in a Core Data Set?

Data from Tissue Source Sites

- Complete path report
- Paired metastatic samples
- Double normals
- Treatment data

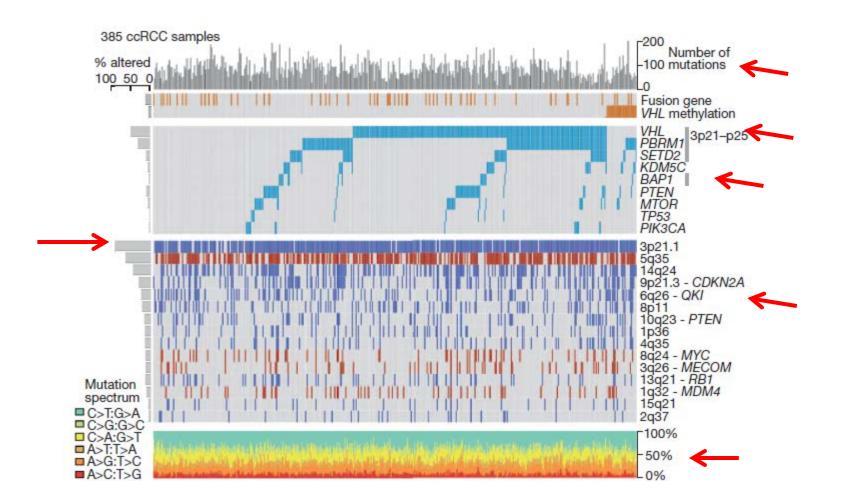
Core Data Set

- Synopic path report
- Histology images
- Required clinical data
 - Whole exome
 - SNP 6.0 array
 - mRNAseq
 - miRNAseq
 - Methylation array

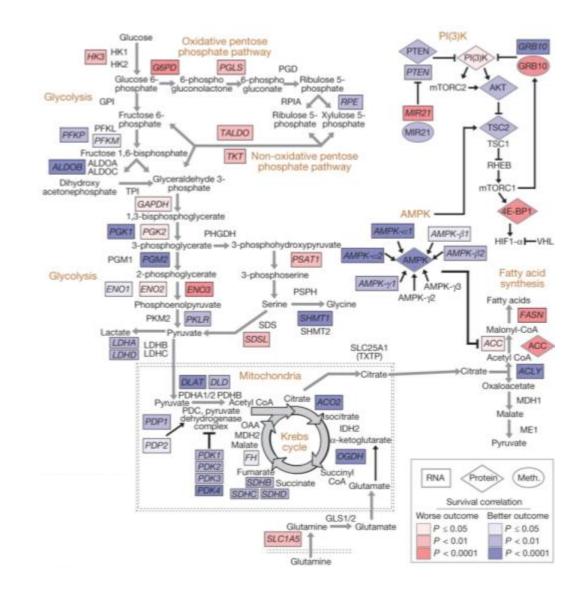
Data Generated by GCCs &GSCs

- 50X WGS
- 8X WGS
- Methylseq
- RPPA

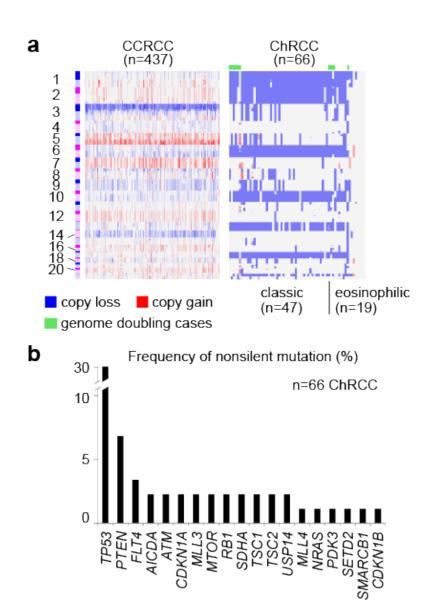
Meet ccRCC:



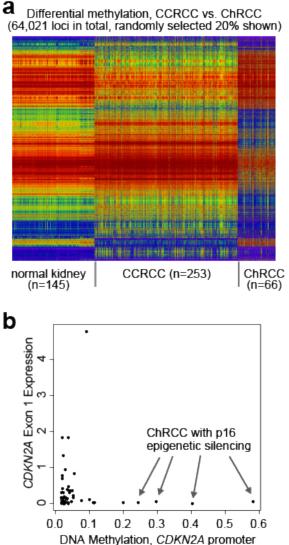
Metabolic Network: All glycolysis



Now, meet Chromophobe RCC

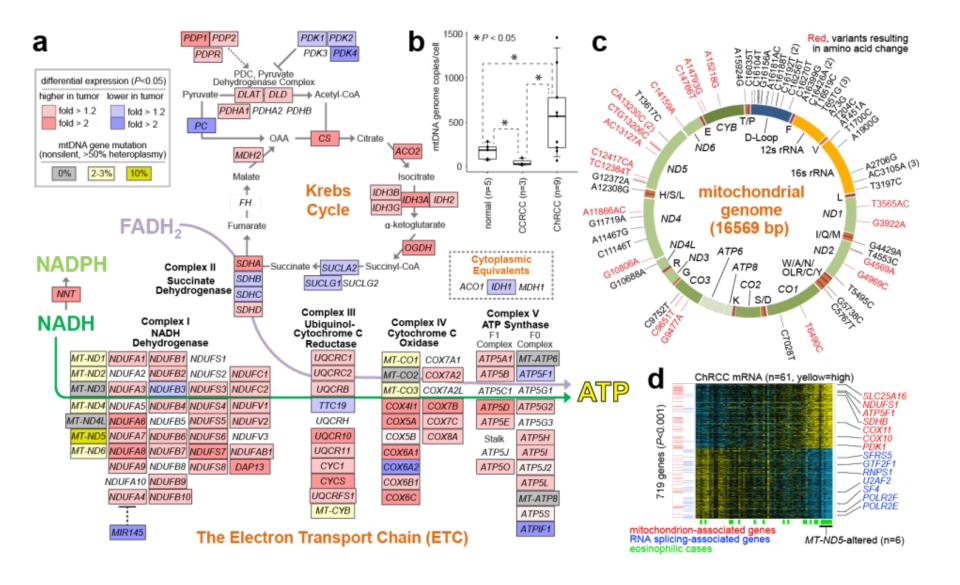


Different methylation, expression, and origin in the nephron.



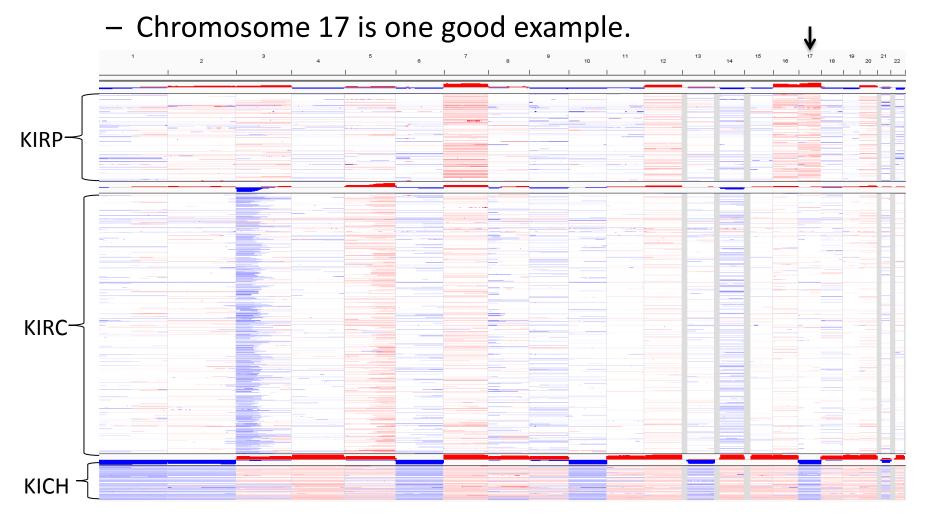
C kidney nephron ChRCC CCRCC (n=417) (n=66) S1 S3 DCT Glom S1 S3 numan kidney mTAL cTAL CCD cTAL Glom DCT CCD OMCD Glom mouse kidney S1 S3 OMCD mTAL mTAL cTAL DCT CCD OMCD d (same gene ordering across panels) human kidney mouse kidney genes 8 genes ଷ 66) (66) Glom S3 NTAL ChROC (86) CCRCC (n=417) CCRCC (253) DNA methylation (beta) mRNA expression inter-profile correlation 11 hiah high low high low (global mRNA patterns) 0 0.5 1

A different biology-focus on mitochondria



Comparing Copy Number Variation:

• KIRP, KICH, and KIRC display very different SCNA patterns



Summary

- The renal cell carcinomas represent highly distinct, *unrelated* diseases.
- The cancer genome atlas provides a framework for defining a cancer.

THE UNIVERSITY of NORTH CAROLINA at Chapel Hill

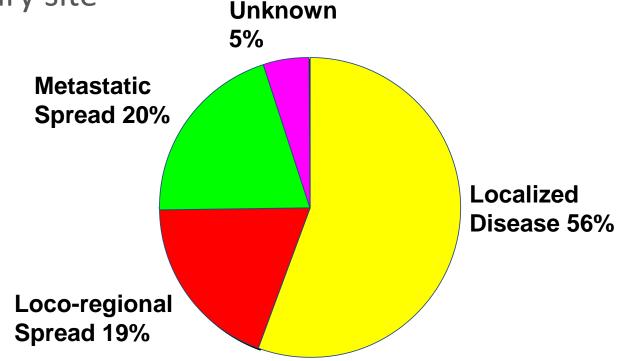
ccA + ccB = ccRCC

Molecular stratification of clear cell Renal Cell Carcinoma

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Extent of Disease at Diagnosis

 Most cancers of the kidney and renal pelvis are diagnosed when the disease is still localized to the primary site

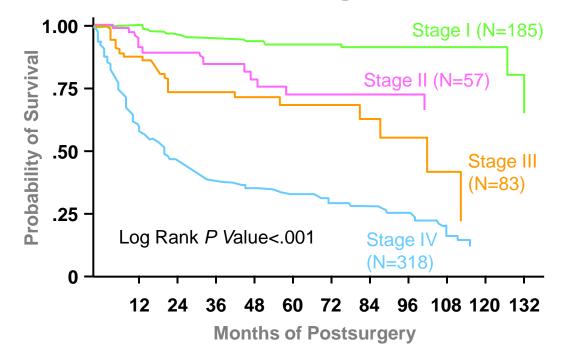


National Cancer Institute. SEER Stat Fact Sheets. Available at: http://seer.cancer.gov/statfacts/html/kidrp.html. Accessed August 28, 2008.

Determining Prognosis: Anatomic Extent of Disease

• Most consistent factor used to determine RCC prognosis

```
5-year Cancer-specific Survival
Based on TNM Stage
```



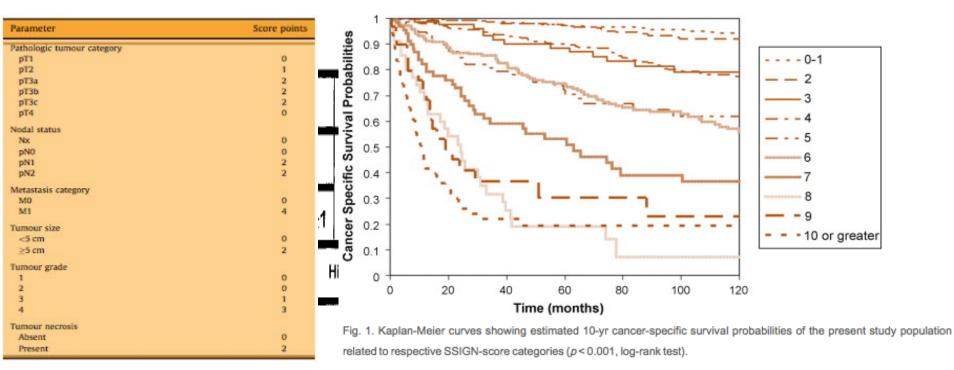
TNM Stage	5-year Cancer- specific Survival
Stage I	91 ± 2.5%
Stage II	$74 \pm 6.9\%$
Stage III	67 ± 6.1%
Stage IV	$32 \pm 3.2\%$

Reprinted with permission from Tsui KH, et al. J Urol. 2000;163:1090-1095.

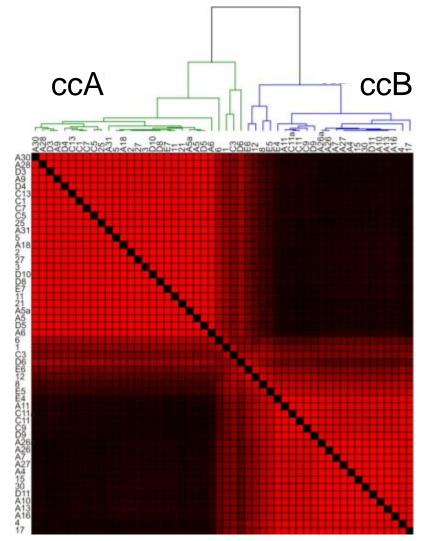
RCC Algorithms for cancer-specific survival

External Validation of the Mayo Clinic Stage, Size, Grade, and Necrosis (SSIGN) Score for Clear-Cell Renal Cell Carcinoma in a Single European Centre Applying Routine Pathology

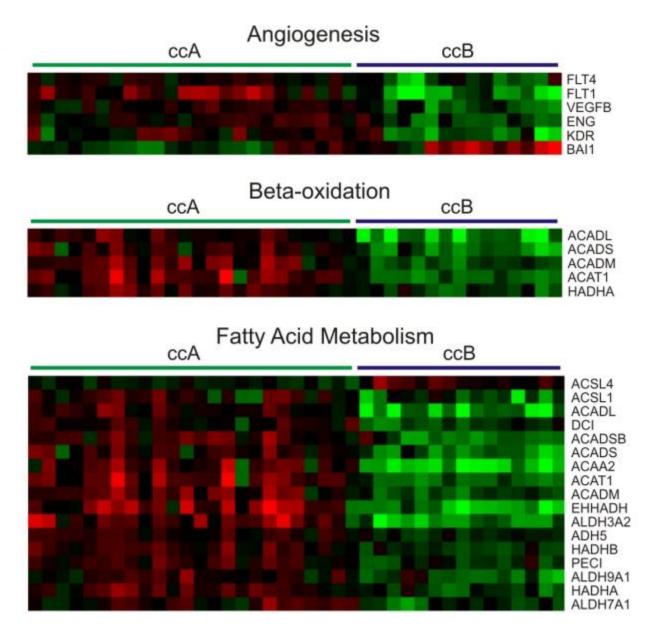
Richard Zigeuner^{a,} , Seorg Hutterer^a, Thomas Chromecki^a, Arvin Imamovic^a, Karin Kampel-Kettner^a, Peter Rehak^b, Cord Langner^c, Karl Pummer^a



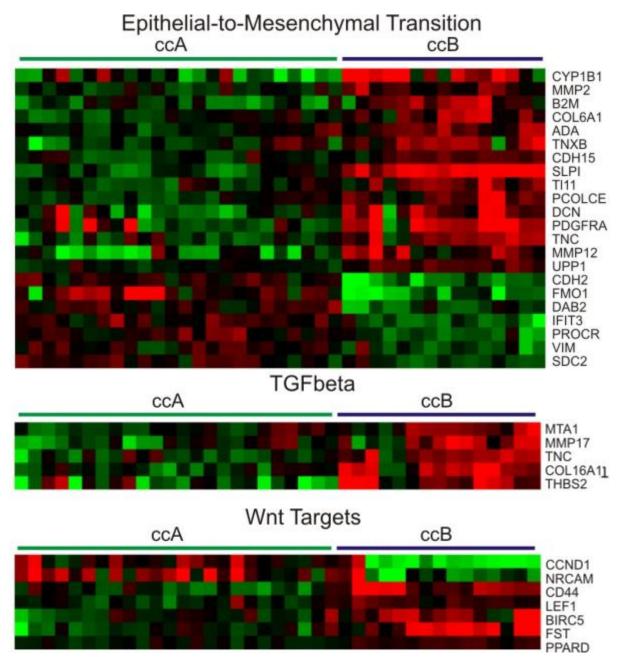
Consensus clusters permit refined analysis



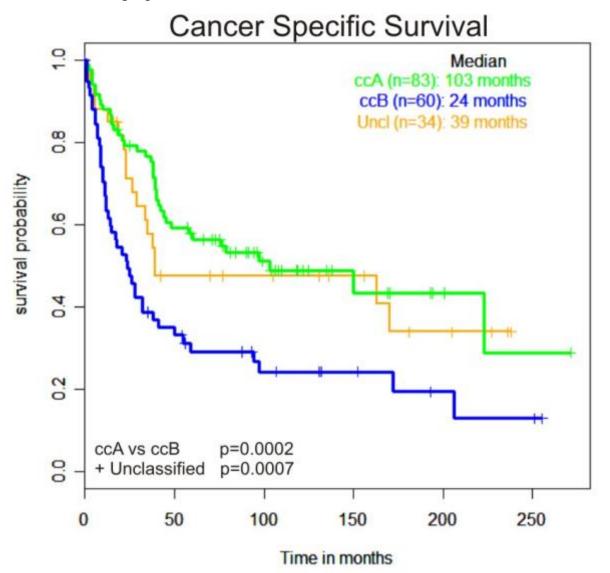
ccA overexpresses RCC pathways



ccB overexpresses aggressive genes

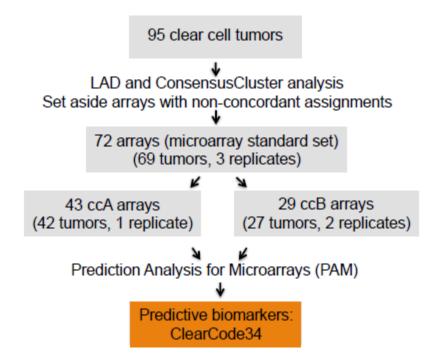


Marked survival differences between subtypes in validation set

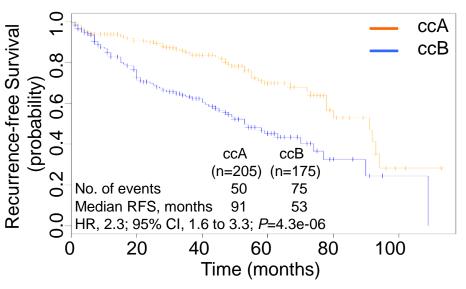


Brannon, et al, Genes and Cancer, 2010

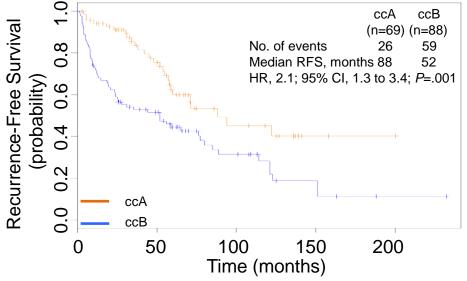
Creating a predictive tool



Prognostic value of ClearCode34 evaluated in TCGA



Prognostic value of ClearCode34 validated in UNC cohort



Prognostic value of ClearCode34 validated in TCGA

		nivariate Model		variate odel	Final Model
Variable	HR	Р	HR	Р	Р
Subtype*	2.2	<.001	1.7	<.001	.0009
Stage ^⁵		<.001			.0007
II	1.4	.121	1.3	.307	
III/IV	2.4	<.001	1.8	<.001	
Grade		<.001			<.0001
3	1.6	.002	1.3	.138	
4	5.1	<.001	3.1	<.001	

Abbreviation: HR, hazard ratio

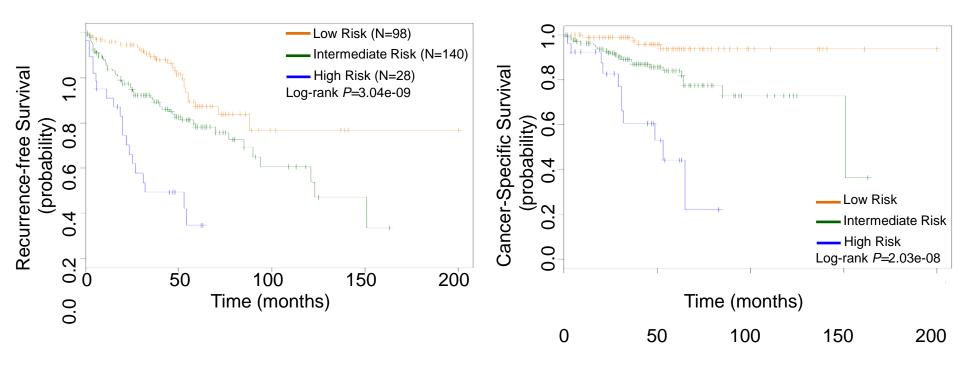
Subtype ccA was used as reference in univariate and multivariate analysis.

\$ Stage I was used as reference in univariate and multivariate analysis. Stage was encoded as an ordinal variable with three levels.

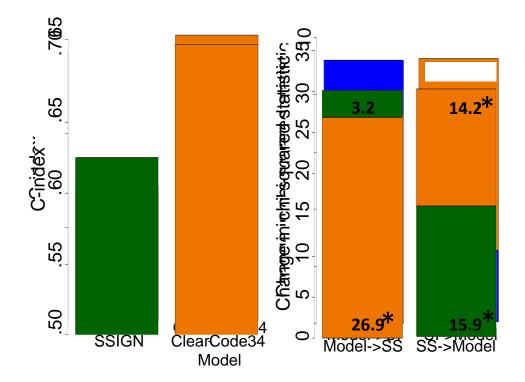
|| Grade 1 and 2 were combined and used as reference in univariate and multivariate analysis. Grade was encoded as an ordinal variable with three levels.

Integrated prognostic models can evaluate risk outcomes

Group	Risk Score
Low	0-0.5
Intermediate	0.5-1.5
High	>1.5



ClearCode34 Model outperforms established algorithms



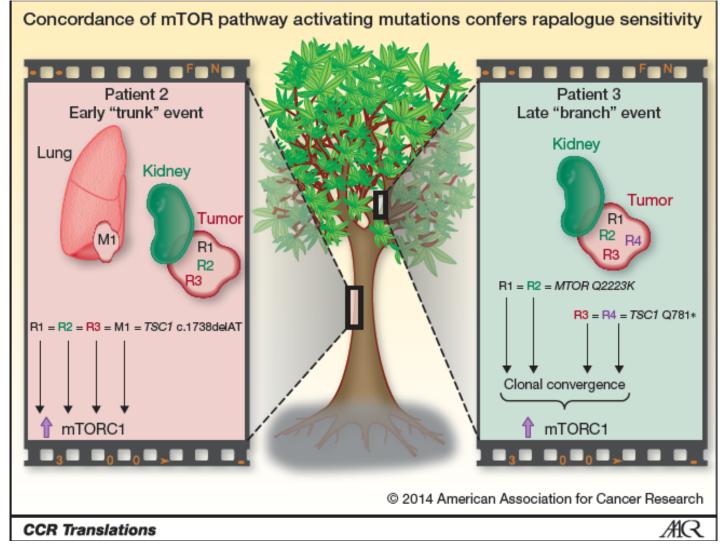
Summary

- Clear cell RCC can be divided based on gene expression into two groups.
- ccA and ccB tumors can be discriminated with 34 genes.
- A nanostring probeset allows assignment in fixed clinical specimens.
- Biomarkers add to clinical data in predicting risk assignments.

Heterogeneity-Hype, Hysteria, or Headache

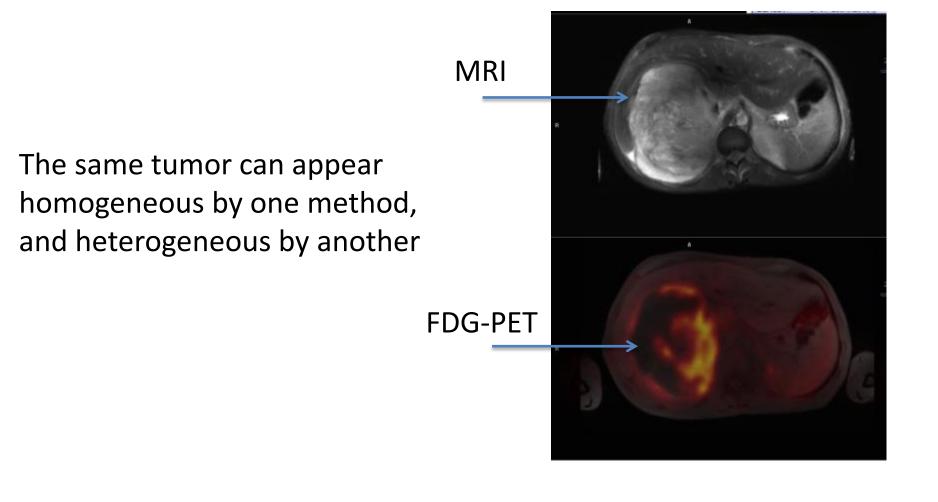
THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

RCC tumors-heterogeneity, with convergent evolution



Images of renal tumors:

Imaging, another look at heterogeneity

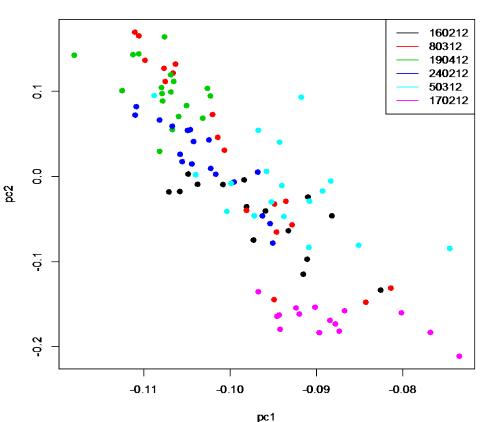


Measuring classes: Small renal masses

Low degree of gene expression heterogeneity in small tumors

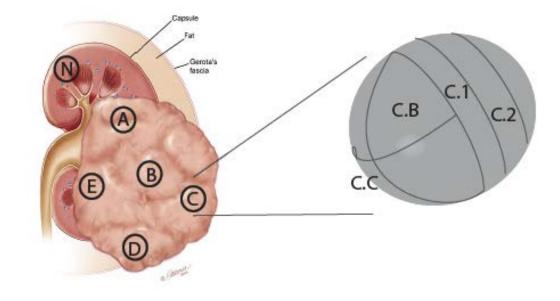
	No.		
Sample	Biopsies	Sublocations	Classification
160212	3	12	ссА
170212	3	12	ccA
240212	2	15	ccA
50312	3	15	ccA
80312	3	15	ccA
190412	3	15	ccA

University of Toronto Banking Study

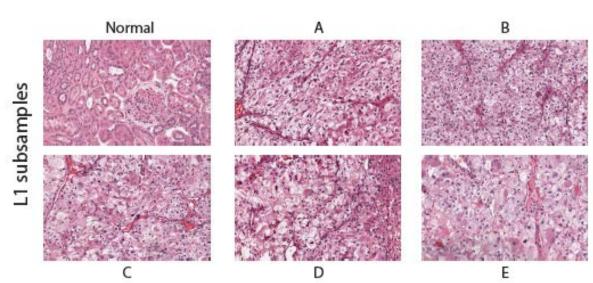


A tale of one tumor.

Α.



Β.

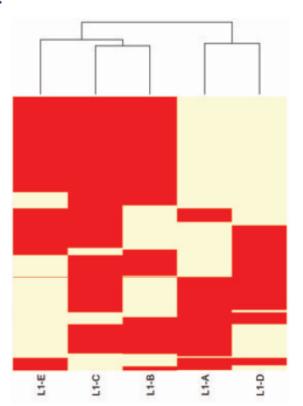


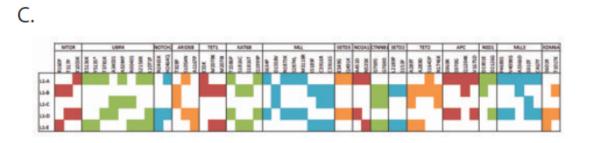
DNA Heterogeneity

Α.

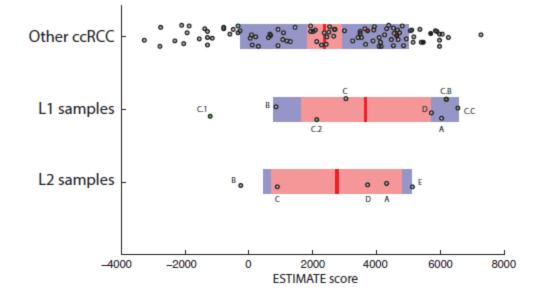
B.

Tumor	% reads mapped	% perfect pair
L1-A	93.4	80.5
L1-B	91.1	<u>66.8</u>
L1-C	88.4	49.5
L1-D	90.5	<mark>65.1</mark>
L1-E	89.2	56.7

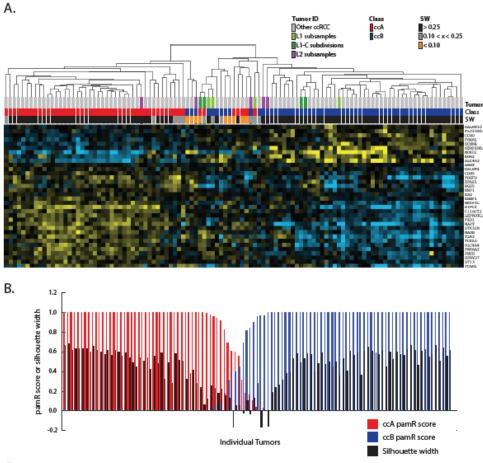




Effects of tumor purity.



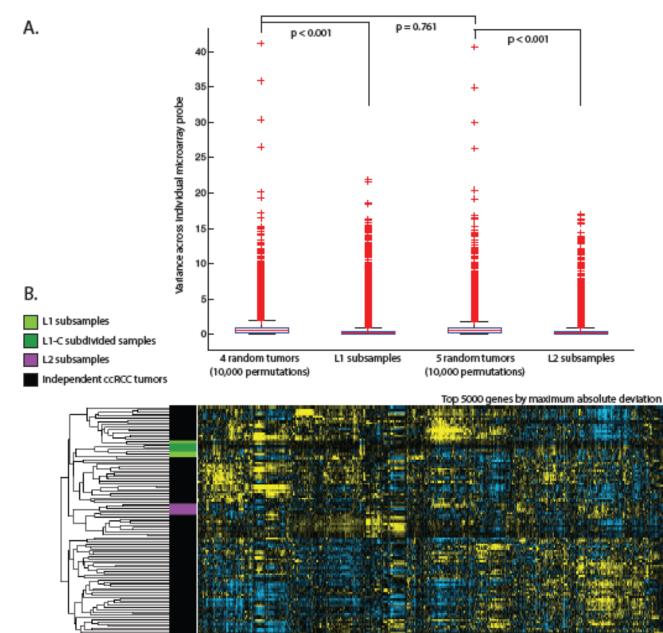
Heterogeneity of gene expression



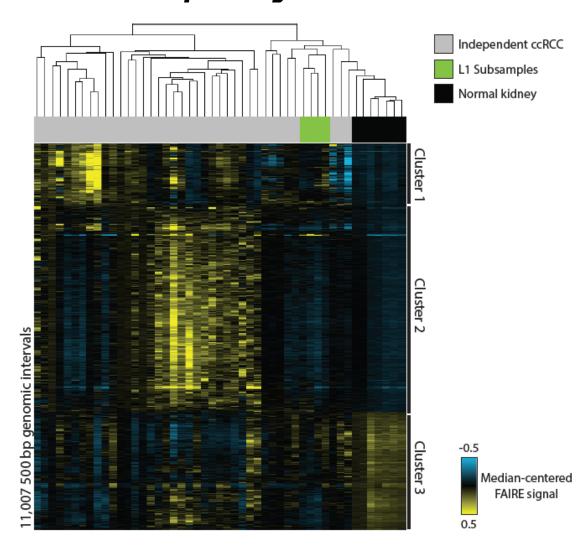
C.

Subsample ID	ccA PamR	ccB PamR	Class	Silhouette Width
L1.A	0.000	1.000	ccB	0.606
L1.B	0.001	0.999	CCB	0.237
L1.C	0.000	1.000	ccB	0.261
L1C.1	0.940	0.060	CCA	0.177
L1C.2	0.598	0.402	CCA	0.057
L1C.B	0.000	1.000	CCB	0.393
L1C.C	0.000	1.000	CCB	0.381
L1.D	0.685	0.315	CCA	0.129
L2.A	1.000	0.000	CCA	0.504
L2.B	0.004	0.996	CCB	0.192

Variance by gene expression



And the winner for most stable platform is...



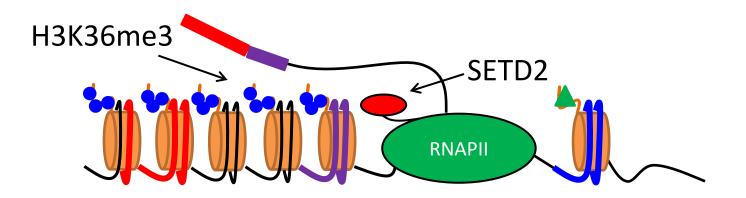
Summary

- Heterogeneity is the new normal, with pathway homogeneity (convergent mutations).
- Renal cell carcinomas can be heterogeneous, but this likely emerges with stage.
- Heterogeneity: DNA>RNA
 Biomarkers>RNA>enhancers
- Can imaging enable us to take a holistic view?

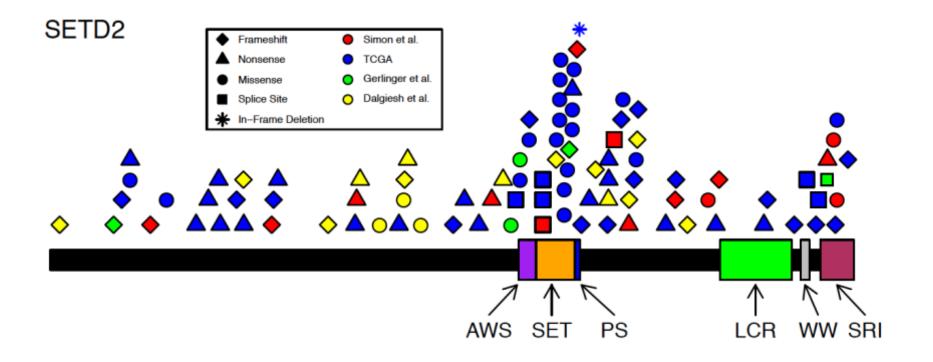
SETD2, transcription, and the histone code

"Unraveling" the cancer genome

SETD2: a required H3K36 methyltransferase



SETD2 is mutated in ccRCC



SETD2: a required H3K36 methyltransferase

H3K36me3

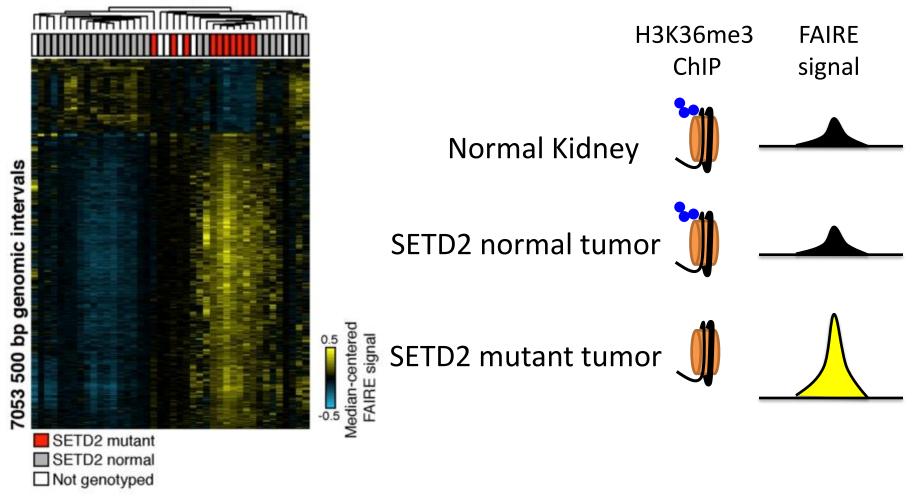
High Low H3K36me3

Loss of SETD2 has been shown to be associated with:

- Decreased global H3K36me3 levels
- Differential exon inclusion for individual genes (Luco et al., Science 2010)

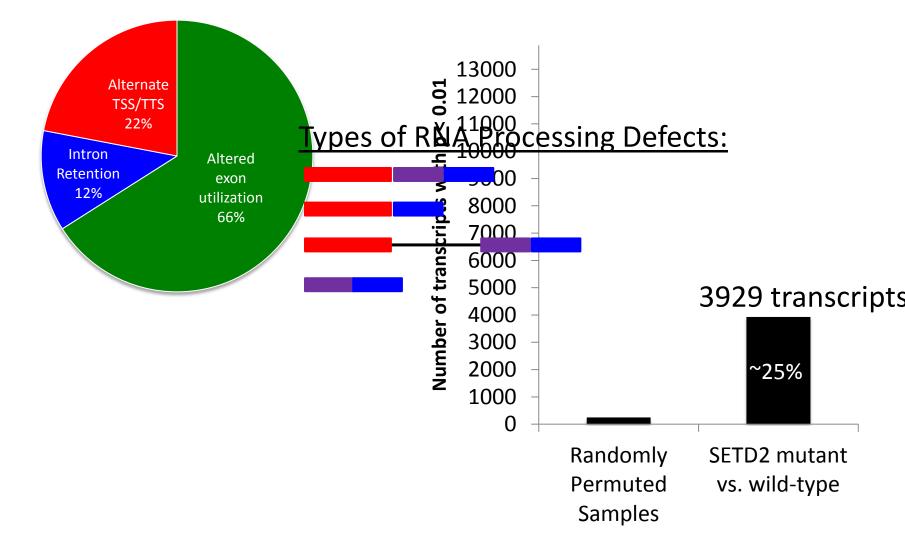
Tumors with SETD2 mutations display altered chromatin organization

FAIRE signal



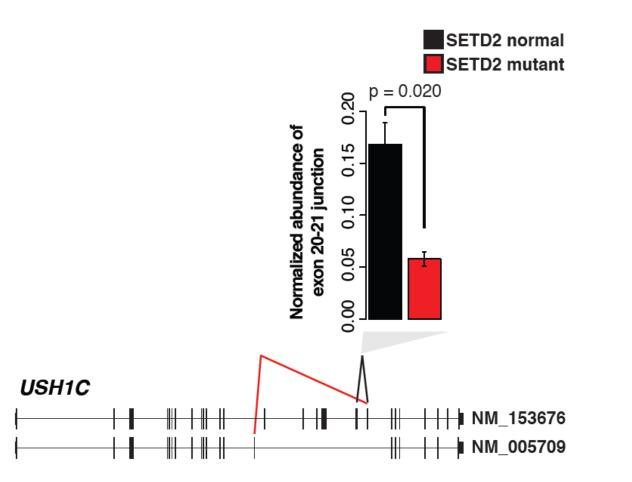
With Jeremy Simon

Tumors with SETD2 mutations display aberrant mRNA processing in poly(A)+ RNA

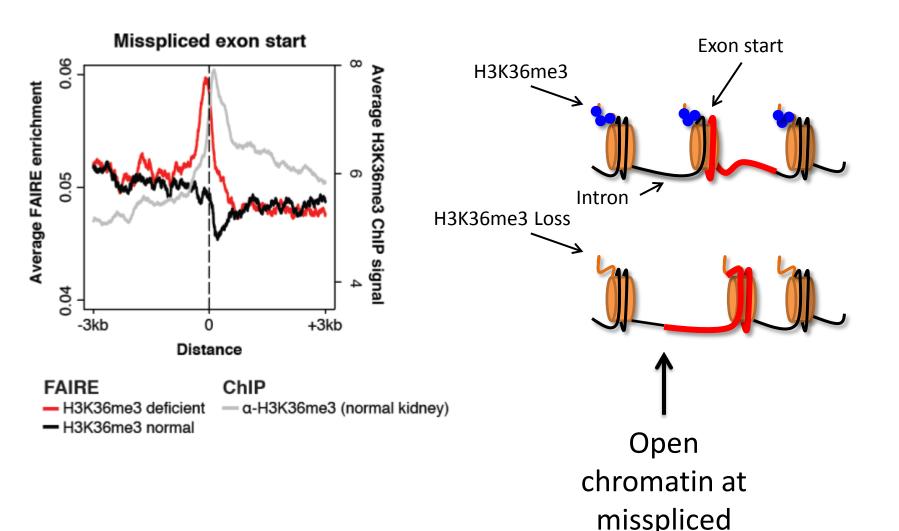


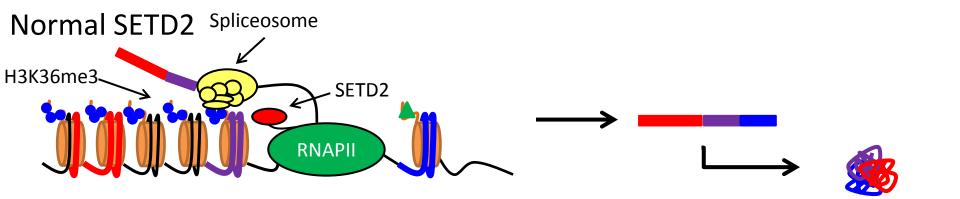
Darshan Singh, Jeremy Simon, Kate HackeThe Cancer Genome Atlas ccRCC

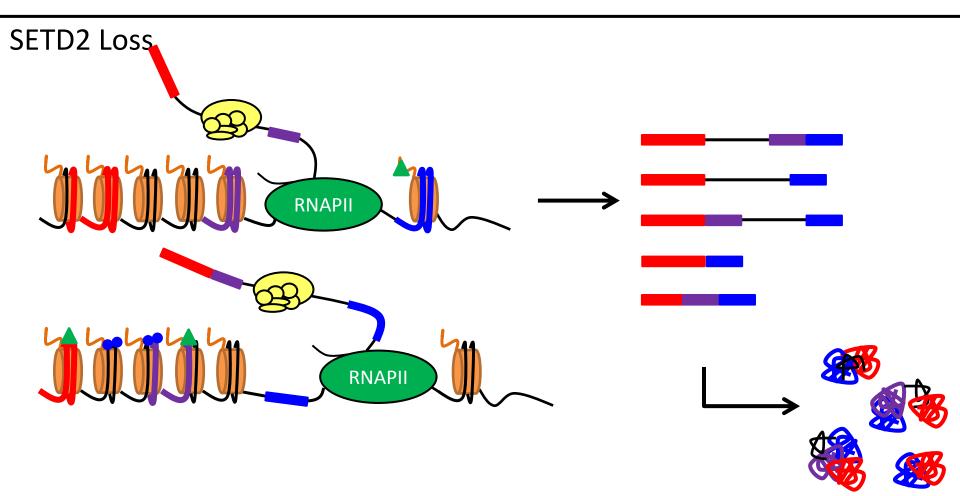
Tumors with SETD2 mutations display aberrant mRNA processing in poly(A)+ RNA



Sites of altered splicing display an increase in chromatin accessibility

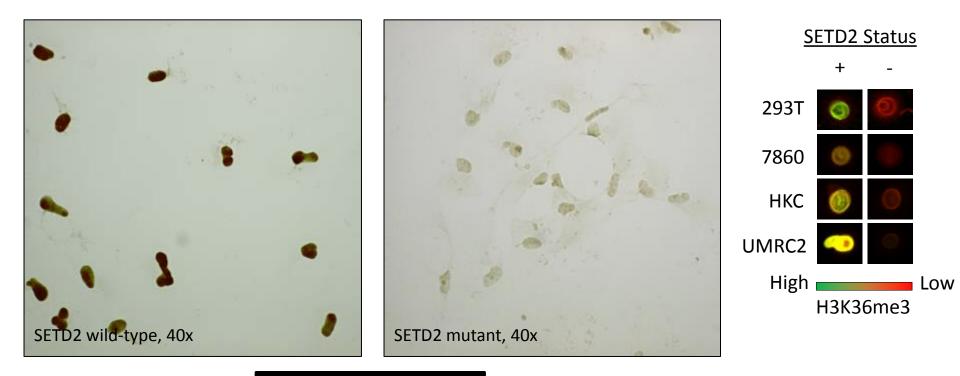






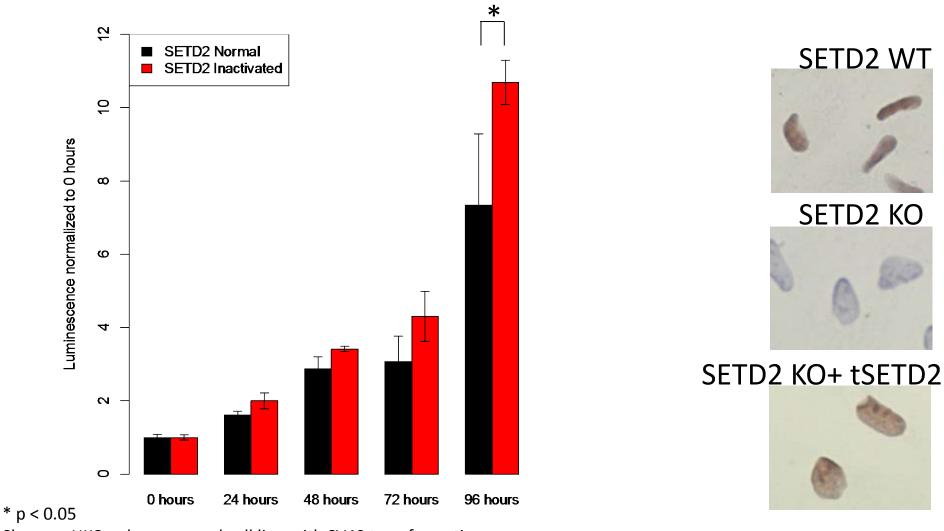
All three SETD2 alleles in 7860 cells are targeted SETD2 Wild-type WW SRI AWS PS SET LCR Left Target Spacer **Right Target** TCATGTAACATCCAGGCCACTGCTGGCTACTACCACAGCAGTAGCATCTCCA - 3' <u>Allele</u>: **Representative SETD2 Inactivation** #1 5' - TCATGTAACATCCAGGCCACTGCTGG----T---CAGCAGTAGCATCTCCA - 3' #2 5' - TCATGTAACATCCAGGCCACTGCT---ACTACCACAGCAGTAGCATCTCCA - 3' #3 5' - TCATGTAACATCCAGGCCACTGCTGGC-ACTACCACAGCAGTAGCATCTCCA - 3'

Single cell sorting isolates SETD2 inactivated, H3K36me3-negative clones



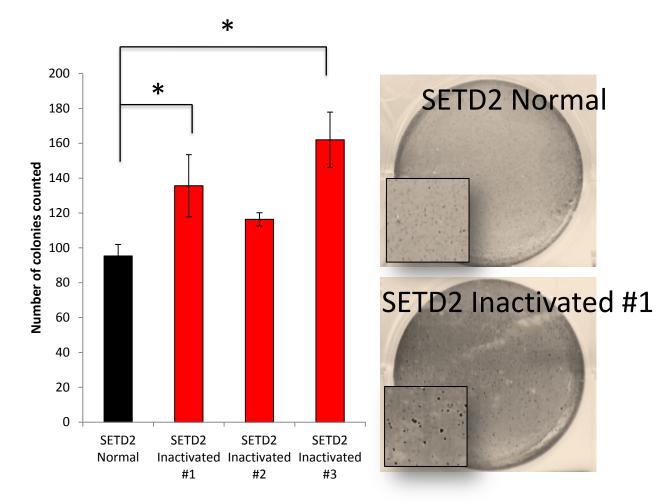
anti-H3K36me3

SETD2 loss increases cell proliferation



Shown = HKCs – human renal cell line with SV40 transformation Confirmed in: 293Ts and 7860s (human ccRCC cell line)

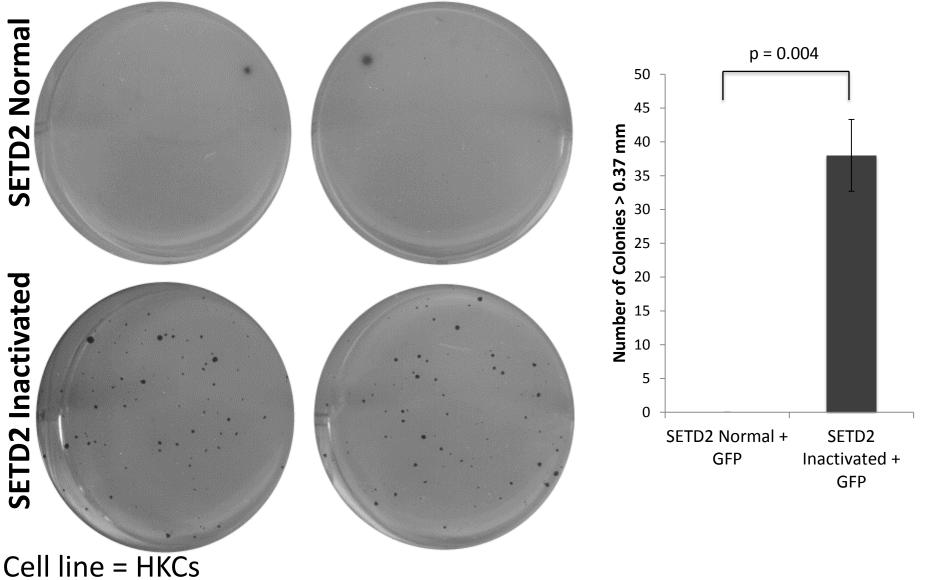
SETD2 loss increases anchorageindependent growth



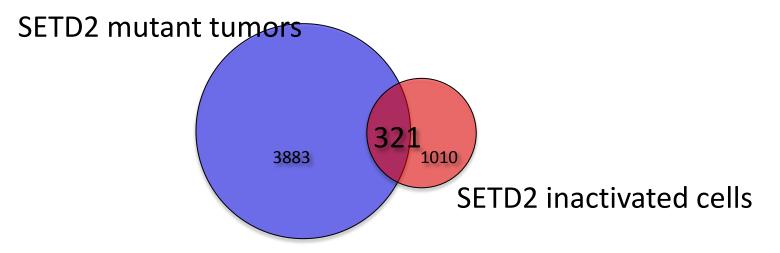
Cell line = 7860s

*p<0.05

SETD2 loss is sufficient for anchorageindependent growth



Isolated SETD2 loss results in widespread RNA processing defects



- 1269 aberrantly processed transcripts → 1010 individual genes
- ~32% overlap with aberrant transcripts in SETD2 mutant tumors
- Overlapping transcripts affect of wide variety of cellular processes

Isolated SETD2 loss results in widespread RNA processing defects

	p = 0.05				1
Chromosome of	ganization				
Ubl conjugation					
Nucleoplasm					
Chromatin regu	ator				
Cytoskeletal org	anization				
Protein-lysine N-met	yltransferase activi	ty			
Cell cycle					
DNA recombina	ion				
Actin binding					
Histone modific	ition				
Chromatin remode	ng complex				
Transcription from RN	PII promoter				
Telomere maintena	nce				
Regulation of cell n	otion				
Transcription regulation	n				
0 0.5 1.0	1.5 2.0 2.1 -log10(p-valu		3.5	4.0	4.5

Summary

- SETD2 mutation is associated with changes in chromatin pattern and RNA processing.
- Association with loss of nucleosome at misspliced exon starts.
- SETD2 loss confers a proliferative and survival advantage.

THE UNIVERSITY of NORTH CAROLINA at Chapel Hill

Acknowledgments

Rathmell Lab Kate Hacker Alex Arreola Samira Brooks Zufan Debebe, PhD Catherine Fahey Sudarshan Mohan Neal Rasmussen, PhD Oishee Sen Adam Sendor

Rathmell Lab Past Members **Rose Brannon, PhD** Shufen Chen, MD, PhD Lance Cowey, MD Caroline Martz Lee, MD, PhD Courtney McGuire, MS Tricia Wright, PhD

Translational Pathology Laboratory Clinical Cytogenetics, Genomics Core

Davis Lab

Ian Davis, MD, PhD Jeremy Simon, PhD

Jordan Shavit, MD, PhD (University of Michigan)

<u>Strahl Lab</u> Brian Strahl, PhD Deepak Jha <u>Bhanot Lab</u> Gyan Bhanot, PhD Michael Seiler, PhD Anupama Reddy, PhD

Joel Parker, PhD

The Cancer Genome Atlas

Particularly: Chad Creighton, Marston Linehan, Richard Gibbs, Kenna Shaw