
2/14/2014

1

Sui Huang
Institute for Systems Biology,  Seattle, WA

Translating Cancer Data and Models to Clinical Practice
IPAM,  UCLA

February 2014

CANCER ATTRACTORS
&

PHENOTYPE PLASTICITY
IN

NON-DARWINIAN SOMATIC EVOLUTION
OF DRUG RESISTANCE

The problem of tumor resistance / recurrence

CPP
150 mg/kg (qtd)

CPP

days

Why do tumors come back – often in a more malignant form?

???
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latency

Hallmarks
of cancer

Hanahan & Weinberg, 2011
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How can non-specific perturbations
(cytotoxic drugs, irradiation, toxins)

invariably produce
the highly sophisticated phenotype

(= resistant, stem cell-like)
of recurrent tumors?

IN
T

R
O

D
U

C
T

IO
N

Somatic Evolution of Drug Resistance: a new model

NEO-DARWINISM

Susceptible state Resistant state

selection instruction +    (non-genetic) selection

DRUG

by chance or
drug-induced

► frequent
► random or directed
► may be reversible

 But what is this “landscape”?   (mechanism behind the metaphor)
Whence the “urge”  (directionality)  towards the resistant, stem –cell like state?

We proposed a new picture:

DRUG

Mutation

DRUG

DRUG
SELECTION

► rare
► random
► pre-existing

Resistant
cells

STANDARD VIEW
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TALK   OUTLINE

Theoretical concepts
● Gene networks and the Epigenetic Landscape,

● Cancer as attractors

Experiments: to give a feel of state transitions
● High-dimensional attractors,

● Non-genetic heterogeneity,
● State transitions

Application to Cancer
● Resistance development:

Non-Darwinian dynamics

DEVELOPMENT:
Gene expression program change = state transition  (– same genome)

carcinoma
In situ

autonomous
tumor cell

invasive, angiogenic
tumor cell

metastastatic
tumor cell

MULTI-STEP PROGRESSION:
“ somatic evolution driven by mutations ”

Cancer progression:   an unarticulated paradox

Stem cell Progenitor
cells

Precursor
cells

Differentiated
cells

Cell phenotype A Cell phenotype B
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DEVELOPMENT
“Epigenetic”

Phenotype Switch

CANCER
Genetic Mutation

Quasi-discrete Phenotype Transformations

mutation
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SA = [xA
1, xA

2, .., xA
N] SB = [xB

1, xB
2, .., xB

N]

Cell phenotype A Cell phenotype B

Distinct
Phenotypes ~ 3000 genes

Huang et al., PRL 2005

GEDI map:
= one transcriptome
• Pixel  position = gene
• Color = mRNA level
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Current molecular biology description
From GENES to CELL PHENOTYPE SWICTH

Distinct
Transcriptomes

One
Gene Regulatory

Network
ISB

 high-dimensional!
(n genes change expression)
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neuron

liver

muscle

kidney

prostate

The phenotype diversity sans mutation: The tree of development

ISB

pluripotent
stem cell
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neuron

liver

muscle

kidney

prostate

The phenotype diversity sans mutation: The tree of development

cancer ??

ISB

pluripotent
stem cell
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SA = [xA
1, xA

2, .., xA
N] SB = [xB

1, xB
2, .., xB

N]

Xi

Dynamical systems view

ISB

● high-dimensional systems
● heterogeneous ensemble

of systems

Local dynamics:
 Multi-stability

but we need:

relative stability
between >2
attractor states!

Global dynamics

Dynamical systems framework

ISB

xi(t)

ex
pr

es
si

on
 le

ve
l

attractor
state

SA = [xA
1, xA

2, .., xA
N]

a network state ~ a cell state
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Local dynamics:
 Multi-stability

but we need:

relative stability
between >2
attractor states!

Global dynamics

Dynamical systems framework

ISB

xi(t)
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attractor
state

Quasi-potential

SA = [xA
1, xA

2, .., xA
N]

a network state ~ a cell state
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From gene regulatory network to quasi-potential landscape

unique mapping

A
B

state space x
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There is no function U(x) that
satisfies = −

=A fully specified
gene regulatory network

= − + ( ) Decompose vector field:

steady-state
probability distribution   (measurable)
(J. Wang)

= − ln( )

such that ( ), ( ) = 01

= − + ( )2

∆ = ∆ = − ( ) Wentzell-Freidlin
quasi-potential

:  magnitude of noise( → ) = /
“Cond. probability for A B”
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unique mapping

A fully specified
gene regulatory network

Meaning of the Quasi-potential landscape

ISB

= network
state

= cell
state

REMEMBER  FOR  LATER

■ Change in specification of the network (incl.
mutation, … etc)  change in shape
(=topography) of  the landscape

■ Transient perturbations of expression variables
 attractor transition

i

FACSort
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ln	Cell population

U(x)

Modern quasi-potential landscape
based on notion of network dynamics
(but: often still equally metaphoric)

• 1940 Waddington
(‘valleys’ in landscape)

• 1949 Delbrück (bistability)
• 1961 Jacob & Monod (gene circuits)
• 1969 Kauffman (networks)

Similar ideas (“Biological cell state as attractor”)

Waddington 1957

Mathematical equivalency
Molecular basis

ISB

Waddington‘s
“Epigenetic Landscape”

We can roughly estimate
the landscape topography
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Utility of quasi-potential: Directionality near Bifurcation

A A
C

C
C CA

A
B

B B B

parameter change
(decrease in auto-stimulation  decreases)

LOCAL STABILITYreversal  of
relative stability
reversal  of
relative stability
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Simulation gene network evolution
(Gene duplication + rewiring + selection:  )
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The Epigenetic Landscape
grew downwards during  evolution...
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 There is a global slope.
Attractors near the top of the landscape are

phylogenetically older and ontogenetically more immature

new attractors have to be
accessible to existing attractors

MUTATION

N = 100 genes
 100,000 attractors

ISB

with
Max Aldana

(UNAM)

de
ve

lo
pm

en
t

IN SILICO EVOLUTION:

many attractors
are abandoned
or never used

evolution
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The Cancer Attractor
Hypothesis
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ISB

Cell-Cell
Communication

ASSEMBLING THE CONCEPTS TO DREAM MODEL:
The epigenetic landscape of the entire genome (CARTOON!)

lowest attractors = terminally differentiated cell types
● Stable ● discrete ● no fate option (“restricted”)

Waddington’s  ‘Chreods’
= state space trajectories

OK, still qualitative – but: in principle inevitable.
 allows specific qualitative predictions . . .
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uncharted terrain
with unoccupied

attractors

Huang, Progr. Biophys. Mol. Bio, 2012

Unoccupied attractors
represent cancer cells.

EXPANDING AN
OLD HYPOTHESIS:

Kauffman, 1971
see Huang, Ernberg & Kauffman, 2011

Properties of
cancer attractors

► Never evolved to serve tissue function
 “asocial”,  primordial cell functions, unstable

► No access to normal development
 when occupied:  cells stuck in immature state

C
O

N
C

E
P

T
S

evolution of chreods
carved out  a smooth path
to assure safe descend
to mature cell types
 tumor suppressor

genes

TALK   OUTLINE

Theoretical concepts
● Gene networks and Epigenetic landscape,

● Cancer as attractors

Experiments: to give a feel of state transitions
● High-dimensional attractors,

● Non-genetic heterogeneity,
● State transitions

Application to Cancer
● Non-genetic dynamics

● Drug screening: The Perturbation space
● Resistance development: Non-Darwinian
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Sca-1

SUMMARY: Manifestations of high-dimensional heterogeneity
and dynamics on the attractor landscape

L M H

6 days
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EML cells,
clonal

Property X

U

CD11b

CD11b

Perturbation
(differentiation)

apparent “non-responders”
do respond – in hidden dimensions:

DELAYED  or SPRAYED

not the same!

“untreated”

“treated”

= “primed state”

1 Clone

Sca-1

SUMMARY: OUTLIER (tail fraction) CELLS: are primed to transition
into neighbor attractor
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Differentiation rate1
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Myeloid (+ GMCSF)
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ISB

	 	
state A state B

→ | ~	 	/ %
 S

ta
te

B

Time

■ Rugged landscape: fractionated response to perturbation

■ Bifurcation “rebellious” cells

■ Heterogenization Heterotypic cell-cell interactions
■ Differential growth rates complex population dynamics
■ …

Theory predicts many non-intuitive
properties for state transitions

perturbation
(“catalysis”)

desired
end state

starting
state

desired
end state

The canonical
bi-potential framework

dispersion into many new states
- some in “opposite direction”

Don’t forget: Complex landscape –
We have more than just two potential wells

starting
state

A

B
A’

undesired!
=rebellious cells

C

destabilization
of starting state

destabilization
of starting state

SYMMETRY-
BREAKING
BIFURCATION
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β
α

γ

EML progenitor, P

erythroid
( E )

myeloid
( M )

+IL3/GM-CSF

Sca1+ Sca1++

Sca1-
CD11b+

CD11b-

Split into three
intermediate populations
(heterogeneization due to asynchronous transition)

α      β      γ Transient
Rebellious cells!

ISB

CD11b

desired fate

A

STIMULUS

B

Single cell RT-PCRGATA1 PU1

1

2

3

4
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6

7

8

9

10

GATA1 PU1

1

2
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4
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7

8

GATA1 PU1

1
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8

9

GATA1 PU.1 GATA1 PU.1 GATA1 PU.1
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a
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FACS
sort  individual cells

ISB

EML progenitor, P

erythroid
( E )

myeloid
( M )

+IL3
GM-CSF

Sca+

Sca-
CD11b+

undesired!
=rebellious cells

Sca++
CD11b-

CD11b ~ State space

GATA1 -
PU.1 +

GATA1 +
PU.1 -

GATA1 PU.1

B

A’

biased
destabilization

C

A’
C
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TALK   OUTLINE

Theoretical concepts
● Gene networks and Epigenetic landscape,

● Cancer as attractors

Experiments: to give a feel of state transitions
● High-dimensional attractors,

● Non-genetic heterogeneity,
● State transitions: Rebellious cells

Application to Cancer
● Non-genetic dynamics

● Drug screening: The Perturbation space
● Resistance development: Non-Darwinian

Mutation or chronic perturbation can allow cells to
enter an the unoccupied attractors

MODEL
– unites genetic and non-genetic causes of cancer
– explains multiple discrete substates in clonal cancer populations
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Cancer cells also partition into discrete types

AdenocarcinomaSquamous carcinoma Small cell carcinoma Large cell carcinoma

33 % 25 % 25 % 16 % Minna et al., 1985

Major Lung cancer histologic types
( > 90% of all cases)

(normal lung place holder)
Carcinoid  place holder)

(Transcriptomes of
2 patients for each type)
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Tumors partition into discrete, stable types:
Highly specific patterns that do not exist in healthy organsims

MDA436 MDA157

HCC1954 BT20

MDA468 HCC70

HCC1143HCC1187

MDA453 ZR75-1

MCF7 HCC1428

SUM52 MDA134

Luminal Basal

(A
) 
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E

M
T

HCC1937

HCC3153

BRCA1 mutants

Breast cancer:  natural types

No continuum (despite genomic chaos) but:   characteristic,
quasi-discrete distinct patterns  best explained by attractor states.

(breast  cancer
cell lines)

 Partitioning into types of
characteristic patterns

Da
ta

 fr
om

 K
ao

 e
t a

l,
PL

oS
On

e,
 2

00
9



2/14/2014

17

DRUG RESISTANCE
DEVELOPMENT

4d

6d

15d

18d

12d

9d

1.5%

FACS

re-equilibriates in < 12h

MDR-LOW
XL = 98.5%

MDR-HIGH
XH = 1.5%

1.5%

Am
y B

ro
ck

Dynamics of MDR1-low and MDR1-high subpopulations
Reversibility: Dynamic and Non-genetic

re-equilibriates in 17d

Clonal HL60
(leukemic) cells

FACS1.5%

MDR1-high expressing cells:
The MDR1 gene confers
multi-drug resistance (MDR)

ISB

constant  ratio
= equilibrium

XL XH

 Can one select  for the MDRHIGH

state – or are they induced ?

MDR1

new attractorMDR-LOW MDR-HIGH

MDR1 (one state space dimension)
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R E M E M B E R:

NEO-DARWINISM

Mutation

DRUG

selection

A new, more accurate picture:

Resistant
cells

DRUG

Susceptible state Resistant state

instruction or     (non-genetic) selection

DRUG

by chance or
drug-induced

► frequent
► random or directed
► may be reversible

DRUG

?
Why would chemotherapy - or any other cytotoxic cell stress –

cause a stem-like resistant state?

MDR1-LOW MDR1-HIGH

1.5%

Differential fitness of the two subpopulations

+ vincristine+ vincristineno drugno drug

ISB
 Does this suffice for selection ???
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desired
fate

A

Chemotherapy

A’B
C
“rebellious”

cells

B

A’
C

State space coordinate

destabilization

SPECULATION - MORE COMPLEX MODEL

Can chemotherapy also trigger “rebellious cells”?
even more malignant

Inevitable
consequence
of change in
parameters that
promote transition
into the benign
attractor:

 also access to
more malignant
(stem-cell like )
state

differentiated/apoptotic even more stem-like

CA’

to visualize
resistant cells

vincristine+ calceinAM
(dye)

CA

+ anti-MDR1
mAB

vincristine

CA

C A’
dye
accumulation

Drug efflux capability
Expression of
MDR1 protein

Rapid appearance of Multi-drug-Resistance (MDR) + cells after vincristine

B

A’
C

State space coordinate

differentiated/apoptotic even more stem-like

destabilization
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MDR1 expression after chemotherapy: instruction vs. selection?

0h 24h 48h

MDR-
HIGH

MDR-
HIGH

MDR-LOW

47%

40%2%

MDR-
LOW

tvincristin

ISB

dye
accumulation
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Darwinian Selection
(fast selection of a non-genetic stable alternative state)

or

Lamarckian Instruction
(induction of “rebel” cells by therapy stress)

or both

?

SELECTION (Non-genetic
“DARWINIAN” mechanism)

INSTRUCTION
(“LAMARCKIAN” mechanism)

A simple quantitative model

The drug modulates :
transition rate
constant k
effective
growth rate g

MDR-
HIGH

MDR-
HIGH

MDR-LOW

47%

40%2%

MDR-
LOW

tvincristin
new attractor MDR-LOWMDR-HIGH

MDR phenotype
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cancer attractor

ISB

gL gH

XL XH

kL

kH

MDR1

dye
accumulation
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xH/xL

gL/gH

1.0

0.0

● Unlimited exponential growth of both
subpopulations

● ( XL / XH )steady state ≈  50 is invariant & stable

● Presence of MDR+ cells after 24h: xH=~ 40%

.

.
XL = XL (gL− kL ) + kH XH

XH = XH (gH− kH) + kL XL

control
vincristin

0.50 /d ~ 0.10 /d

0.25 /d* 0.37 /d*

effective
growth rate:

*Initial growth rate first day

Modeling: Growth and phenotype switch kinetics

gL gH

XL XH

kL

kH

MDR1

ISB

The only “proof”
of cell-individual
adaption

(instruction):

 Single-cell
longitudinal
monitoring
of phenotype
change

no drugno drug + vincristine+ vincristine

 instruction
not selection

12h

24h

36h

0h
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To really exclude
“selection of the fittest “

by vincristin

EXPERIMENT: blocking  fitness advantage  …

fitness phenotype =
MDR1 pump function

from
MDR1 expression
induction

decouple: VERAPAMIL

vincristin

ISB

2%    MDR1HIGH

vincristin

31%   MDR1HIGH

VERAPAMIL

vincristin

31%   MDR1HIGH

MDR1 expression
it’s not

selection

MDR
HIGH

MDR-
LOW

MDR
LOW

MDR
HIGH

Transcriptome analysis of vincristine-induced genes

vincristin 5nM

FACsort

48h

control

(mock )

wnt signal
Genes induced:
■ Stress-response genes
■ Inflammatory genes
■ Stemness genes
■ Detoxification

Genes induced:
■ Stress-response genes
■ Inflammatory genes
■ Stemness genes
■ Detoxification

dye
accumulation

This is induction
and not selection

Drug resistant ,
stem-cell like

MDR1
LOWHIGH

changes in “hidden dimensions”

 check other dimensions
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FZD7 LRP5/6

RSPO2

DVL2
CKIa

GSK3 Axin
APCDAAM

TCF PTGS2

β-catenin

β-catenin

Functional role  of the Wnt pathway in “induced” resistance

Wnt-pathway targets
up-regulated by vincristine:

= > 4-fold increase 48h after chemotherapy (vincristine)

no drug vincristine (60h)

co
nt

ro
l

ce
ll 

#

MDR1-expression
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“stemness”
stress-response

&  resistance?

EETS

Wnt pathway required for survival in vincristine
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%
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Wnt-signaling is required for
- induction of MDR1,
- efflux phenotype and
- prolonged survival
of cells in vincristine .

10nM
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Mutation

DRUG

DRUG
SELECTION

(pre-existing !)

Resistant
cells

Susceptible Resistant stemnessDead
State space

NON-DARWINIAN evolution of resistance

“Survival of the fittest”
(Darwin/Spencer)

“What doesn’t kill me makes me stronger ”
(Nietzsche)

see:   Huang S., Progr. Biophys. Mol. Biol. (2012)

DRUG DRUG

a kind of LAMARCKISM

State space

non-genetic
heterogeneity

NEO-DARWINISM

INDUCTION

+SELECTION

+ many new stem-like
“atavistic” survival functions

 Why do tumors come back – often in a more malignant form?

■ Cancer is not (just) a “genetic disease” !

■ There is an inherent limitation to killing cancer cells.
– partial destruction is not partial success …

but can be worse in the long term.

■ It is not all “mutation + selection” !
– there is enormous non-genetic plasticity of phenotype

BROAD LESSONS
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