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The problem: Disseminated cancer is a fatal disease:  

Evolution almost always defeats therapy 

Note:  

1. Large number of  tumor sites 

2. Spatial diversity of response and progression  

3.  Key role of imaging 



Topics 

1. Cancer as a complex dynamical system 

2. Understanding complex systems 

requires: 

    Data 

    First Principles 

    Computational methods 

3. Clinical applications. 

 

 

 

    



Dear Sir Philada. Feb. 13. 1750 

You desire to know my Thoughts about the N.E. Storms beginning to Leeward. Some 

Years since there was an Eclipse of the Moon at 9 in the Evening, which I intended to 

observe, but before 8 a Storm blew up at N E. and continued violent all Night and all next 

Day, the Sky thick clouded, dark and rainy, so that neither Moon nor Stars could be seen. 

The Storm did a great deal of Damage all along the Coast, for we had Accounts of it in the 

News Papers from Boston, Newport, New York, Maryland and Virginia. But what surpriz'd 

me, was to find in the Boston Newspapers an Account of an Observation of that Eclipse 

made there: For I thought, as the Storm came from the N E. it must have begun sooner at 

Boston than with us, and consequently have prevented such Observation. I wrote to my 

Brother about it, and he inform'd me, that the Eclipse was over there, an hour before the 

Storm began.  

Franklin was among the first to recognize the error of applying  simple linear thinking to 

complex, non-linear dynamical systems, 

But not  the last 



Learning from meteorology 

Weather is a dynamic, 

complex and non linear 

system -  but predicting 

weather is mundane 

Forecasting has greatly 

improved through large 

data sets, physical first 

principles (N-S 

equations), and constant 

updating of predictions 

with new data 



Cancer as a complex, adaptive system 

– the math/oncology interface 

Human intuition is poorly adapted to predict 

dynamics in non-linear systems. 

Leads to overly simplistic views – e.g. the 

genetic model of cancer.  

We need computational models 

Mathematicians typically are distant from 

biologists 

Leads to modeling that simply accepts the 

simplistic biological paradigms 

Mathematicians proposing novel dynamics often 

have little connection to the biology. 



Integrated Mathematical Oncology (IMO) at Moffitt – 

Embedding mathematicians in a cancer center 

Cancer is complicated and 
complex but not 
incomprehensible!  

First principles will exist 

Quantitative models linked to 
experimental and clinical 
data are necessary to define 
tumor dynamics 

 Evolution provides a unifying 
framework – first principles 

Imaging, by non-destructively 
defining spatial and temporal 
heterogeneity, is the key 
experimental tool 

 



A “hurricane model” for every patient 

Principle Components: 

Big data – spatial and 

temporal 

Dynamics from first 

principles 

Timely and clinically 

accessible 

computation models 

predicting optimal 

therapy 

Constant feedback 

comparing prediction 

to outcomes 
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Conventional molecular/genetic approach 

to “personalized” cancer therapy 

Is this the data we need? 



Questions 

 

What was the heterogeneity of EGFR mutation 
within and between the metastases? 

What other factors affected response? 

Could progression free survival be increased 
with treatments other than constant maximum 
dose erlotinib? Was SOC dosing  the best 
strategy available? 

Now what??? 

 



Data: Recent recognition of  intratumoral molecular 

heterogeneity 

Sottoriva et 

al. PNAS, 

2013 

“Gene-expression signatures of good and poor 

prognosis were detected in different regions 

of the same tumor”  

Gerlinger, et al. NEJM, 2012 

“…extensive intratumor 

heterogeneity, with 

most patients displaying 

different GB subtypes within 

the same 

tumor.” 

Bad news: 

1.Each examined tumor is spatially heterogeneous 

2.Each examined tumor is dead 



Data and dynamics. What is the source of 

heterogeneity?: Intratumoral evolution generally 

ascribed mutations (“mutator phenotype”) 

More bad news: If intratumoral evolution is driven by 

random mutations, spatial heterogeneity in molecular 

properties is fundamentally stochastic and 

unpredictable 



Darwinian Dynamics can be studied 

without genetics 

Heritable Variation in phenotypes  (note 

reaction norms in cancer and normal cells) 

Fitness is contextual - depending on 

environmental selection forces 

 
 



Defining data: What does genetics tell 

us and not tell us? 

Note : Dandelions are asexual  and  triploid 



Optimal data is non-destructive, readily 

available and spatially or temporally explicit 

. 



Goal: Maximize value of data.  

Intratumoral heterogeneity as a function of 

environmental variation (blood flow) 

Blood flow and cytotype may be linked 

using evolutionary principles 



Imaging to define intratumoral 

ecology (habitats) 

 

T1-Post gad is a metric of blood 

flow and substrate availability 

T2, Diffusion weighted, and 

FLAIR sequences are measures 

of cellularity and interstitial 

edema 

Superimposing the images could 

generate ecological maps of 

environmental selection forces 

and size of adapted populations  



© M. RAGHAVAN, MD 
COURTESY OF MU ZHAO 

Using clinical imaging to define spatial variations 

in tumors 



3D SPACE 

2D SPACE 

Each habitat can be projected back into 

the tumor image 



Habitat Imaging in GBM  
(fuzzy c-means clustering) 

T1 

T2 

FLAIR 



Habitat distribution predicts survival 



Temporal dynamics: GBM habitats change 

dramatically after radiation/chemotherapy 



Cancer therapy selects for cancer cells resistant to treatment, a 

process that is fundamentally evolutionary. To what extent, however, is 

the evolutionary perspective employed in research on therapeutic 

resistance and relapse?  We analyzed 6,228 papers about therapeutic 

resistance and/or relapse in cancers and found that the use of 

evolution terms in abstracts has remained at about 1% since the 

1980s.  However, detailed coding of 22 recent papers revealed a 

higher proportion of papers using evolutionary methods or evolutionary 

theory, although this number is still less than 10%.  Despite the fact 

that relapse and therapeutic resistance is essentially an evolutionary 

process, it appears that this framework has not permeated research.  

This represents an unrealized opportunity for advances in research on 

therapeutic resistance. 

Applying first principles: Despite the critical role of 

evolution in therapy failure, evolutionary dynamics 

virtually never enter clinical design 



Applying evolutionary principles to cancer  therapy: 

Consider the diamondback moth (Plutella xylostella)  

Probably of European origin -first 
observed in North America in 1854 
in Illinois . Eats cabbage 

The moth has been treated with a 
wide range of chemicals with 
transient success  

It has now spread throughout North 
America causing serious damage 
to cabbage crops 

In 1988 the moth was reported to 
be resistant to all known 
insecticides  

A moth infestation is incurable. 
Current treatments limit pesticide 
application to reduce crop damage 



Invasive pests are now managed using 

principles of Integrated Pest Management 

(IPM): lessons from the alfalfa weevil 
“The presence of alfalfa weevils 
in an alfalfa field does not in itself 
justify pesticide application.”  

“Chemical control should not be 
used unless weevil damage 
approaches the level that will 
reduce net profit by at least the 
cost of a pesticide application”  

“Several species of wasps and a 
parasite of the adult weevil 
(Microctonus aethiopoides), have 
been introduced. In most cases, 
these natural enemies will help 
keep infestations below 
economically damaging levels”  



Lessons from  Integrated Pest 

Management – Strategic Therapy 

1. Eradication of a disseminated invasive pest is 
virtually never successful 

2. Heterogeneity in pest phenotype and 
environmental conditions will result in 
resistance to virtually any therapy. 

3. Control is possible but requires treatment 
strategies explicitly designed for that purpose  

4. Kill not the maximum number of pests but the 
minimum necessary 

5. “Biological controls” are more effective than 
chemical 



Traditional Cancer therapy: high 

dose density 
Maximum tolerable dose in shortest period of 

time 

Minimize probability of mutation conferring 
resistance. 

Three critical assumptions: 

1.Resistant populations are not present prior to 
therapy 

2.Resistance is acquired as a step-wise 
mutation 

3.The resistant phenotype rapidly proliferates 
and results in patient death. 



Why does high dose therapy 

fail?  Competitive release 
Resistant cells are present 
prior to therapy due to 
phenotypic diversity or 
microenvironmental factors 
or both. 

High dose therapy 
eliminates sensitive 
population 

Resistant populations, 
although less fit, are left 
unopposed to proliferate 
and repopulate the tumor 

 



IPM for tumor treatment: “Evolution of resistance is 

inevitable but proliferation is not”: Key parameter is cost 

of resistance 

Any resistance mechanisms 

requires resources 

Resources diverted to 

resistance are not available 

for proliferation 

In the absence of therapy, 

the resistant populations will 

generally be less fit 

The cost of resistance 

manifests in various ways 

depending on the therapy 



Adaptive therapy: Kill the minimum 

necessary and exploit their fitness 

advantage over resistant phenotypes 

   treatment 

Sensitive 

Resistant Cell 

Sensitive Cell 

   treatment 

 Low dose chemotherapy 
Less toxicity? Limit sensitive cell death 

 Attempt to maintain stable tumor burden 
 Chemotherapy sensitive cells suppress resistant cell growth 
 Induce near steady state of patient-tumor interaction 
 



In vivo application 

Mathematical Models  

High dose density results in 
shortest patient survival – killing 
sensitive cells leaves adaptive 
landscape open to rapid 
proliferation by resistant 
phenotype 

Adaptive therapy –abandon 
curative intent - limit therapy to 
stabilizing sensitive population 
which then suppresses growth 
of resistant clones 

 

Experiments: 

Adaptive therapy achieves long 
term survival with decreasing 
dose of carboplatin 

 

 



Latest application to breast cancer.  

Exploit cost of MDR using 

ersatzdroges! 



Double bind strategy: the immune 

system as predator 

Introduce a cat The squirrel adapts 



Solution Introduce a snake 



Moffitt Study 
•Protocol: 29 patients 

with small cell lung 

cancer  after failed first 

line therapy. Treated 

with 3 months of  p53 

vaccine 

•Results: Serum 

evidence of  immune 

response in all patients 

but only one partial 

response by change in 

tumor size 



Fortuitously, the patients were followed after 

exiting the trial. 21 received 2nd or 3rd line 

chemotherapy. Historical experience 

predicts a response rate of <5% 



Is this a double bind? 

Mutant p53 is known to confer drug resistance.  

Adaptation to vaccine resulted in lower p53 

expression and increased drug sensitivity 

Chemotherapy reduces immuno-suppressive 

intra-tumoral T lymphocytes enhancing the 

immune response 

Proposals: 1. Same study, repeat vaccine after 

chemo. 2. Give chemo prior to vaccine 



Predator facilitation can generate 

an “evolutionarily futile cycle” 

Initial therapy kills 

tumor cell and selects 

for resistant 

populations with a 

known strategy 

Follow with a therapy 

focused on the 

adaptation  

Repeat as necessary 



Maximal use of available 
data with focus on 
temporal and spatial 
heterogeneity 

Integrate data based on 
evolutionary and 
ecological principles as 
well as historical data 
(cohort studies) 

Always predict forward 

Constantly check 
predictions with new 
data 
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Clinical application: For every 

cancer patient, a “hurricane” model 
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So, how does this work? 

Ariosto Silva, IMO 
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Within this data set, alternative therapeutic strategies are suggested in 

some patients but cannot evaluate CR and NR individuals 
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Computational model suggests optimal 

therapeutic dosing schedule would have 

improved outcomes in 3 separate trials 



Constructing prospective patient-specific 

computational models using bone marrow biopsies 

and aspirates 

Objec ve	lens	

Myeloma	

Stroma	

E"

ECM"

Key parameter estimates: 

 

1. Drug delivery 

 

        Microvessel density  

 

2. EMDR 

 

        Fibronectin concentration   

and spatial distribution 

 

3. Phenotypic resistance 

 

      HR karyotype (FISH) 

      PgP expression 

 

4. Phenotypic resistance 

   

       Microfluidic tesing of 

aspirated cells  



Patient-specific therapy 

Computational models 
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