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Two Directions of Inquiry
1. The Forward Study:  Specify a system or 

model and investigate its behavior (energies, 
dynamics, linear and nonlinear responses, free 
energies, phase diagrams,…).

• Rigorous classical, quantum, and statistical 
mechanics foundation. 

• Rich tradition in theoretical and computational 
development.

• Most studies are of this type.



Two Directions of Inquiry
As “forward” theories and computer technology advance, 

we can begin to address … 

2. The Inverse Design: Specify a property, and 
design/search a system that optimizes that property. 

• Clearly very important.
• Previous examples: laser pulses (Yijing Yan, Rabitz), 

protein sequence, drug design 
• Bad News: Challenging.
• Good News: Encouraging development, could be most 

useful. 



The Aim of Inverse Design

Specify a property, and design/search a 
system that optimizes that property. 

• General
• Efficient



Challenges in Inverse Design

• The properties, as objects of 
optimization, are very diverse.

• The variables of design now are in the 
vast chemical/material or biological 
space.

• The space is discrete.
• Direct enumeration/combinatory 

approach is severe limited.



On the size of chemical space
• Reymond and co-workers enumerated a virtual library 

of all organic compounds (within certain synthetic 
constraints) of 13 heavy atoms or less and composed 
of H, C, N, O, S and/or Cl(10-12). The GDB13 
database contains nearly 1 billion compounds

• Synthetically realizable small-molecule compounds 
(stable organic molecules of 500 Daltons or less) have 
been variously estimated to number between 1030 and 
10160.



Vision 2020: Computational Needs of the Chemical Industry

Computational "Grand Challenges" for Materials and Process Design in 
the Chemical Enterprise

A. Reliable prediction of biological activity from chemical structure

B. Reliable prediction of environmental fate from chemical structure

C. Design of efficient catalysts for chemical processes

D. Design of efficient processes in chemical plants from an understanding of   
microscopic molecular behavior

E. Design of a material with a given set of target properties
12

NAS, 1999

Impact of Advances in Computing and 
Communications Technologies on 
Chemical Science and Technology



Vision 2020: Computational Needs of the Chemical Industry

“Grand Challenge E in Table 1 is extremely difficult … 

… “Holy Grail” of materials design … to solve the problem of going backwards 
from a set of desired properties to realistic chemical structures ...  

These efforts … have, so far, only had limited success. Much work needs to be 
done ...”
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NAS, 1999

Impact of Advances in Computing and 
Communications Technologies on 
Chemical Science and Technology



How can we explore molecular 
space to achieve optimization of 

the target property?

--the inverse design challenge
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Outline: Designing Molecules/Materials

• The Discreteness of Chemical Structures

• Ideas for Navigating Chemical Space

• Linear Combination of Atomic Potentials (LCAP)

• LCAP in DFT & Semiempirical QM frameworks:  
Examples

• Gradient-Directed Monte Carlo approach for molecular 
design  -- when the surface is rugged 



Discrete Molecular Space



• Can a continuous property surface be 
established? 
(continuous optimization is much more 
efficient)

• How rugged are property surfaces as a 
function of structure?

Key Questions



Earlier idea:  explore the link between the 
Hamiltonian & the Property
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(Marder, Beratan, Chang, 
Science, 1991)

Property varies smoothly with
Hamiltonian, suggesting design

strategies.



New Idea:  Focus on the potential
Observations:  

– atom types and positions define V(r) uniquely

– V(r) (and N) determines everything!

– Hohenberg-Kohn (’64):  ρ(r) � V(r)

– Yang, Ayers and Wu (’02-’04):  Potential functionals –
using V(r) as the basic variable 

1. in DFT formulation for solving the v-representability 
problem 

2. in DFT computation for the Optimized Effective 
Potential (OEP).



is the dual of   



Density Functional vs. Potential Functional
Yang, Ayers and Wu , PRL 04

Non-interacting
Kohn-Sham

Physical
Hohenberg
-Kohn



Summary for the potential functionals
(Yang, Ayers and Wu, PRL 2004)

– Solution to the v-representability:  In the potential 
space, the v-representability is no longer a constraint.

– Theoretical foundation for OEP:  The variational 
principle in terms of the Kohn-Sham potential (Yang 
&Wu, PRL 02)



Another advantage:  
Structure vs. V(r) Complexity

• Molecular complexity grows as N!
• Complexity of “external potential” V(r)  grows 

only as N:
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Plan
• Start with a target property.

• Find an appropriate method to compute 
the property from a given            .

• Use             as the optimization variable. 



The electron-nucleus attraction potential
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A Challenge

• any molecule can be expressed by a v(r)

• not all potentials come from a molecule, or 
Chemistry-representable (C-representable).

The Electron-Nucleus Attraction
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LCAP: Linear Combination of Atomic Potentials

Our Strategy

--Define a continuous potential function that smoothly 
interpolates among atom/group types. 

Group indexSite index
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Coulomb’s law e/n 
attraction for integer Z

--Seek the optimal molecule by optimizing coefficients in 
the potential. 



L.C.A.P.

• Remember LCAO?

• Directly linked to chemistry/molecules 

• Properties optimized by varying the C’s

• Follow property gradients to optimize C’s

∑=
g

ggvCV
,

,, )()(
R

RR rr



A few examples

• Choose a designable 
framework.

• At each designable site, a 
potential is constructed 
from a LCAP.

• Optimize the property 
with respect to all of the 
coefficients in the LCAP.



Ultrasoft pseudopotential -
plane-wave DFT scheme

• Plane-wave basis set independent of 
atom types or positions

• No basis set superposition error

• Orthogonal basis set

• USPPs for fewer basis functions



Example:  Polarizability (α) optimization

• Finite field

• Derivative of polarizability with respect to CR, g

• Use analytical energy derivative in the optimization 
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Two designable sites and two functional 
groups (-CH3, -SH):  Electronic Polarizability

CH3-CH3

HS-SH

SH-CH3

HS-CH3



X-Y with six choices per site (21 unique structures).
Optimization is complete in a few steps.

HS-SH

Wang, Hu, Beratan, Yang, JACS, 2006. Featured in Nature, C&E News, …



… and for β

F-SH

Wang, Hu, Beratan, Yang, JACS 2006.



Discrete Molecular Space



LCAP surface



π-electron (Hückel)-LCAP
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Dequan Xiao

Xiao, Yang and Beratan, JCP, 2008



Some Designable π-frameworks
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LCAP in a 
Semiempirical 

(AM1) 
Framework

Shahar Keinen



• Definition of alchemical potential

• e.g., X:  F → I
 

φx = λiφi
i

∑

IpFpIpFpIpFpIsFsx

IsFssx

IFx

zzyyxx

ZZZ

,,,,,,,,

,,,

φλφλφλφλφλφλφλφλφ
φλφλφ

λλ

21212121

21

21

+++++++=

+=
+=

Linear Combination of Atomic Potential (LCAP)

Matching Atomic Orbitals
 

V (r) = λR ,GVR ,g (r)
R ,G
∑ λR

i
∑ =1

site group



n-type semiconductors

• While searching for p-type 
semiconductors, the Marks lab 
discovered this n-type semiconductor

• n-type semiconductors are of interest 
for “plastic electronics”

• Improved n-type properties correlate 
with lowered LUMO energy 
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• 4,782,969 possible molecules
• Enumeration not accessible
• Assuming that the molecules are frozen is poor - the 

molecules twist.
• Use an optimized geometry LCAP search for lowered 

LUMO
• 19 of 19 searches (all starting from random initial 

molecule) found this optimized molecule:
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Randomly chosen structures in this family:

Optimized structure
ELUMO=-1.8442 eV
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Shahar, Hu, Beratan, Yang, JPC,A, 2007.



LCAP
• The LCAP approach maps an intrinsically discrete molecular space 

onto a set of continuous variables, making efficient optimization 
possible. 

• The LCAP approach can be implemented with classical or quantum 
Hamiltonians; Many kinds of property optimization can be explored 
with this scheme. 

• The LCAP approach appears to provide a promising theoretical 
framework to address broader challenges in molecular design.

• Continuous optimization schemes do not efficiently explore the LCAP 
property surface, when it is rugged.
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Gradient-Directed Monte Carlo (GDMC)

X. Hu, D. Beratan, and W. Yang, JCP, 2009
X. Hu, D. Beratan, and W. Yang, JCP, 2008

 GDMC uses the property gradients 
to jump between discrete molecules. 

 A new molecule is generated at 
each step.

 When the search algorithm is 
trapped in a local optima, random 
MC moves are helpful to overcome 
local barriers. 

 GDMC saves computational time by 
not searching “intermediate” states 
of continuous property surface.

Discrete space
Semi-stochastic search
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Flowchart of GDMC Procedure

Construct a continuous virtual property surface.

Begin with the initial molecule.

Calculate P and its gradients.

Generate a new molecule following the property gradients.

Accept the new molecule by the Metropolis rule.

The molecules are generated by property gradients in GDMC!



X-Y with six choices per site (21 unique structures).
Optimization is complete in a few steps.

HS-SH

Wang, Hu, Beratan, Yang, JACS, 2006. Featured in Nature, C&E News, …
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Example 1: Use of GDMC-LCAP to design new NLO molecules

X. Hu, D. Beratan, and W. Yang, JCP, 2008, 129, 064102

 Nonlinear optical (NLO) molecules are important for optoelectronic materials 
and devices.

 Electronic first hyperpolarizabilities (β) of molecules determine their nonlinear 
optical processes.

 Quantum-mechanical approaches are necessary to predict β.

 Porphyrin-based compounds with a donor-bridge-acceptor motif have large β.
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N(CH3)2

CH3

OCH3

NO2

CN

COH

Sites 1-10: CH or N

The number of possible molecules is 3×210×3= 9,216!

Porphyrin-based framework: 

X. Hu, D. Beratan, and W. Yang, JCP, 2008, 129, 064102
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The optimum structure was found after less than 40 molecular calculations!

37,000β ≈

5,000β ≈

( ). .a uβ
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Another application of the GDMC-LCAP method for NLO

The number of possible molecules is 940,800!

S. Keinan, M. Therien, D. Beratan, and W. Yang, JPCA, 2008, 112, 12203
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Example 2: Use of GDMC for protein design

Folding

Sequence Design

Sequence space Structure space

Aim: for a given protein conformation, what are 
the optimum sequences with the lowest 
energies?

Both spaces are enormous!
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A 4×4 2D protein lattice conformation

X. Hu, D. Beratan, and W. Yang, JCP, 2009, 131, 154117

Example 2-1: 
A simple 2D HP model for sequence design using GDMC

Si=

0: polar residue (P)

1: hydrophobic residue (H)

For site i,

Number of possible sequences is 216!

Sites 1-16: either H or P residue
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 The exact global minima are known for this example.
 GDMC always found the global minima.
 Less than 10 sequence calculations are sufficient in GDMC!

(a) GDMC optimization results for the 4×4 2D protein lattice model:

HN  min
exactE  min

MCE  
MC 
Step min

GDMCE  
GDMC 

Step 

6 -12.2 -11.9 286 -12.2 2 
7 -13.5 -13.5 540 -13.5 2 
8 -14.8 -14.8 185 -14.8 3 
9 -16.1 -15.8 149 -16.1 7 
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(b) A 6×6 2D protein lattice conformation with NH=8:

 Four degenerate sequences with the global minimum energy were obtained.
 The positions of five H residues are conserved for the four minima. 
 These five adjacent positions form a favorable hydrophobic core.

Number of possible sequences is 236!
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Example 2-2:
Realistic protein sequence design using RosettaDesign and GDMC 

X. Hu, D. Beratan, and W. Yang, J. Comp. Chem., 2010, 31, 2164

Ubiquitin scaffold:

 74 residues 
 19 amino acids per site 
 11,076 possible rotamers per site

The number of possible sequence is 11,07674!
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-190 -188 -186 -184
Energy (kcal/mol)

GDMC obtains more sequences with lower energies than MC.

Fifty independent GDMC and MC optimizations beginning with random 
sequences were performed. 
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More tests with fixed/flexible backbone support GDMC can obtain a 
better sequence ensemble than MC using Rosetta scoring function.

*The computational cost (unit: hours) is shown in parentheses.
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MC can be easily trapped in local minimum when native sequences 
are relatively stable while GDMC can explore much broader 
sequence space.
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Example 3: Use of GDMC for protein folding

Can we fold a set of  2D HP sequences 
using GDMC?
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GDMC with numerical gradients can outperform other global 
optimization methods when folding 2D HP sequences.
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Conclusions
 We developed LCAP to optimize molecular properties at the quantum 

mechanical level.

 When the property surface of LCAP is smooth, the continuous optimization 
algorithms are extremely efficient.

 When the property surface of LCAP is rugged, we developed an efficient 
global optimization approach - GDMC. 

 GDMC can be applied to many complex problems such as inhibitor design and 
protein design.
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