

Markus Meringer

Generation of Molecular Graphs and Applications in Chemistry

Navigating Chemical Compound Space for Materials and Bio Design

Workshop II: Optimization, Search and Graph-Theoretical Algorithms for Chemical Compound Space

Institute for Pure and Applied Mathematics, University of California, Los Angeles

April 11 - 15, 2011

Outline

- Introduction
 - What is molecular structure generation?
 - Why is it needed?
- Structure enumeration
 - Enumerating labeled graphs
 - Enumerating unlabeled graphs
 - Introducing constraints
 - From simple graphs to molecular graphs
- Results and Applications
 - Structure elucidation
 - (Inverse QSAR/QSPR)

Introduction: Representing Chemical Compounds

Different levels of abstraction

Introduction: Constitutional Isomers

Example: Alkanes C_nH_{2n+2}

Applications: Relating Structure and Properties

- From structure to physical, chemical, biological and pharmaceutical properties
 - structure-property relationships, esp. QSAR/QSPR
 - application of such relationships to predict properties of virtual structures (→ inverse QSAR)

From physical and chemical properties (spectra) to structure

computer-aided / automated molecular structure elucidation "CASF"

Structure Elucidation by Database Searching

 Established approach: use spectral data as molecular fingerprint for a database search

Problem: only such data can be found that is stored in the database

Sizes of Data Bases

Structures:

- elements C, H, N, O
- at least 1 C-atom
- standard valencies
- no charges
- no radicals
- only connected structures

Need for techniques to explore virtual chemical space in silico!

Chemical Componds in Nature and in Silico

Chemical compounds

- in nature: atoms are not labeled
- in a computer: atoms have to be labeled

leads to problems

- deciding whether two labeled structures are isomorphic (isomorphism problem)
- enumerating all unlabeled structures

Discrete mathematics knows solutions!

Structure Counting, Enumeration and Sampling

Different disciplines

- Counting
 - only number of structures
 - non-constructive
- **Enumeration**
 - constructive
 - exhaustive
 - non-redundant
- Sampling

in der Helmholtz-Gemeinschaft

- constructive
- not necessarily exhaustive
- maybe redundant

M. Meringer: Structure Enumeration and Sampling. Handbook of Chemoinformatics Algorithms, Edited by J. L. Faulon, A. Bender, CRC/Chapman&Hall, 233-267, 2010.

focus on "Orderly Generation"

Order on Edges of Labeled Graphs

Order on edges of graphs:

$$e = (x,y), e' = (x',y')$$
 with $x < y, x' < y'$
then $e < e'$, iff
 $x < x'$ or $(x = x')$ and $y < y'$

Examples:

Order on Labeled Graphs

Lexicographical order on graphs on n nodes

$$\begin{split} \gamma &= \{e_1, \dots, e_t\} \text{ with } e_1 < \dots < e_t \\ \gamma' &= \{e'_1, \dots, e'_{t'}\} \text{ with } e'_1 < \dots < e'_{t'} \\ \text{then } \gamma &< \gamma', \text{ iff} \\ \text{(there is an i with } e_i < e'_i \text{ and for all } j < i: e_j = e'_j) \text{ or } \\ \text{($t < t'$ and for all } j \leq t: e_j = e'_j) \end{split}$$

Examples: graphs on 3 nodes 1, 2, 3

$$\{(1,2),(1,3)\} < \{(1,2),(2,3)\}$$

 $\{(1,2),(1,3)\} < \{(1,2),(1,3),(2,3)\}$

Generation of Labeled Graphs

Algorithm: Labeled Generation (γ)

- (1) Output γ
- (2) For each edge e>max{e ∈ γ}do in ascending order of eCall Labeled Generation (γ ∪ {e})

Example: graphs on 3 nodes starting with the empty graph, Labeled Generation ({}) produces the output

Example: Labeled Graphs on 3 Nodes

From Labeled to Unlabeled Graphs

Isomorphism problem: How to obtain from labeled graphs ...

... unlabeled graphs?

Canonical Orbit Representatives

Solution: Select from each orbit (column) the lexicographically minimal representative

Note: Testing minimality is a rather expensive procedure, up to n! permutations have to be checked

Testing Minimality

 γ is minimal, iff for each permutation of the symmetric group S_n : $\gamma \leq \pi(\gamma)$

Example:

$$\pi_3(\{(1,2),(2,3)\})$$
= $\{(2,1),(1,3)\}$
= $\{(1,2),(1,3)\}$
< $\{(1,2),(2,3)\}$
 \Rightarrow not minimal

$X \rightarrow$	1	2	3
$\pi_1(x)$	1	2	3
$\pi_2(x)$	1	3	2
$\pi_3(x)$	2	1	3
$\pi_4(x)$	2	3	2
$\pi_5(x)$	3	1	2
$\pi_6(x)$	3	2	1

Note: Using algebraic and group-theoretic methods, costs for testing minimality can be reduced considerably

Generation of Unlabeled Graphs

Algorithm: Labeled Generation (γ)

- (1) Output γ
- (2) For each edge e>max{e ∈ γ}do in ascending order of eCall Labeled Generation (γ ∪ {e})

Algorithm: Unlabeled Generation (γ)

- (1) If γ is minimal in its orbit then Output γ
- (2) For each edge e>max{e ´∈ γ}do in ascending order of eCall Unlabeled Generation (γ ∪ {e})

Example: Unlabeled Graphs on 3 Nodes

Orderly Generation

Theorem (Read, Faradzev 1978):

Every minimal orbit representative with q edges has a minimal subgraph with q-1 edges.

Annals of Discrete Mathematics 2 (1978) 107-120.

© North-Holland Publishing Company

EVERY ONE A WINNER

or

HOW TO AVOID ISOMORPHISM SEARCH WHEN CATALOGUING COMBINATORIAL CONFIGURATIONS*

Ronald C. READ

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada

⇒ non-minimal intermediates do not have to be considered for further augmentation

Orderly Generation of Graphs

Algorithm: Unlabeled Generation (γ)

- (1) If γ is minimal in its orbit then Output γ
- (2) For each edge e>max{e ∈ γ}do in ascending order of eCall Unlabeled Generation (γ ∪ {e})

Algorithm: Orderly Generation (γ)

- (1) If γ is not minimal in its orbit then Return
- (2) Output γ
- (3) For each edge e>max{e ∈ γ} do in ascending order of e Call Orderly Generation (γ ∪ {e})

Example: Orderly Generation of Graphs on 3 Nodes

Introducing Constraints

Mathematically, a constraint R is a symmetry-invariant mapping from the set of graphs onto boolean values:

$$R(\gamma) = R(\pi(\gamma))$$
 for each $\pi \in S_n$

We say

 γ fulfills a constraint R, if R(γ) = true and

 γ violates a constraint R, if R(γ) = false

Examples:

Constraint

is connected:

has a cycle:

≤ 2 edges:

1-2

3

false

false

true

Q—②

true

false

true

true

true

false

Consistent Constraints

A constraint R is called consistent if the violation of a graph γ to R implies that every augmentation γ' of γ violates R:

$$R(\gamma) = false \land \gamma \subset \gamma' \Rightarrow R(\gamma') = false$$

Examples:

- consistent: "≤ 2 edges", upper number of edges, a minimal cycle size or graph—theoretical planarity
- inconsistent: "is connected", " has a cycle", presence or absence of a certain subgraph or a maximum ring size

Consistent constraints accelerate structure generation

Incorporating Constraints into Structure Generation

- Consistent constraints: unproblematic
 - check after each insertion of a new edge
 - help to prune the backtracking tree
 - accelerate structure generation
- Inconsistent constraints: more problematic
 - testing only useful, when a graph is complete
- Completeness itself is described by constraints
 - for generating constitutional isomers typically defined as degree sequence

Orderly Generation with Constraints

Algorithm: Orderly Generation with Constraints (γ)

- (1) If γ is minimal in its orbit then Return
- (2) If γ violates any consistent constraint then Return
- (3) If γ fulfills all inconsistent constraints then Output γ
- (4) For each edge e>max{e ∈ γ}
 do in ascending order of e
 Call Orderly Generation with Constraints (γ ∪ {e})

Note: Efficiency is depending on the sequence of tests

Sequence of Tests during Structure Generation

	low	•••	high
costs	\$	•••	\$\$\$
selectivity	*	•••	* * *

****: process cheap, selective tests early

\$\$\$*: process expensive, indiscriminate tests late

others: find a good trade-off for others

Refinements for Avoiding Minimality Tests

Semi–canonicity

- testing minimality is often replaced by a cheaper, necessary condition for minimality
- principle: check only for transpositions τ if $\gamma < \tau(\gamma)$
- full minimality test delayed until the graph is completed

Learning criterion

- derives from a non-minimal graph a necessary condition for the minimality of the lexicographic successors
- determines the earliest extension step where non minimality could have been detected during generation
- prunes the backtracking tree

R. Grund: Construction of Molecular Graphs with Given Hybridizations and Non-overlapping Fragments, Bayr. Math. Schriften 49, 1-113, 1995 (in German) M. Meringer: Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory 30, 137-146, 1999.

Example of a Backtracking Tree

Regular graphs on 12 nodes, degree 3, girth at least 5

o: girth criterion failed; ⊙: complete, but not minimal; •: complete and minimal; •: others

Note: Number of all labeled regular graphs on 12 nodes, degree 3: 11,555,272,575

From Simple Graphs to Molecular Graphs

- Simple Graphs
 - nodes and edges

- Multigraphs
 - additionally: edge multiplicities

- Molecular graphs
 - additionally: element & atomic state symbols

Adaptions for Generating Molecular Graphs

- Use lexicographical order on the adjacency matrix
- Canonical: lexicographically maximal adjacency matrix
- Implicit treatment of hydrogen
- Attributes of atoms:
 - element symbol
 - hydrogen count
 - valency sum
 - charge
 - unpaired electrons
 - bond order distribution
 - ...

Refinements for Generating Molecular Graphs

- Atoms with identical attributes define t blocks of the adjagency matrix
- If attributes cannot be deduced directly from input, iterate through all possibilities
- Fill adjagency matrix block-wise
- Test canonicity after a block is filled
- Complexity of canonicity test decreases from n! to $\lambda_1! \cdot ... \cdot \lambda_t!$
- For canonicity testing of block r only automorphisms of blocks 1,...,r-1 need to be considered

Implementations and Examples

- MOLGEN 3.5 (1997)
- MOLGEN 4.0 (1998), MOLGEN-MS, MOLGEN-QSPR
- MOLGEN 5.0 (2007, freely accessible online version)
- others, e.g. Assemble

Computational example with restrictions

Restrictions	no. of isomers	CPU-time
Chemical formula C ₆ H ₈ O ₆ only	2,558,517	838 s
no triple bonds	2,434,123	703 s
hydrogen distribution 1CH ₂ ,2CH ₁ ,3C,4OH	79,831	25 s
no substructure -O-O-	35,058	97 s
hybridization 1Csp3-2H,2Csp3-1H,3Csp2-OH,1Osp2-OH	990	8 s
minimal size of rings =5	348	5 s
contains at least one CO_3 branch	15	11 s

www.molgen.de

T. Grüner, A. Kerber, R. Laue, M. Meringer: MOLGEN 4.0. MATCH Communications in Mathematical and in Computer Chemistry 37, 205-208, 1998.

Example: Constitutional Spaces

Molecular	Structural	CPU	Beilstein	NIST MS
formula	formulae	time	database	database
$CH_2N_6O_3$	76720	0.2	0	0
CH ₆ N ₈ O	97234	0.3	0	0
C ₂ H ₂ N ₄ O ₄	216893	0.6	0	0
$C_2H_6N_6O_2$	971399	2.4	1	0
C ₂ H ₁₀ N ₈	57508	0.2	0	0
$C_3H_2N_2O_5$	137656	0.4	0	0
$C_3H_6N_4O_3$	2429018	6.2	10	1
$C_3H_{10}N_6O$	749873	2.1	0	0
$C_4H_2O_6$	9986	0.1	1	0
C ₄ H ₆ N ₂ O ₄	1432731	3.9	22	0
C ₄ H ₁₀ N ₄ O ₂	2125930	5.9	33	1
C ₄ H ₁₄ N ₆	68990	0.2	0	0
$C_5H_2N_6$	7055345	14.8	1	0
$C_5H_6O_5$	95870	0.3	28	2
$C_5H_{10}N_2O_3$	1360645	3.8	153	9
C ₅ H ₁₄ N ₄ O	311390	1.0	6	0
C ₆ H ₂ N ₄ O	26123593	49.9	3	0
C ₆ H ₁₀ O ₄	97394	0.3	345	25
$C_6H_{14}N_2O_2$	257122	0.8	249	3
C ₆ H ₁₈ N ₄	6742	0.0	7	2
$C_7H_2N_2O_2$	17388955	34.1	0	0
$C_7H_6N_4$	96024197	196.1	94	10
$C_7H_{14}O_3$	22151	0.1	672	36
C ₇ H ₁₈ N ₂ O	9780	0.0	52	2
C ₈ H ₂ O ₃	1187784	2.7	2	0
C ₈ H ₆ N ₂ O	109240025	217.7	177	14
C ₈ H ₁₈ O ₂	1225	0.0	334	28
C ₉ H ₆ O ₂	9660231	20.4	45	4
$C_9H_{10}N_2$	46024195	98.6	411	22
C ₁₀ H ₁₀ O	7288733	17.2	421	34
C ₁₁ H ₁₄	950064	2.7	450	52
C ₁₂ H ₂	3571212	65.0	1	0

- molecular mass 146
- elements C, H, N, O
- at least 1 C-atom
- standard valencies
- no charges
- no radicals
- only connected structures

- M. Meringer: Mathematische Modelle für die kombinatorische Chemie und die molekulare Strukturaufklärung. Doctoral thesis, University of Bayreuth, May 2004. Published by Logos-Verlag, Berlin.
- A. Kerber, R. Laue, M. Meringer, C. Rücker: Molecules in Silico: The Generation of Structural Formulae and Applications. Journal of Computer Chemistry, Japan 3, 85-96, 2004.

Sizes of Data Bases and Compound Spaces

Structures:

- elements C, H, N, O
- at least 1 C-atom
- standard valencies
- no charges
- no radicals
- no stereoisomers
- only connected structures

A. Kerber, R. Laue, M. Meringer, C. Rücker: Molecules in Silico: Potential versus Known Organic Compounds. MATCH 54 (2), 301-312, 2005.

Application: Molecular Structure Elucidation

What?

structural characterization of unknown chemical compounds

Why?

- environmental chemistry: toxic substances
- natural products chemistry: drugs ...

methods and devices of analytical chemistry:

- chromatography
- spectroscopy

Data analysis:

- library searching
- improvements desired (→ "de novo" structure elucidation)

The DENDRAL Project

- short for DENDritic ALgorithm
- mid 1960s early 1970s
- pioneer project in artificial intelligence
- first expert system
- aim: identifying unknown organic molecules by analyzing their mass spectra automatically
- perspective: onboard processing (structure elucidation) of mass spectra on mars missions
- first attempt to construct chemical compound space
- based on the plan-generate-test paradigm

R.K. Lindsay, B.G. Buchanan, E.A. Feigenbaum, J. Lederberg. Applications of Artificial Intelligence for Organic Chemistry: The Dendral Project. McGraw-Hill Book Company, 1980.

From Spectra to Structure Flowchart: Plan – Generate – Test

Example: (LR) EI-MS of an ,Unknown' Compound

Example: Plan – Generate – Test

Plan

- MS Classifier me-est says "YES" with precision of 98%
- Functional group $-C(=O)-O-CH_3$ is likely to be present

Generate

- 8 Molecular formulas of mass 116 including C₂O₂H₃
- 131 structural formulas including –C(=0)–O–CH₃

Test

- simulated spectrum for each structural formula
- compare, rank, select ...

K. Varmuza, W.Werther: Mass Spectral Classifiers for Supporting Systematic Structure Elucidation. J. Chem. Inf. Comput. Sci., 36, 323-333, 1996.

A. Kerber, M. Meringer, C. Rücker: CASE via MS: Ranking Structure Candidates by Mass Spectra. Croatica Chemica Acta 79, 449-464, 2006.

E. L. Schymanski, C. Meinert, M. Meringer, W. Brack: The Use of MS Classifiers and Structure Generation to Assist in the Identification of Unknowns in Effect-Directed Analysis. Analytica Chimica Acta 615 (2), 136-147, 2008.

E. L. Schymanski, M. Meringer, W. Brack: Matching Structures to Mass Spectra Using Fragmentation Patterns - Are the Results as Good as they Look? Anal. Chem. 81, 3608-3617, 2009.

E. L. Schymanski, M. Meringer, W. Brack: Automated Strategies To Identify Compounds on the Basis of GC/EI-MS and Calculated Properties. Anal. Chem. 83, 903-912, 2011.

M. Meringer, S. Reinker, J. Zhang, A. Muller: MS/MS Data Improves Automated Determination of Molecular Formulas by Mass Spectrometry. MATCH 65, 259-290, 2011.

Example: Explained Part of the Spectrum

Example: Ranked Structural Formulas

Conclusions

- Structure generation
 - solved: mathematical-algorithmic description
 - open: combinatorial explosion

- Applications in chemistry
 - solved: principles for relating structure and properties
 - open: precision, accuracy

Acknowledgements

- My Colleagues
 Department of Atmospheric Processors,
 Remote Sensing Technology Institute,
 German Aerospace Center
- Profs. A. Kerber and R. Laue et al Department of Mathematics, University of Bayreuth
- Emma Schymanski, Dr. Werner Brack
 Department of Effect-Directed Analysis,
 UFZ Center for Environmental Research
- Prof. Jean-Loup Foulon for inspiring me to write Chapter 8 for the "Handbook of Chemoinformatics Algorithms"
- IPAM/UCLA for the invitation to talk here

THANKS FOR YOUR ATTENTION!

