Enumerating, Mapping and Scoring of Chemical Space for Drug Discovery

Jean-Louis Reymond IPAM/UCLA 14 April 2011 GDB, CST
 MQN
 Scoring

J.-L. Reymond et al.. Chemical space as a source for new drugs. *Med. Chem. Commun.* **2010**, *1*, 30-38

GDB Assembly

- I. Select hydrocarbon graphs (ring strain, topology)
- II. C-C to C=C, C#C following valency rules, no allenes, no DB in bridgehead or 3- and 4-rings, no TB in <9-rings, no DB torsion
- III. C to N or O following valency rules
- IV. Filter bad functional groups, select tautomers
- V. Post-processing: Halogens, S, etc.

T. Fink et al. *Angew. Chem. Int. Ed.* **2005**, *44*, 1504-1508, *J. Chem. Inf. Model.* **2007**, *47*, 342-353 (GDB-11) L. C. Blum, J.-L. Reymond, *J. Am. Chem. Soc.* **2009**, *131*, 8732-3 (GDB-13) Lars Ruddigkeit, Ruud van Deursen, Lorenz Blum (GDB-17)

I. Graph Selection

Claus Benzol K_{3,3} Graph

Tetrahedrane

Tricyclo[2.2.2.2]decane

IV. Filter Bad Functional Groups

GDB-11 (CNOF)

			_			
Stereoisomers ^e	All Tautomers	Unique Tautomers (GDB) ^d	Accepted ^c	Generated ^b	Graphs^a	Nodes
4	4	4	4	4	1	1
9	9	9	9	10	1	2
20	21	20	20	52	2	3
87	88	80	80	332	4	4
469	397	352	357	2'294	8	5
2'911	2'135	1'850	1'906	18'066	20	6
19'904	12'438	10'568	10'953	154'542	57	7
153'601	79'899	66'706	69'563	1'445'073	194	8
1'258'963	540'002	444'313	464'402	14'213'741	705	9
10'898'065	3'827'907	3'114'041	3'259'036	146'004'340	2'822	10
98'645'474	28'240'425	22'796'628	23'875'101	1'558'491'448	11'912	11
110'979'507	32'703'325	26'434'571	27'681'431	1'720'329'902	15'726	Total

Table 2. Overview of the structure generation process.

99.8 % are unknown

	Number of	ed rings		
Number of 3-membered rings	0	1	2	Total
0	124 [3]	189 [60]	103 [67]	416 [130]
1	225 [50]	238 [177]	20 [19]	483 [246]
2	201 [88]	55 [48]	-	256 [136]
3	53 [26]	-	-	53 [26]
Total	603 [167]	482 [285]	123 [86]	1'208 [538]

GDB-13 (CNOSCI, max. heteroatom ratio)

nodes ^a	graphs ^b	GDB ^c	CI/S ^d
1	1	1	0
2	1	3	0
3	2	12	0
4	4	43	0
5	8	155	3
6	20	934	19
7	57	5 726	315
8	194	37 151	2 4 3 8
9	706	255 542	17 056
10	2 831	1 784 626	130 465
11	12 011	12 961 686	938 704
12	53 789	99 821 343	7 240 108
13	250.268	795 244 451	59 027 533
Total	319 892	910 111 673	67 356 641

L. C. Blum, J.-L. Reymond, J. Am. Chem. Soc. 2009, 131, 8732-3

Drugs and isomers in GDB-13

T_{SF}

Name	Formula	Same Formula	AVG	> 0.7
Aspirin	$C_9H_8O_4$	804 153	0.23	178
Benzocaine	$C_9H_{11}NO_2$	1 846 579	0.24	74
L-Tyrosine	$C_9H_{11}NO_3$	9 276 529	0.46	24 952
Levetiracetam	$C_8H_{14}N_2O_2$	2 154 955	0.28	35
Memantine	$C_{12}H_{21}N$	2 872 586	0.31	10 912
Menadione	$C_{11}H_8O_2$	233 715	0.44	112 186
Metaraminol	$C_9H_{13}NO_2$	2 920 516	0.26	30
Mexiletine	$C_{11}H_{17}NO$	18 371 393	0.25	119
Propofol	$C_{12}H_{18}O$	5 263 227	0.25	240
Rasagiline	$C_{12}H_{13}N$	1 323 525	0.13	411
Rimantadine	$C_{12}H_{21}N$	2 872 586	0.26	173

Phenmetrazine isomers

Chemical Space Travel

11

Chemical Space as a Graph

Nearest neighbour mutations

Atom type exchange Atom inversion Atom removal Atom addition Bond saturation Bond unsaturation Bond rearrangement

12

Trajectory Libraries

Trajectory Examples (1)

			Steps	from CH ₄ ^[b]		Steps to	
Formula	mass	$n^{[a]}$	Nearest neighbours	With aromatic ^[c]	$N^{[d]}$	MeOH ^[b]	$N^{[d]}$
C ₈ H ₈	104	8	12	-	6'638	7	994
$C_4H_3FN_2O_2$	130	9	16	9*	2'456	7*	560
$C_6H_{12}N_4$	140	10	12	-	6'157	9	1'768
$C_{2}H_{6}N_{10}$	170	12	12	-	4'685	11*	2'007
$C_9H_8O_4$	180	13	15	8(1)	2'567	12	2'582
$C_{14}H_{13}N$	197	15	n.f. ^[e]	20(2)	20'501	16	5'357
$C_{10}H_{16}N_2O_3S$	244	16	18*	-	27'161	14*	6'304
C ₁₁ H ₂₆ NO ₂ PS	267	16	21	-	29'460	14*	3'954
$C_{10}H_{13}N_5O_4$	267	19	n.f. ^[e]	25(2)	23'680	19*	13'639
$C_{18}H_{24}O_2$	272	20	23	15(2)	43'089	20	19'067
$C_{20}H_{28}O$	284	21	23	-	45'176	19*	15'100
C ₁₇ H ₁₉ NO ₃	285	21	26	18(2)	69'113	20*	16'247
$C_{14}H_{18}N_2O_5$	294	21	303	16(2)	34'172	20*	11'430
$C_{17}H_{21}NO_4$	303	22	n.f. ^[e]	20(2)*	70'807	22	17'993
	Formula C_8H_8 $C_4H_3FN_2O_2$ $C_6H_{12}N_4$ $C_2H_6N_{10}$ $C_9H_8O_4$ $C_14H_{13}N$ $C_{10}H_{16}N_2O_3S$ $C_{11}H_{26}NO_2PS$ $C_{10}H_{13}N_5O_4$ $C_{18}H_{24}O_2$ $C_{20}H_{28}O$ $C_{17}H_{19}NO_3$ $C_{14}H_{18}N_2O_5$	FormulamassC_8H_8104C_4H_3FN_2O_2130C_6H_12N_4140C_2H_6N_10170C_9H_8O_4180C_14H_13N197C_10H_16N_2O_3S244C_10H_13N_5O_4267C_10H_26O267C_10H_2N_4212C_20H_28O284C_17H_19NO_3285C_14H_18N_2O_5294	Formulamass $n^{[a]}$ C_8H_8 1048 $C_4H_3FN_2O_2$ 1309 $C_6H_{12}N_4$ 14010 $C_2H_6N_{10}$ 17012 $C_9H_8O_4$ 18013 $C_10H_16N_2O_3S$ 24416 $C_{10}H_13N_5O_4$ 26719 $C_{10}H_26O_2$ 27220 $C_{20}H_28O$ 28421 $C_{17}H_19NO_3$ 28521 $C_{14}H_{18}N_2O_5$ 29421 $C_{17}H_21NO_4$ 30322	Formulamass $n^{[a]}$ Steps Nearest neighbours C_8H_8 104812 $C_4H_3FN_2O_2$ 130916 $C_6H_12N_4$ 1401012 $C_2H_6N_{10}$ 1701212 $C_9H_8O_4$ 1801315 $C_{14}H_{13}N$ 19715 $n.f.^{[e]}$ $C_{10}H_{16}N_2O_3S$ 2441618* $C_{10}H_{13}N_5O_4$ 26719 $n.f.^{[e]}$ $C_{18}H_24O_2$ 2722023 $C_{20}H_28O$ 2842123 $C_{17}H_{19}NO_3$ 2852126 $C_{14}H_{18}N_2O_5$ 29421303 $C_{17}H_{21}NO_4$ 30322 $n.f.^{[e]}$	Formulamass $n^{[a]}$ Steps from CH4[b] NearestWith aromatic[c]C8H8104812-C4H3FN2O21309169*C6H12N41401012-C2H6N101701212-C9H8O418013158(1)C14H13N19715n.f. ^[e] 20(2)C10H16N2O3S2441618*-C11H26NO2PS2671621-C10H13N5O426719n.f. ^[e] 25(2)C20H28O2842123-C17H19NO3285212618(2)C14H18N2O52942130316(2)C17H21NO430322n.f. ^[e] 20(2)*	Formulamass $n^{[a]}$ Steps from CH4 [b] Nearest $N^{[d]}$ C_8H_8 104812-6638 $C_4H_3FN_2O_2$ 1309169*2456 $C_6H_12N_4$ 1401012-6'157 $C_2H_6N_{10}$ 1701212124'685 $C_9H_8O_4$ 18013158(1)2'567 $C_{14}H_{13}N$ 19715 $n.f.^{[e]}$ 20(2)20'501 $C_{10}H_16N_2O_3S$ 2441618*-27'161 $C_{10}H_13N_5O_4$ 26719 $n.f.^{[e]}$ 25(2)23'680 $C_{20}H_2aO$ 2842123-45'176 $C_{17}H_19NO_3$ 285212618(2)69'113 $C_{17}H_18N_2O_5$ 2942130316(2)34'172 $C_{17}H_2NO_4$ 30322 $n.f.^{[e]}$ 20(2)*70'807	Formulamass $n^{[a]}$ Steps from CH4[b] Nearest neighbours $N^{[d]}$ Steps to MeOH[b]C8H8104812-66387C4H3FN2O21309169*2'4567*C6H12N41401012-61579C2H6N101701212-4'68511*C9H8O418013158(1)2'56712C10H16N2O352441618*-2716114*C10H13N5O426719n.f. ^[e] 25(2)23'68019*C18H24O2272202315(2)43'08920C20H28O2842123-4517619*C17H19NO3285212618(2)69'1320*C17H18N2O52942130316(2)34'17220*C17H21NO430322n.f. ^[e] 20(2)*70'80722

Trajectory Examples (2)

				Steps	from CH ₄ ^[b]		Steps to	
Compound	Formula	mass	$n^{[a]}$	Nearest	With	$N^{[d]}$	MeOH ^[b]	$N^{[d]}$
				neighbours	aromatic ^(c)			
Tetrodotoxine	$C_{11}H_{17}N_3O_8$	319	22	28	-	106'158	20*	16'757
Sucrose	$C_{12}H_{22}O_{11}$	342	23	25*	-	67'052	21	19'552
Penicillin G	$C_{16}H_{18}N_2O_4S$	334	23	n.f. ^[e]	20(2)	70'497	23*	15'748
Strychnine	$C_{21}H_{22}N_2O_2$	332	25	n.f. ^[e]	26(2)	176'721	25	32'479
Papaverin	$C_{20}H_{21}NO_4$	339	25	n.f. ^[e]	25(3)	53'099	25	28'449
Colchicine	$C_{22}H_{25}NO_6$	399	29	37	32(3)	136'519	28	33'592
Calcitriol	$C_{27}H_{44}O_3$	417	30	37*	-	298'327	28*	65'595
Dipicrylamine	$C_{12}H_5N_7O_{12}$	439	31	n.f. ^[e]	21(2)	21'015	26	13'950
Tetracycline	$C_{22}H_{24}N_2O_8$	428	31	36	30(1)	173'734	30	34'883
Vitamin K	$C_{31}H_{46}O_2$	451	33	55	42(3)	411'107	32*	77'337
Epothilone	$C_{27}H_{41}NO_6S$	508	35	n.f. ^[e]	62(4)	709'250	34*	75'219
Vitamin E	$C_{29}H_{50}O_2$	531	38	71	40(2)	443'477	37*	140'017
Reserpine	$C_{33}H_{40}N_2O_9$	609	44	n.f. ^[e]	68(5)	286'342	62	230'646
Taxotere	C ₄₅ H ₅₅ NO ₁₅	808	58	n.f. ^[e]	74(4)	1'128'960	57*	304'172

Cross-Trajectories

d)

ö From:	Cubane	Aspirine	XV	Adenosine	Sucrose	Penicillin G	Strychnine	Colchicine	Tetracycline	Vitamin K	
Cubane	-	10	18	23 (1)	19	18 (1)	18 (1)	22 (1)	24 (1)	26 (1)	
Aspirine	10*	-	14	21	15	16	24	22	22	33	
VX	13	17 (1)	-	31 (1)	18	15 (1)	21 (1)	20 (2)	24* (1)	25* (1)	
Adenosine	17*	27	18*	-	14	15	24	23	27*	29	
Sucrose	18*	22 (1)	22*	29 (1)	-	25	26 (1)	31 (1)	25 (1)	25 (1)	
Penicillin G	19*	13*	14*	23	19*	-	20	19*	21*	29	
Strychnine	21*	17*	20	26	22	16*	-	30*	17*	22*	
Colchicine	27	22*	21	26	18	22	23	-	22*	21*	
Tetracycline	28*	20	25*	49	19	19*	16	28	-	17	
Vitamin K	30*	24*	30*	34*	28*	27*	19*	30*	22*	-	

$\mathsf{AMPA} \leftrightarrow \mathsf{CNQX}$

Mapping Chemical Space

GDB, CST
 MQN
 Scoring

K. T. Nguyen, L. C. Blum, R. van Deursen, J.-L. Reymond *ChemMedChem* **2009**, *4*, 1803-5 R. van Deursen, L. C. Blum, J.-L. Reymond, *J. Chem. Inf. Model.* **2010**, *50*, 1924-1934

The Periodic System of the Elements

57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Lanthan	Cer	Praseodym	Neodym	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
138,91 u	140,12 u	140,91 u	144,24 u	146,9 u	150,35 u	151,96 u	157,25 u	158,93 u	162,50 u	164,93 u	167,26 u	168,93 u	173,04 u	174,97 u
2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/	2/8/18/
18/9/2	19/9/2	21/8/2	22/8/2	23/8/2	24/8/2	25/8/2	25/9/2	27/8/2	28/8/2	29/8/2	30/8/2	31/8/2	32/8/2	32/9/2
89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
Actinium	Thorium	Protaktin.	Uran	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelev.	Nobelium	Lawrencium
(227 u)	232,04 u	231,04 u	238,03 u	237,05 u	(244,1 u)	(243,1 u)	(247,1 u)	(247,1 u)	(251,1 u)	(254,1 u)	(257,1 u)	(258 u)	(259 u)	(260 u)
2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/	2/8/18/32/
18/9/2	18/10/2	20/9/2	21/9/2	22/9/2	24/8/2	25/8/2	25/9/2	27/8/2	28/8/2	29/8/2	30/8/2	31/8/2	32/8/2	32/9/2

Molecular Quantum Numbers

1

1

4 7

0

1

6 3

0

3 0

4

Atom counts

Carbon	17	14
Fluorine	0	0
Chlorine	0	0
Bromine	0	0
lodine	0	0
Sulphur	0	1
Phosphorus	0	0
Acyclic nitrogen	0	1
Cyclic nitrogen	1	1
Acyclic oxygen	2	4
Cyclic oxygen	1	1
Heavy atom count	21	2

Polarity counts

H-Bond donor atoms 3 H-Bond donor sites 3 H-Bond acc. atoms 3 3 H-Bond acc. sites 1 Positive charges 0 Negative charges **Bond counts** Acyclic single bonds 3 Acyclic double bonds **0** Acyclic triple bonds 0 Cyclic single bonds 18 11 Cyclic double bonds 4 Cyclic triple bonds 0 Rotatable bonds 0

Topology counts

Acyclic monovalent nodes	3	4
Acyclic divalent nodes	0	2
Acyclic trivalent nodes	0	2
Acyclic tetravalent nodes	0	0
Cyclic divalent nodes	8	7
Cyclic trivalent nodes	9	6
Cyclic tetravalent nodes	1	0
3-Membered rings	0	0
4-Membered rings	0	1
5-Membered rings	1	1
6-Membered rings	4	1
7-Membered rings	0	0
8-Membered rings	0	0
9-Membered rings	0	0
≥10-Membered rings	0	0
Atoms shared by fused rings	7	2
Bonds shared by fused rings	6	1
j - 3-		

Morphine

Penicillin G

	ZINC	GDB-11
no. of cpds	8 436 272	26 434 567
no. of MQN-bins	3 654 836	2 859 938
no. of single occupied MQN-bins	1 832 566	660 851
no. of cpds in most occupied MQN-bin	300	1 982
no. of shared MQN-bins	13 769	13 769
no. of cpds in shared MQN-bins	30 779	254 604

ZINC (8.4 million SMILES)

24

PubChem (19.2 million SMILES)

R. van Deursen, L. C. Blum, J.-L. Reymond, J. Chem. Inf. Model. 2010, 50, 1924-1934

Frequency map

Ring Atom Ratio

DNA Oligosaccharides PC3 Peptides Congreve Diamondoids (0,0)Lipinski Graphenes Acyclic Alkanes

Scoring Chemical Space

GDB, CST MQN Scoring

R. van Deursen, L. C. Blum, J.-L. Reymond, *J. Chem. Inf. Model.* 2010, *50*, 1924-1934
Lorenz Blum (GDB subsets)
E. Luethi et al., *J. Med. Chem.* 2010, *53*, 7236, and N. Garcia-Delgado et al., *ACS Med. Chem. Lett.* 2010, *1*, 422-426

Enriching the DUD actives from Pubchem

	nr. of	EF _{0.1}				EF ₁			
	actives ^{b)}	CBD _{MQN}	T _{MQN}	CBD _{SF}	T _{SF}	CBD _{MQN}	T _{MQN}	CBD _{SF}	T _{SF}
Nuclear Hormo	one Recepto	`S							
AR	79	379.5	379.5	265.6	265.6	46.8	48.1	43.0	41.8
ERagonist	67	507.1	507.1	432.5	387.8	56.7	50.7	58.2	47.8
ERantagonist	39	358.7	358.7	333.1	333.1	51.3	51.3	35.9	41.0
GR	78	166.6	140.9	538.1	563.7	60.2	55.1	53.8	65.4
MR	15	666.2	666.2	466.3	466.3	86.7	86.7	80.0	86.7
PPARg	85	728.9	623.1	870.0	905.3	87.0	84.7	89.4	91.7
PR	27	592.2	555.2	592.2	629.2	59.2	59.2	59.2	70.4
RXRa	20	849.4	599.6	849.4	849.4	95.0	85.0	85.0	100.0
Kinases									
CDK2	72	111.0	83.3	138.8	138.8	20.8	18.1	15.3	16.7
EGFR	475	90.5	67.3	126.2	132.5	25.5	20.8	20.2	27.2
FGFr1	120	191.5	183.2	624.6	724.5	29.2	22.5	74.2	85.0
HSP90	37	378.1	378.1	648.2	702.2	54.0	37.8	70.3	70.3
P38 MAP	454	424.8	380.8	691.2	783.6	59.5	55.9	79.5	89.4
PDGFrb	170	64.7	52.9	82.3	82.3	20.0	18.2	18.2	20.0
SRC	159	188.5	182.3	590.8	659.9	27.7	22.0	71.1	74.2
ТК	22	545.1	499.7	726.8	726.8	81.8	81.8	95.4	86.3
VEGFr2	88	102.2	102.2	136.3	193.0	20.5	19.3	20.5	30.7

Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking sets for molecular docking. *J. Med. Chem.* **2006**, *49*, 6789-6801.

Lead Hop(p)ing

Lead Hop(p)ing

HO ÇF₃ N H н O¹

Lead ER antagonist

 $CBD_{MQN} = 6$ (CBD_{SF}= 160)

 $T_{MQN} = 0.958$ $(T_{SF} = 0.107)$

Lead HIV RT inhibitor

OMe MeS S Н $CBD_{MQN} = 15$

(CBD_{SF}= 212)

HN AcHN CO₂H

Lead NA inhibitor

Lead pde5 inhibitor

 $CBD_{MQN} = 22$ $(CBD_{SF} = 259)$

MeÓ ЮH

