Predicting Properties of Small Molecules with

Kernel-Based Machine Learning Methods

Klaus-Robert Müller, Matthias Rupp, Katja Hansen, Timon Schroeter, Gisbert Schneider et al.

Machine Learning in a nutshell

Typical scenario: learning from data

- given data set **X** and labels **Y** (generated by some joint probabilty distribution p(x,y))
- LEARN/INFER underlying unknown mapping

$$Y = f(X)$$

Example: distinguish toxic and non-toxic compounds, metabolically stable compounds ...

BUT: how to do this optimally with good performance on unseen data?

Gaussian Processes

Formal: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

Informal: A generalization of normally distributed random variables to functions.

Gaussian Process in 2-dim

Gaussian Process in 3-dim

Gaussian Process in 5-dim

Covariance matrix 1 Covariance matrix 2

Gaussian Process in 100-dim

Covariance matrix 1 Covariance matrix 2

And here is the GP

Specify prior over functions by specifying a covariance matrix *K*:

- Function on N points, x_1, \ldots, x_N
- Covariance function k ("kernel function")

$$k(x,x') = \text{cov } [f(x),f(x')]$$

- Functional values $f(x_1), \dots, f(x_N)$ follow an N-variate Gaussian:

$$\begin{pmatrix} f(x_1) \\ \vdots \\ f(x_N) \end{pmatrix} \sim \mathcal{N}(0,K)$$

with $K_{i,j} = k(x_i, x_j)$

Covariance Functions

Gaussian Process Models

- Functional values $f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)$ for any finite set of n points form a n-variate Gaussian distribution.
- Specified in terms of a covariance function (kernel function) k

$$k(x,x') = \operatorname{cov} [f(x),f(x')]$$

– Examples:

$$k(x,x') = \exp(-w(x-x')^2)$$
 RBF
 $k(x,x') = (1+w(x-x')^2)^{-v}$ rational quadratic

Bayes Theorem

 Bayes Formula tells us how to construct a probabilistic model from the data and our (necessary) assumptions

$$p(f | \mathcal{D}) = \frac{p(\mathcal{D} | f) p(f)}{p(\mathcal{D})}$$

- Prior p(f): Belief/assumptions about probability of each function f in the chosen family of functions by \mathcal{F}
- Data \mathcal{D} : Pairs $\mathcal{D} = (x_1, y_1), \dots, (x_N, y_N)$
 - · Measured value y_i , but there is a "true value" $f_i = f(x_i)$
- Likelihood $p(\mathcal{D}|f)$: How well does a function $f \in \mathcal{F}$ agree with data \mathcal{D} ?
- Posterior p(f | D): a posteriori distribution of functions, obtained by applying Bayes' rule

GP Training

GP regression with training data

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\}\$$

1. Assume a covariance function $k_{\theta}(x, x')$ with parameters θ . E.g. rational quadratic:

$$k(x,x') = \frac{1}{(1+w\|x-x'\|^2)^{-v}}$$
 (1)

2. Marginal likelihood for given θ and σ^2

$$L_{\theta} = -\frac{1}{2} log \det(K_{\theta} + \sigma^2 I) - \frac{1}{2} \mathbf{y}^{\top} (K_{\theta} + \sigma^2 I)^{-1} \mathbf{y} - \frac{N}{2} log 2\pi$$

- 3. Use a numeric optimizer to maximize marginal likelihood, obtain final covariance function k_{θ}
- 4. Compute kernel matrix K, $K_{ij} = k_{\theta}(\mathbf{x}_i, \mathbf{x}_j)$
- 5. Solve linear system $(K + \sigma^2 \mathbf{1})\alpha = \mathbf{y}$

Prediction with GPs

Prediction is a probability distribution (Gaussian):

$$p(f(x^*)|\mathcal{D}) = \mathcal{N}(\bar{f}^*,\bar{s}^*)$$

Predictive mean

$$ar{f}^* = \sum_{i=1}^N \alpha_i k(x^*, x_i)$$
 $lpha = (K + \sigma^2 I)^{-1} \mathbf{y}$

Predictive standard deviation \$\overline{s}^*\$:

$$\mathbf{\bar{s}}^* = \sqrt{k(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{v}^{\top}(K + \sigma^2 I)^{-1}\mathbf{v}}$$

- Computationally not too demanding, fast

Notation: vector $\mathbf{y} = (y_1, ..., y_N)$, matrix K with $K_{i,j} = k(x_i, x_i)$, unit matrix I, vector \mathbf{v} with $v_i = k(x^*, x_i)$

GP Learning – a cartoon

- Specify a huge number of possible functions
- Eliminate those that don't agree with the data
- Average over what remains: Prediction is a probability distribution

GP the Movie

Application: predict chemical endpoints from descriptors

Develop customized tools to predict

- Water solubility, logP and logD
- Metabolic stability
- CYP P450 inhibition

that...

- are accurate on in-house data
- provide individual error bars for each prediction
- check the domain of applicability
- are easily retrainable
- are fast (library design)

Data available: solubilty (physico-chemical property)

- Data sources:
 - Physprop data base
 - Beilstein data base
 - Schering in-house data (mostly drug candidates, electrolytes)
- Filter by
 - Temperature range 15...45°C
 - Excluding salts
 - Compound completely neutral or measured at pH 7...7.4
 (i.e. for electrolytes model will predict log S_W at pH ~ 7)
- To compare with literature:
 - Huuskonen data (1311 compounds), www.vcclab.org
- Final evaluation:
 - Blind test on data from recent projects

[Schwaighofer et al. JCIM 2007, Schroeter et al, ChemMedChem 2007]

Issues: Multiple Measurements

# Measurements M	M=1	M=2	$3 \le M \le 10$	M > 10
# Compounds	2857	858	320	23

GP models *learned* plausible noise levels

- $-\ \sigma_1=0.46$ for compounds with single measurements
- $-\sigma_2=0.15,\,\sigma_3=0.026$ for compounds with multiple measurements

Fitness for Purpose

Descriptors

Full set of 1664 Dragon descriptors (Todeschini et al) includes, among others

- constitutional & topological descriptors
- walk & path counts
- eigenvalue-based indices
- counts of functional groups & atom-centered fragments

Descriptors with highest weight include

- Number of hydroxy-, carboxylic acid and keto groups
- LogD at ph 7
- Total polar surface area

ML model can tell which descriptors are important

Number of nitrogen & oxygen atoms

Results Solubility Schering in House (at pH 7)

Results Solubility Huuskonen

		r^2	rmse
Huuskonen	2000	0.88	0.71
Tetko	2001	0.85	0.81
		0.90	0.66
Liu	2001		0.87
Ran	2001		0.76
Bruneau	2001		0.82
Engkvist	2002	0.95	
Yan	2003	0.82	
		0.92	
Yan	2003	0.89	
		0.94	
Lind	2003	0.89	0.68
Yan	2004	0.94	
Hou	2004	0.90	
Fröhlich	2004	0.90	
Clark	2005	0.84	
Rapp	2005	0.92	
		0.91	
This study	2006	0.93	0.57

Results LogD (at pH 7)

[Schroeter et al 2008]

GPs for Classification

Measuring Metabolic Stability (bio-chemical property)

- prepare solution of liver microsomes
 - defined concentrations of enzymes, cofactors etc.
- add test compound and incubate at 37 °C for 30 min
- measure concentration remaining using HPLC-UV/Vis
- calculate percent recovery relative to 0 min

- total of 8 experiments per compound
- details on optional slide, ask if interested

Measuring Metabolic Stability: Detailed set-up

Setup: Liver microsomes were adjusted to a cytochrome P450
 concentration of 0.2 vM: sodium phosphate buffer was used at

Species	# experimental data	# data for model building
Human	2196	1915 (1163 stable, 752 unstable)
Mouse female	1268	1126 (555 stable, 571 unstable)
Mouse male	1022	898 (404 stable, 494 unstable)
Rat male	1647	1437 (749 stable, 688 unstable)

were stopped by ice-cold methanol before adding the test compound. Samples were stored in the freezer (-20°C) over night and thought at 2000 a before taking an aliquet for

Species	# experimental data	# data for blind test
Human	700	630 (358 stable, 272 unstable)
Mouse female	358	324 (139 stable, 185 unstable)
Mouse male	194	183 (97 stable, 86 unstable)
Rat male	290	263 (148 stable, 115 unstable)

Quantifying Performance

Model Performance

Predicting biological properties

 $PPAR\gamma = \underline{P}eroxisome \underline{P}roliferator-\underline{A}ctivated \underline{R}eceptor \gamma$

- Nuclear receptor
- ▶ 3 isoforms: α , β/δ , γ
- Related to type 2 diabetes and dyslipidemia
- Heterodimerization with RXR
- ► Large binding pocket (1.5 nm³)
- Native ligands: fatty acids, lipid metabolites

Objective: find new agonists

Virtual Screening: Optimization Criteria

"Target is binding affinity" — oversimplification

- False negatives and false positives may have different costs
 - → need to reduce false positives (in our case)

PPAR γ study:

- ▶ Learn binding affinity (pK_i) instead of receptor activation (EC_{50})
- Ignore other criteria during learning
- Do "cherry-picking" at the end
- Use fraction of inactives in top 20 as performance measure
- Use Gaussian process variance estimates

The Study

PPAR γ study:

- ▶ Published data set (n = 144)
- ▶ Used leave-k-clusters-out cross-validation

PPAR γ study:

- ► CATS2D (d = 210), MOE 2D (d = 184) descriptors
- ► ISOAK graph kernel
- Multiple kernel learning

Choosing the Kernel

ISOAK = iterative similarity optimal assignment kernel

$$\mathbf{X}_{v,v'} = (1-\alpha)k_v(v,v') + \alpha \max_{\pi} \frac{1}{|v'|} \sum_{\{v,u\} \in E} \mathbf{X}_{u,\pi(u)} k_e(\{v,u\},\{v',\pi(u)\})$$

 α controls recursiveness; π assigns neighbors of ν to neighbors of ν'

Rupp et al, J. Chem. Inf. Mol. Model. 47(6): 2280, 2007.

PPAR-Gamma Data Set

Rücker et al.: Bioorg. Med. Chem. 14(15): 5178, 2006; Rupp, PhD thesis, 2009.

Results

- ► Top 30 of three best performing models
- 16 cherry-picked compounds with novel scaffolds
- ▶ PPAR γ selective activator (EC₅₀ 9.3 ± 0.3 μ M), natural product related
- ▶ 3 dual PPAR α/γ activators (μ M range, two $\leq 10\mu$ M)
- ▶ 4 selective PPAR α activators (μ M range, one $\leq 10\mu$ M)
- ▶ 8 out of 16 compounds are active
- ▶ 4 out of 16 compounds with $EC_{50} \le 10 \mu M$

Virtual Screening: cherry picking

Detailed Results

ightharpoonup PPAR γ affinity is a non-linear function of structure

Fraction of inactives in top

- Compound weighting by activity did not improve predictions.
- ► Separate kernels in MKL worsened MAE but improved Fl₂₀

	Cross-validation		<i>y</i> -scrambling	
Model	MAE	FI ₂₀	MAE	FI ₂₀
KRR/MOE 2D/linear SVM/MOE 2D/RBF			1.45 ± 0.04 1.10 ± 0.10	
GP/CATS2D/RBF+RQ	0.66 ± 0.09 0.70 ± 0.11		1.08 ± 0.02 1.11 ± 0.06	

▶ 5 (best MAE model) + 10 (best FI₂₀ model) = 15 compounds selected for assay tests

Results: prospective validation

- Cell-based reporter gene (luciferase) assay
- ▶ 8 out of 15 active, 4 in lower micro-molar range

hPPARlpha EC₅₀ = 1.25 \pm 0.37 μ M

hPPAR α EC₅₀ = 12.98 \pm 4.21 μ M hPPAR γ EC₅₀ = 3.75 \pm 0.2 μ M

hPPAR α EC₅₀ = 13.48 ± 8.53 μ M hPPAR γ EC₅₀ = 10.03 ± 0.2 μ M

Rau et al., Planta Med. 72(10): 881, 2006.

Best Hit: a natural product

Cynodon dactylon

- Natural product
- Occurs in plant cell walls
- Photo-dimerization of trans-cinnamic acid

putative binding mode

[Rupp et al., ChemMedChem 2009, Steri et al., Bioorg Med Chem Lett 2010]

Misc Remarks

Explaining single Predictions

Ranking or Regression

Conclusion

- GPs and SVM have been applied in many practical applications
- CYP, hERG, metabolic stability, toxicity, log p, log d, solubility, mutagenicity
- ranking, explaining, error bars
 Kernel holds the key
 Corina
 DRAGON

Machine Learning Methods are universal tools and useful

