
Mauro Maggioni
Department of Mathematics and Computer Science

Duke University

I.P.A.M. - 4/12/2011

Joint work:G. Chen, A. Little (Duke) 
                    C. Clementi, M.A. Rohrdanz and W. Zheng (Rice)
                       
Partial support: DARPA, NSF, ONR, Sloan

Geometric analysis of molecular 
dynamics data, diffusion geometry 

and reaction coordinates

Tuesday, April 26, 2011



Data Sets in High-Dimensions
A deluge of data: documents, customer databases, images, social network transac-
tions, gene arrays, sensor networks, financial transactions...
Data set: often X ⊂ RD, D very large (102 − 108).

Data Picture Problems

Approx. 1000 articles from  
ScienceNews.
Representation: a document-
term matrix, with about 
1000 terms.

A database o f ~60000 
grayscale 28x28 images of 
handwritten digits 0-9.

Automatically sort articles 
into categories, given only a 
small set labeled by experts.

Navigate the library.

Automatically recognize 
digits (e.g. for ZIP codes, 
checks, etc...)

I show non-zero pattern in the word-doc matrix, I promise frequencies wouldn’t 
help!
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A fragmented landscape

comment on where machine learning sits

. Problems arise in many applications, and research fields (computer sci-

ence, engineering, applied mathematics, statistics, biology, ...).

. No single approach will be optimal in all cases, but there are common

fundamental questions and common promising approaches.

. Data model: set of samples from a distribution in RD; set of vertices of a

graph.

. Geometric problems: which geometric properties does the data have? Low

intrinsic dimension, manifold-like, easily partitioned into clusters, etc...

. Function approximation problems: we are interested in learning and pre-

dicting certain observables from data. We need to approximate a function,

defined on the data, and thereby with possibly high-dimensional domain.

. One may try to fuse the two problems above.
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Learning & Geometry
The Geometric Basis of Semi-supervised Learning. V. Sindhwani, M. Belkin, and P. Niyogi, in Semi-supervised Learning, 
(Chapelle, Schoelkopf, Zien: editors), MIT Press, 2006.

Lots of work in the past 10 years in the machine learning, statistics, applied mathematics communities: manifold learning, 
dimensionality reduction, topological data analysis.

Tie geometry and learning of functions.
This was one great insight of University of Chicago very own Partha 
Nyogi, whom I am sure several of us sorely miss.
I borrowed these figures from one of his papers, where with his usual 
clarity he emphasizes how important ties between geometry and 
learning may be.
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Random walks on data and graphs
Joint with R. Coifman and S. Lafon

Given:

. Data X = {xi}ni=1 ⊂ RD.

. Local similarities via a kernel function W (xi, xj) ≥ 0.

Simplest example: Wσ(xi, xj) = e
−||xi−xj ||2/σ.

Model the data as a weighted graph (G,E,W ): vertices represent

data points, edges connect xi, xj with weight Wij := W (xi, xj),

when positive. Let Dii =
�

j
Wij and

P = D
−1

W� �� �
random walk

, T = D
− 1

2WD
− 1

2� �� �
symm. “random walk��

, L = I − T� �� �
norm.Laplacian

, H = e
−tL

� �� �
Heat kernel

One may start doing analysis and measure smoothness:

�Lf, f� =
�

x

�

y∼x

W (x, y)

�
f(x)√
dx

− f(y)�
dy

�2

∼
ˆ

|∇f |2dW
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Some basic properties of r.w.’s

• P t(x, y) is the probability of jumping from x to y in t steps

• P t(x, ·) is a “probability bump” on the graph

• P and T are similar, therefore share the same eigenvalues {λi} and
the eigenfunctions are related by a simple transformation. Let Tϕi =
λiϕi, with 1 = λ1 ≥ λ2 ≥ . . . .

• “typically” P (or T ) is large and sparse, but its high powers are full
and low-rank

• one can take limits as n→∞ of the above, when the points are sam-
pled from a manifold M, and recover in the limit natural operators
such as Laplacian, heat kernels etc... on M.
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Basic norms on graphs
Any function f : G → R is a vector in RN . Euclidean norm and inner product:

||f ||22 =

�

x∈G

|f(x)|2d(x) , �f, g� =

�

x∈G

f(x)g(x)d(x)

where d(x) =
�

y∼x W (x, y).

Other choices are possible

A Laplacian L allows to introduce a notion of smoothness

�Lf, f� =

�

x

�

y∼x

W (x, y)

�
f(x)√

dx
− f(y)�

dy

�2

∼
�

edges
|∇f |2dW

Moreover,

λi(L) = min
f⊥�ϕ1,...,ϕi−1�

�Lf, f�
||f ||2
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Diffusion distances

[Picture courtesy of S. Lafon]

Mauro Maggioni Random Walks on Graphs

Picture courtesy of S. Lafon

In some cases the geodesic distances dM may not capture interesting geometric in-
formation. For example here dM(A, B) ∼ dM(B,C). Can we define a new distance
that may capture this type of geometric characteristic?

Diffusion Distances, I
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Diffusion Distances, II
Diffuse from x

Tϕi = λiϕi

We may use random walks, and, for t > 0, define

d(t)(x, y) =
��T t(x, ·)− T t(y, ·)

��
L2(G)

=

��

z∈G

|T t(x, z)− T t(y, z)|2

=

����
+∞�

i=1

λ2t
i (ϕi(x)− ϕi(y))2

∼
���λt

iϕi(x)
�m
i=1

−
�
λt
iϕi(y)

�m
i=1

��
Rm

Therefore Φ(t)
m defined by Φ(t)

m (x) = (λt
iϕi(x))

m
i=1 satisfies

���Φ(t)
m (x)− Φ(t)

m (y)
���
Rm

∼ d(t)(x, y) ,

at least for t large and m large.

Diffuse from y
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Spectral Clustering in one slide

Original space

Robustness with respect to nonlinear deformations

Mauro Maggioni Multiscale Analysis on graphs via Diffusion

Every point is connected to its 5 nearest 
neighbors, to obtain a graph.
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Spectral Clustering in one slide

Original space

Flexibility + robustness

x �→ (φ2(x), φ3(x))

Robustness with respect to nonlinear deformations

Mauro Maggioni Multiscale Analysis on graphs via Diffusion
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Example: Text documents
About 1100 Science News articles, from 8 different categories. We compute about
1000 coordinates, i-th coordinate of document d represents frequency in document
d of the i-th word in a dictionary. Point cloud of 1100 points in R1000.

Suggest low-intrinsic dimension
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Example: Handwritten digits
Database of 60, 000 pictures, with 28× 28 pixels, of handwritten digits collected by
USPS. Point cloud of 60, 000 points in R728.
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Molecular Dynamics & F-P. equation
R.R.Coifman, I.G.Kevrekidis, S.Lafon, MM, B.Nadler, Multiscale Model. Simul.

the full details.

For a system with N atoms, with a given potential energy function E(x), at constant

temperature T , and in the limit of high friction, the Fokker-Planck equation governs the

temporal evolution of the probability distribution p(x, t) at any configuration x ∈ R3N of

the system:

∂p

∂t
= −

3N
∑

i

∂

∂xi

(

1

β

∂

∂xi
+

∂E

∂xi

)

p = −HFPp, (1)

where β = 1/(kBT ), kB is Boltzmann’s constant, and t is the time variable. Under

rather general conditions, the operator HFP, which acts on an infinite-dimensional space

of probability distributions, has a discrete eigenspectrum of non-negative eigenvalues λi,

with λ0 = 0 < λ1 ≤ λ2 ≤ . . . , and corresponding eigenfunctions φi(x). Formally (and

rigorously in an appropriate metric that depends on various assumptions about HFP), the

general solution of the Fokker-Planck equation is:

p(x, t) = φ0(x) +
∞

∑

i=1

ciφi(x)e−λit (2)

where the coefficients ci are determined by the initial distribution p(x, t = 0). The eigen-

function φ0(x) is the Boltzmann distribution, approached by any initial distribution when

t $ 1/λ1.

For systems with one (or a few) slow process(es) dominating the dynamics (such as the

crossing of a free energy barrier), the eigenspectrum will present a gap; i.e. λk+1 $ λk

for some k, and the evolution of the probability distribution toward equilibrium may be

approximated as the first k terms of the general solution,

p(x, t) = φ0(x) +
k

∑

i=1

ciφi(x)e−λit, (3)

at least at time scales t $ 1/λk+1. In these situations it has been shown that φi(x)/φ0(x),

which are eigenfunctions of the backward Fokker-Planck operator,28 serve as collective coor-

dinates in the sense that their time evolution is approximately Markovian and independent

of the remaining degrees of freedom. These are the diffusion coordinates, and the diffusion

map is the nonlinear mapping from the space of molecular configurations to the diffusion

coordinate space.

An efficient numerical method to approximate these first few eigenfunctions and associ-

ated eigenvalues using samples of the equilibrium distribution has been recently proposed.23
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4

Fokker-Planck equation & eigenfunctions

The dual system of eigenfunctions, which we pick as reaction coordinates, is

ψj(x) = φj(x)/φ0(x) .

Under suitable conditions, it has discrete spectrum 0 = λ0 < λ1 ≤ . . . λk �
λk+1 ≤ . . . , and fundamental solution with eigen-expansion

pt(x, y) = φ0(x) +
+∞�

j=1

ψj(y)φj(x)e
−λjt .

With these normalizations,

d(t)(x, y) = ||pt(x, ·)− pt(y, ·)||L2 =

��

j

e−λjt|ψj(x)− ψj(y)|2
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Example: Molecular Dynamics Data

R36

Joint with C. Clementi, M. Rohrdanz, W. Zheng

The dynamics of a small peptide (12 atoms with H-atoms removed) in a bath of
water molecules, is approximated by a Langevin system of stochastic equations

ẋ = −∇U(x) + ẇ

The set of configurations is a point cloud in R12×3.

φ

ψ
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Intrinsic Dimension,Curvature,Local Scales
With A.V. Little, 2010

Model: data {xi}ni=1 is sampled from a manifold M of dimension k, em-
bedded in RD, with k � D. We receive {xi + ηi}ni=1, where ηi ∼i.i.d N is
D-dimensional noise (e.g. Gaussian). Objective: estimate k. Motivations:

. Basic measure of complexity of the data

. Settle claims about low-dimensional structures in data

. Needed by many algorithms that seek to parametrize the data

. Equivalent to number of: latent variables in a linear model, degrees
of freedom in a dynamical system; useful for clustering the data by
local dimensionality, finding compressed representations of the data,
building dictionaries for representing and modeling the data, etc...

. We will not only learn the intrinsic dimensionality, but also about the
“natural scales” in the data: “immediate” applications to local scale
selection, multiple plane models, dictionary learning...

. Existing work somewhat unsatisfactory, both in theory and practice
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Existing approaches

15 10 5 0 5 10 15 20

10

5

0

5

10

15

σ2V2

σ1V1

(high-level overview)

Principal Component Analysis: if Xn is the n×D matrix with the samples,
let cov(Xn) =

1
nX

T
n Xn = 1

nV Σ2V T with the diagonal Σ = diag(σ1, . . . , σD).
The plane πi spanned by the top i Vm’s minimizes

n�

l=1

||xl − πi(xl)||2 .

Great if data sampled from a linear subspace.
If sampled from manifold, do this for
data in a “small” ball of radius r [Fukunaga ’67].
Problematic choice for r. Multiple r’s? [Kirby]
Sample complexity: need n � k log k
for estimating a rank k covariance.

Volume-based: on a k-dimensional set, |Br(z) ∩ M| ∼ rk. Compute
log |Br(z)| for several values of r and fit a line. Problematic choice for range
of r. [Levina-Bickel; Haro-Randall-Sapiro; Carter-Hero (x3); Costa-Hero; Camastra-

Vinciarelli; Cao-Haralick; Raginsky-Lazebnik; Takens; Hein-Audibert; Bruske-Sommer...]

Sample complexity: n ∼ 2k.
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Multiscale SVD

M

M+ ηBr(z)

z

None or few points, 
completely within the noise, 
randomly spread singular 

values and vectors

||η|| ∼ σ
√

D

Tiny r

Let Xn be n points sampled from M, corrupted by η ∼ σN (0, ID). Note that
||η|| ∼ σ

√
D. Let σz,r

i be the i-th singular value of the covariance matrix of Xn

restricted to Bz(r).
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√
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M
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Example: consider S9(100, 1000, 0): 1000 points uniformly samples on a 9-
dimensional unit sphere, embedded in 100 dimensions, with no noise.
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gap

Largest
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Example: consider S9(100, 1000, 0.1): 1000 points uniformly samples on a 9-

dimensional unit sphere, embedded in 100 dimensions, with Gaussian noise

N (0, 0.1I100). Observe that E[||η||2] ∼ 0.12 · 100 = 1.
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dimensional unit sphere, embedded in 100 dimensions, with Gaussian noise

N (0, 0.1I100). Observe that E[||η||2] ∼ 0.12 · 100 = 1.
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Example: consider S9(100, 1000, 0.1): 1000 points uniformly samples on a 9-

dimensional unit sphere, embedded in 100 dimensions, with Gaussian noise

N (0, 0.1I100). Observe that E[||η||2] ∼ 0.12 · 100 = 1.

Fig. 1. S9(1000, 100, 0.1). Top left: plot of Ez[λ̃2
i,z,r], and corresponding standard deviation bands

(dotted), as a function of r. The top 9 S.S.V.’s dominate and correspond to the intrinsic dimen-
sions; the 10-th S.S.V. corresponds to curvature, and slowly increases with scale (note that at
large scale ∆10 > ∆9); the remaining S.S.V.’s correspond to noise in the remaining 90 dimen-
sions, and converge to the one-dimensional noise size σ2. Top right: smoothed plot of the gaps
λ̃2
k,z,r− λ̃2

k+1,z,r of the multiscale singular values on a portion the “scale-frequency” plane (where
“frequency” is index of the singular value): note the 10-th gap passing the 9-th gap at large
scales. At smaller scales (not shown), noisy singular values create large random gaps. Bottom
left: the multiscale S.S.V. λ̃2

i,z,r for a fixed (randomly chosen) point z: the algorithm is run at
only that point, and both the global range of scale and the correct range of “good scale” are
detected automatically. Bottom right: a view of the surface top right from above.

covariance of a random variable Y as

cov(Y ) = E[(Y − E[Y ])⊗ (Y − E[Y ])] = E[Y ⊗ Y ]

cov(Yn) =
1

n

n
∑

i=1

(yi − En[Y ])⊗ (yi − En[Y ]) = En[Yn ⊗ Yn], En[Y ] =
1

n

n
∑

i=1

yi
(3.2)

where Y := Y −E[Y ] and Yn := Y −En[Y ]. Finally, cov(Y,X) = E[(Y −E[Y ])⊗(X−E[X ])]
is the cross-covariance between two random variables Y,X , and cov(Yn, Xn) its empirical
counterpart.

Definition. We let {λ2
i (cov(X))} be the eigenvalues of cov(X), sorted in decreasing order.

We let ∆i(cov(X)) := λ2
i (cov(X)) − λ2

i+1(cov(X)), for i = 1, . . . , D − 1, ∆D(cov(X)) =
λ2
D(cov(X)), ∆max := maxi=1,...,D ∆i.

6
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Sketch of results

MUCH MORE GENERAL THAN MANIFOLDS
ALLOWS FOR DIFFERENT DIMENSIONS AT DIFFERENT POINTS/SCALES

The proof uses combination of spectral theory for random matrices and covariance matrix estimation, adapted to analyze this “low-rank” + 
small perturbation point clouds...

Some volume-based algorithms are consistent (n → +∞). Random matrix
theory algorithms typically succeed in the setting n,D → +∞, with n

D → γ.
We seek finite sample results, with high probability: given n,D and other
parameters of the problem, promise that with probability at least 1− e−ct2

we return the correct answer.
We prove that: if (Rmin, Rmax) is the range of scales for which the “mani-
fold” looks “flat” in k directions and “thin” in the others, provided that

M has small “curvature” κ + the noise η has small std σ,

⇒ w.h.p. as soon as nr �t k log k (for r a good scale), a slightly smaller
range of scales survives sampling and noise.

Moreover, if κ ∼ 1 and σ ∼ D− 1
2 , then our results are dimension-free,

i.e. the above is true w.h.p. for n � k log k with the implicit constants
independent of k,D.
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]

(1) compute σ
(z,r)
i , for each z ∈ M, r > 0, i = 1, . . . , D.

(2) estimate the noise size σ, obtained from the bottom S.V.’s which do not
grow with r. Split the S.V.’s into noise S.V.’s and non-noise S.V.’s.

(3) identify a range of scales where the noise S.V.’s are small compared to the
other S.V.’s.

(4) estimate, in the range of scales identified, which S.V.’s, among the non-
noise S.V.’s, correspond to tangent directions and which ones correspond to
curvatures, by comparing the growth rate as being linear or quadratic in r2.

Computational considerations: by constructing multiscale nets, instead of com-
puting at all scales and all locations, and randomized SVD [Martinsson, Rokhlin,
Tropp,Tygert], the cost of the algorithm, assuming that finding nearest neighbors
is (after preprocessing) O(log n), becomes O(KDn log n), where K is a given upper
bound on k.

Extensive experiments show that this is the case
Very competitive in terms of speed against many other algorithms
Scales very well with n as well as K
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[43] A. M. Farahmand, C. Szepesvári, J.-Y. Audibert, Manifold-adaptive dimension estimation.,
in: Proceedings of the 24th international conference on Machine learning, 2007, p. 265272.

50

IDE -

[25] V. I. Koltchinskii, Empirical geometry of multivariate data: a deconvolution approach., Ann.
Stat. 28 (2) (2000) 591–629.

[26] S. Har-Peled, M. Mendel, Fast construction of nets in low-dimensional metrics and their
applications, SIAM J. Comput. 35 (5) (2006) 1148–1184.

[27] A. Beygelzimer, S. Kakade, J. Langford, Cover trees for nearest neighbor, in: ICML ’06:
Proceedings of the 23rd international conference on Machine learning, ACM, New York,
NY, USA, 2006, pp. 97–104.

[28] A. S. V Rokhlin, M. Tygert, A randomized algorithm for principal component analysis,
SIAM Jour. Mat. Anal. Appl. 31 (3) 1100.

[29] Ledoux, The Concentration of Measure Phenomenon, Amer. Math. Soc., 2005.

[30] K. Carter, A. O. Hero, R. Raich, De-biasing for intrinsic dimension estimation, Statistical
Signal Processing, 2007. SSP ’07. IEEE/SP 14th Workshop on (2007) 601–605.

[31] K. Carter, A. Hero, Variance reduction with neighborhood smoothing for local intrinsic
dimension estimation, Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE
International Conference on (2008) 3917–3920.

[32] G. Haro, G. Randall, G. Sapiro, Translated poisson mixture model for stratification learning,
Int. J. Comput. Vision 80 (3) (2008) 358–374.

[33] E. Levina, P. J. Bickel, Maximum likelihood estimation of intrinsic dimension, in: L. K.
Saul, Y. Weiss, L. Bottou (Eds.), Advances in Neural Information Processing Systems 17,
MIT Press, Cambridge, MA, 2005, pp. 777–784.

[34] J. Costa, A. Hero, Geodesic entropic graphs for dimension and entropy estimation in
manifold learning, Signal Processing, IEEE Transactions on 52 (8) (2004) 2210–2221.

[35] K. Carter, A. Hero, Variance reduction with neighborhood smoothing for local intrinsic
dimension estimation, Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE
International Conference on (2008) 3917–3920.

[36] M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, L. Carin, Compressive sensing on
manifolds using a nonparametric mixture of factor analyzers: Algorithm and performance
bounds, IEEE Trans. Signal Processing.

[37] G. Haro, G. Randall, G. Sapiro, Translated poisson mixture model for stratification learning,
Int. J. Comput. Vision 80 (3) (2008) 358–374.

[38] E. Levina, P. Bickel, Maximum likelihood estimation of intrinsic dimension, In Advances in
NIPS 17,Vancouver, Canada.

[39] M. Hein, Y. Audibert, Intrinsic dimensionality estimation of submanifolds in euclidean space,
in: S. W. De Raedt, L. (Ed.), ICML Bonn, 2005, pp. 289 – 296.

[40] M. Raginsky, S. Lazebnik, Estimation of intrinsic dimensionality using high-rate vector
quantization, Proc. NIPS (2005) 1105–1112.

[41] B. Kgl, Intrinsic dimension estimation using packing numbers, 2002, pp. 681–688.

[42] M. Fan, H. Qiao, B. Zhang, Intrinsic dimension estimation of manifolds by incising balls,
Pattern Recogn. 42 (5) (2009) 780–787.

50

MFA -

All the parameters in our algorithm are fixed in all the examples, comparisons,
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Fig. 7. Benchmark data sets: Sk(n,D) for various values of k, n,D. Remark: when the intrinsic
dimension is overestimated by 1, it means that the algorithm could not determine that the
k+1-st singular value is due to curvature: this may happen because of excessive noise or because
of under-sampling (or both). For example we have severe under-sampling for S12(250,σ), as well
as for S48(2000,σ).

show the plot of the point-wise estimates at different points and the average. Figure ??
shows the same plot for different digits. In Table ?? we report the dimension estimated
for each individual digit and compare with the smoothed Grassberg Procaccia estimator
from [?] and the high rate vector quantization approach in [?].

Next we consider the IsoMap faces database 2 consisting of 698 images of size 64 times
64 pixels. We find an average intrinsic dimension k = 2 see Figure ??. The different
methods based on volume estimates return similar results. [?] finds k between 3 and 4

2 http://isomap.stanford.edu/dataset.html
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Fig. 7. Benchmark data sets: Sk(n,D) for various values of k, n,D. Remark: when the intrinsic
dimension is overestimated by 1, it means that the algorithm could not determine that the
k+1-st singular value is due to curvature: this may happen because of excessive noise or because
of under-sampling (or both). For example we have severe under-sampling for S12(250,σ), as well
as for S48(2000,σ).

show the plot of the point-wise estimates at different points and the average. Figure ??
shows the same plot for different digits. In Table ?? we report the dimension estimated
for each individual digit and compare with the smoothed Grassberg Procaccia estimator
from [?] and the high rate vector quantization approach in [?].

Next we consider the IsoMap faces database 2 consisting of 698 images of size 64 times
64 pixels. We find an average intrinsic dimension k = 2 see Figure ??. The different
methods based on volume estimates return similar results. [?] finds k between 3 and 4

2 http://isomap.stanford.edu/dataset.html
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Fig. 7. Benchmark data sets: Sk(n,D) for various values of k, n,D. Remark: when the intrinsic
dimension is overestimated by 1, it means that the algorithm could not determine that the
k+1-st singular value is due to curvature: this may happen because of excessive noise or because
of under-sampling (or both). For example we have severe under-sampling for S12(250,σ), as well
as for S48(2000,σ).

show the plot of the point-wise estimates at different points and the average. Figure ??
shows the same plot for different digits. In Table ?? we report the dimension estimated
for each individual digit and compare with the smoothed Grassberg Procaccia estimator
from [?] and the high rate vector quantization approach in [?].

Next we consider the IsoMap faces database 2 consisting of 698 images of size 64 times
64 pixels. We find an average intrinsic dimension k = 2 see Figure ??. The different
methods based on volume estimates return similar results. [?] finds k between 3 and 4

2 http://isomap.stanford.edu/dataset.html

24

Tuesday, April 26, 2011



Some data sets: heterogenous dim.’s
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Figure 3: Isomap, CBCL and Facevideo Datasers. The left image is the plot of the dimension estimate
at different data points. The right image shows the gap at different scales, averaged over the different
data points.
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Figure 3: Isomap, CBCL and Facevideo Datasers. The left image is the plot of the dimension estimate
at different data points. The right image shows the gap at different scales, averaged over the different
data points.

4

Isomap Dimension Plot

100 200 300 400 500 600
1

1.5

2

2.5

3

3.5

4

Input Points

Es
tim

at
ed

 D
im

en
sio

n

Estimate ptwise dimensionality

 

 
Ptwise Estimate
Average Estimate

Isomap Multiscale Average Gaps

Sing. Val.

Sc
al

e

Multiscale Gaps

 

 

0.5 1 1.5 2 2.5 3 3.5 4 4.5

3.2314

2.99894

2.86036

2.73745

2.64306

2.54046

2.25876

1.93347

1.45463 −0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

CBCL Dimension Plot

50 100 150 200 250 300 350 400 450
1

2

3

4

5

6

7

8

Input Points

Es
tim

at
ed

 D
im

en
sio

n

Estimate ptwise dimensionality

 

 
Ptwise Estimate
Average Estimate

CBCL Multiscale Average Gaps

Sing. Val.

Sc
al

e

Multiscale Gaps

 

 

0.5 1 1.5 2 2.5 3 3.5 4 4.5

3.76785

3.5895

3.3443

3.11593

2.85196

2.60472

2.24312

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

FaceVideo Dimension Plot

200 400 600 800 1000 1200 1400 1600 1800
1

2

3

4

5

6

7

Input Points

Es
tim

at
ed

 D
im

en
sio

n

Estimate ptwise dimensionality

 

 
Ptwise Estimate
Average Estimate

FaceVideo Multiscale Average Gaps

Sing. Val.

Sc
al

e

Multiscale Gaps

 

 

0.5 1 1.5 2 2.5 3 3.5 4 4.5

395.283

364.228

339.648

319.983

300.307

281.148

260.379

234.413

190.321
−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

Figure 3: Isomap, CBCL and Facevideo Datasers. The left image is the plot of the dimension estimate
at different data points. The right image shows the gap at different scales, averaged over the different
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Fig. 12. Our algorithm can produce pointwise estimates, albeit it is not designed to take advan-
tage of any “smoothness” or clustering property of the local dimension as a function of the point.
Top left: a 2-sphere and a segment. Top right: for every point we plot the estimated maximal
good scale: it is large when sphere and segment are far away, and small close to the intersection.
Bottom left: The data is a very noisy 1-dimensional spiral intersecting a noisy two-dimensional
plane from [5]. Our algorithm assigns the correct dimension dimension 1 to the spiral (because
of the noise), and dimension 2 to the plane. 86% of the point of the spiral are assigned a dimen-
sion smaller than 2, and 77% of the points on the plane are assigned dimension 2 (or greater).
Overall, clustering by dimension gives an accuracy of 97%, which is as good as [5], the present
state-of-art to our knowledge. Bottom left: maximal good scale according to the algorithm.
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Fig. 13. From left to right: (a) A realization of S(1000, 0) (red circles) and S(1000, 0.1) as in
section 5.3. (b) (resVarl)l for S(1000, 0), from which the intrinsic dimension 2 may be inferred. (c)
(resVarl)l for S(1000, 0.1), from which the intrinsic dimension seems hard to infer. Our algorithm,
as shown in section 5.3, handles these cases correctly (w.h.p.). (d) the vectors of (resVarl)l for
Q10(1000, 0), S9(1000, 0), Q10(1000, 0.1), S9(1000, 0.1): it seems hard to see a difference between
the intrinsic dimensions 10 and 9, in both the noiseless and noisy cases.

39

Our algorithm assigns the correct dimension dimension 1 to the spiral (because of the noise), and dimen-

sion 2 to the plane. 86% of the point of the spiral are assigned a dimension smaller than 2, and 77% of

the points on the plane are assigned dimension 2 (or greater). Overall, clustering by dimension gives an

accuracy of 97%, the present state-of-art to our knowledge. Bottom left: maximal good scale according

to the algorithm.
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Molecular Dynamics & F-P. equation
R.R.Coifman, I.G.Kevrekidis, S.Lafon, MM, B.Nadler, Multiscale Model. Simul.

the full details.

For a system with N atoms, with a given potential energy function E(x), at constant

temperature T , and in the limit of high friction, the Fokker-Planck equation governs the

temporal evolution of the probability distribution p(x, t) at any configuration x ∈ R3N of

the system:

∂p

∂t
= −

3N
∑

i

∂

∂xi

(

1

β

∂

∂xi
+

∂E

∂xi

)

p = −HFPp, (1)

where β = 1/(kBT ), kB is Boltzmann’s constant, and t is the time variable. Under

rather general conditions, the operator HFP, which acts on an infinite-dimensional space

of probability distributions, has a discrete eigenspectrum of non-negative eigenvalues λi,

with λ0 = 0 < λ1 ≤ λ2 ≤ . . . , and corresponding eigenfunctions φi(x). Formally (and

rigorously in an appropriate metric that depends on various assumptions about HFP), the

general solution of the Fokker-Planck equation is:

p(x, t) = φ0(x) +
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i=1

ciφi(x)e−λit (2)

where the coefficients ci are determined by the initial distribution p(x, t = 0). The eigen-

function φ0(x) is the Boltzmann distribution, approached by any initial distribution when

t $ 1/λ1.

For systems with one (or a few) slow process(es) dominating the dynamics (such as the

crossing of a free energy barrier), the eigenspectrum will present a gap; i.e. λk+1 $ λk

for some k, and the evolution of the probability distribution toward equilibrium may be

approximated as the first k terms of the general solution,

p(x, t) = φ0(x) +
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∑

i=1

ciφi(x)e−λit, (3)

at least at time scales t $ 1/λk+1. In these situations it has been shown that φi(x)/φ0(x),

which are eigenfunctions of the backward Fokker-Planck operator,28 serve as collective coor-

dinates in the sense that their time evolution is approximately Markovian and independent

of the remaining degrees of freedom. These are the diffusion coordinates, and the diffusion

map is the nonlinear mapping from the space of molecular configurations to the diffusion

coordinate space.

An efficient numerical method to approximate these first few eigenfunctions and associ-

ated eigenvalues using samples of the equilibrium distribution has been recently proposed.23
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4

Fokker-Planck equation & eigenfunctions

The dual system of eigenfunctions, which we pick as reaction coordinates, is

ψj(x) = φj(x)/φ0(x) .

Under suitable conditions, it has discrete spectrum 0 = λ0 < λ1 ≤ . . . λk �
λk+1 ≤ . . . , and fundamental solution with eigen-expansion

pt(x, y) = φ0(x) +
+∞�

j=1

ψj(y)φj(x)e
−λjt .

With these normalizations,

d(t)(x, y) = ||pt(x, ·)− pt(y, ·)||L2 =

��

j

e−λjt|ψj(x)− ψj(y)|2
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Locally Scaled Diffusion Map
Joint with C. Clementi, M. Rohrdanz, W. Zheng, JCP 2011

. Construct the N ×N matrix of transition probability kernels K, as

Kij = e
− dRMSD(xi,xj)

2

2�i�j ,

for xi and xj molecular configurations, �i and �j their local scales.

. For each xi, compute

Pi =
N�

j=1

Kij ,

which is proportional to a density estimation around xi.

. Normalize the kernel as

K̃ij = P
− 1

2
i KijP

− 1
2

j .

. Define the diagonal matrix D as Di =
�N

j=1 K̃ij , and construct a Markov

matrix M = D−1K̃,
Mij = D−1

i K̃ij .

. Compute largest eigenvalues and corresponding right eigenvectors of M .
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Example: Alanine dipeptide
Joint with C. Clementi, M. Rohrdanz, W. Zheng, JCP 2011
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FIG. 4: MDS singular value spectra for configurations inside ε-balls around a configuration near

a transition region (top), and near a free energy minimum (bottom) for alanine

dipeptide. The horizontal axis is the RMSD radius of each ε-ball in Å. For the top

(bottom) panel the intrinsic dimension determined by our algorithm is 2 (8), and the

red vertical line denotes the value of the estimated local scale εi. Note the differences in

the scales of the axes between the two figures.
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Molecular Dynamics data for alanine
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Figure 2: In these preliminary results in collaboration with C. Clementi, we ran Molecular Dynamics simula-

tions of alanine dipeptide in a water bath, whose state space is 60 dimensional. We use diffusion geometry, with

a particular graph construction guaranteed to approximate the true generator of the underlying SDE, and the

eigenfunction embedding theorems mentioned below, to embed the data (each point represents a molecular con-

figuration) in low-dimensional Euclidean space (left), revealing salient geometric features of the effective state

space of the molecule, which is indeed low-dimensional. The distance between two molecular configurations is

not Euclidean, since one needs to mod out rigid motions: in this metric space we apply the multiscale analysis

above to study intrinsic dimensionality (right). This analysis reveal striking differences in dimensionality be-

tween higher dimensional semistable regions, where the molecule dwells for long times, and lower dimensional

transition states. The tremendous amount of noise in the system (thousands of molecules of water hitting the

protein) requires robust analysis techniques such as those discussed. Effective dimensionality at a given scale

is in this context equivalent to number of effective equations driving the system, at a given time scale.

and Calderón-Zygmund integral operators [91, 55, 54], and constructions in geometric measure theory

related to the so-called analyst’s traveling salesman problem [92, 90]. Specific goals include:

• build upon these tools to provide quantitative tools for measuring dimension of complicate sets,

at different scales and to approximate sets with simpler sets of controlled complexity.

• Integrate these tools with statistical models of the data (e.g. mixture models, aligned along a

manifold), by showing consistency of the approximation algorithms developed, and by providing

bounds on their approximation rates, depending on the regularity of the set. This can be thought

of as a geometric “wavelet” theory for noisy sets, and will lead to geometric approximation and

denoising algorithms, outlier detection as well as a compression technique for data sets, ideal

for further processing, or communication.

• The techniques above can be generalized to metric spaces. In preliminary work the PI uses

local metric space embeddings techniques to map each Xj,k into RD
, for some large D, with

a bi-Lipschitz map with very good constants, and then the multiscale covariance matrices and

their singular values are estimated in the range of this embedding. This technique to be correct

at least when X is locally Euclidean. The generalization to more general metric spaces is far

from straightforward; the collaboration with R. Schul, who has done work on geometric measure

theory on metric spaces, will be most valuable here.

• The quantitative geometric insight obtained will allow to construct more faithful empirical

models for the data, for example compute better similarity measures between points, needed to

associate graphs to data sets (recall the similarity matrix W in diffusion geometry). This is cur-

rently one of the main obstructions to the portability of several tools of “diffusion geometry” to

different applications, and is also crucial for further developing the mathematical understanding

of the efficacy of these techniques.

From the computational perspective, he will develop algorithms of complexity O(n) (up to log factors),

once the nearest neighbors of each point are given (the problem of finding these efficiently is hard, and

well-studied [86, 52, 85, 130, 31]). He would also like the constant to depend at most exponentially in

7

Data points are configurations of alanine 
dipeptide in water bath at constant temperature.

−10−5 0 5

x 10−3
−0.03

−0.02
−0.01

0

−0.02

−0.01

0

0.01

0.02

!2

Nonlinear embedding of data set

!3

! 4

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Scale

Sin
gu

lar
 va

lue
s

Singular values and their regularization

Figure 2: In these preliminary results in collaboration with C. Clementi, we ran Molecular Dynamics simula-

tions of alanine dipeptide in a water bath, whose state space is 60 dimensional. We use diffusion geometry, with

a particular graph construction guaranteed to approximate the true generator of the underlying SDE, and the

eigenfunction embedding theorems mentioned below, to embed the data (each point represents a molecular con-

figuration) in low-dimensional Euclidean space (left), revealing salient geometric features of the effective state

space of the molecule, which is indeed low-dimensional. The distance between two molecular configurations is

not Euclidean, since one needs to mod out rigid motions: in this metric space we apply the multiscale analysis

above to study intrinsic dimensionality (right). This analysis reveal striking differences in dimensionality be-

tween higher dimensional semistable regions, where the molecule dwells for long times, and lower dimensional

transition states. The tremendous amount of noise in the system (thousands of molecules of water hitting the

protein) requires robust analysis techniques such as those discussed. Effective dimensionality at a given scale

is in this context equivalent to number of effective equations driving the system, at a given time scale.

and Calderón-Zygmund integral operators [91, 55, 54], and constructions in geometric measure theory

related to the so-called analyst’s traveling salesman problem [92, 90]. Specific goals include:

• build upon these tools to provide quantitative tools for measuring dimension of complicate sets,

at different scales and to approximate sets with simpler sets of controlled complexity.

• Integrate these tools with statistical models of the data (e.g. mixture models, aligned along a

manifold), by showing consistency of the approximation algorithms developed, and by providing

bounds on their approximation rates, depending on the regularity of the set. This can be thought

of as a geometric “wavelet” theory for noisy sets, and will lead to geometric approximation and

denoising algorithms, outlier detection as well as a compression technique for data sets, ideal

for further processing, or communication.

• The techniques above can be generalized to metric spaces. In preliminary work the PI uses

local metric space embeddings techniques to map each Xj,k into RD
, for some large D, with

a bi-Lipschitz map with very good constants, and then the multiscale covariance matrices and

their singular values are estimated in the range of this embedding. This technique to be correct

at least when X is locally Euclidean. The generalization to more general metric spaces is far

from straightforward; the collaboration with R. Schul, who has done work on geometric measure

theory on metric spaces, will be most valuable here.

• The quantitative geometric insight obtained will allow to construct more faithful empirical

models for the data, for example compute better similarity measures between points, needed to

associate graphs to data sets (recall the similarity matrix W in diffusion geometry). This is cur-

rently one of the main obstructions to the portability of several tools of “diffusion geometry” to

different applications, and is also crucial for further developing the mathematical understanding

of the efficacy of these techniques.

From the computational perspective, he will develop algorithms of complexity O(n) (up to log factors),

once the nearest neighbors of each point are given (the problem of finding these efficiently is hard, and

well-studied [86, 52, 85, 130, 31]). He would also like the constant to depend at most exponentially in
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Figure 2: In these preliminary results in collaboration with C. Clementi, we ran Molecular Dynamics simula-

tions of alanine dipeptide in a water bath, whose state space is 60 dimensional. We use diffusion geometry, with

a particular graph construction guaranteed to approximate the true generator of the underlying SDE, and the

eigenfunction embedding theorems mentioned below, to embed the data (each point represents a molecular con-

figuration) in low-dimensional Euclidean space (left), revealing salient geometric features of the effective state

space of the molecule, which is indeed low-dimensional. The distance between two molecular configurations is

not Euclidean, since one needs to mod out rigid motions: in this metric space we apply the multiscale analysis

above to study intrinsic dimensionality (right). This analysis reveal striking differences in dimensionality be-

tween higher dimensional semistable regions, where the molecule dwells for long times, and lower dimensional

transition states. The tremendous amount of noise in the system (thousands of molecules of water hitting the

protein) requires robust analysis techniques such as those discussed. Effective dimensionality at a given scale

is in this context equivalent to number of effective equations driving the system, at a given time scale.
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related to the so-called analyst’s traveling salesman problem [92, 90]. Specific goals include:

• build upon these tools to provide quantitative tools for measuring dimension of complicate sets,

at different scales and to approximate sets with simpler sets of controlled complexity.

• Integrate these tools with statistical models of the data (e.g. mixture models, aligned along a

manifold), by showing consistency of the approximation algorithms developed, and by providing

bounds on their approximation rates, depending on the regularity of the set. This can be thought

of as a geometric “wavelet” theory for noisy sets, and will lead to geometric approximation and

denoising algorithms, outlier detection as well as a compression technique for data sets, ideal

for further processing, or communication.

• The techniques above can be generalized to metric spaces. In preliminary work the PI uses

local metric space embeddings techniques to map each Xj,k into RD
, for some large D, with

a bi-Lipschitz map with very good constants, and then the multiscale covariance matrices and

their singular values are estimated in the range of this embedding. This technique to be correct

at least when X is locally Euclidean. The generalization to more general metric spaces is far

from straightforward; the collaboration with R. Schul, who has done work on geometric measure

theory on metric spaces, will be most valuable here.

• The quantitative geometric insight obtained will allow to construct more faithful empirical

models for the data, for example compute better similarity measures between points, needed to

associate graphs to data sets (recall the similarity matrix W in diffusion geometry). This is cur-

rently one of the main obstructions to the portability of several tools of “diffusion geometry” to

different applications, and is also crucial for further developing the mathematical understanding

of the efficacy of these techniques.

From the computational perspective, he will develop algorithms of complexity O(n) (up to log factors),

once the nearest neighbors of each point are given (the problem of finding these efficiently is hard, and

well-studied [86, 52, 85, 130, 31]). He would also like the constant to depend at most exponentially in
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Figure 2: In these preliminary results in collaboration with C. Clementi, we ran Molecular Dynamics simula-

tions of alanine dipeptide in a water bath, whose state space is 60 dimensional. We use diffusion geometry, with

a particular graph construction guaranteed to approximate the true generator of the underlying SDE, and the

eigenfunction embedding theorems mentioned below, to embed the data (each point represents a molecular con-

figuration) in low-dimensional Euclidean space (left), revealing salient geometric features of the effective state

space of the molecule, which is indeed low-dimensional. The distance between two molecular configurations is

not Euclidean, since one needs to mod out rigid motions: in this metric space we apply the multiscale analysis

above to study intrinsic dimensionality (right). This analysis reveal striking differences in dimensionality be-

tween higher dimensional semistable regions, where the molecule dwells for long times, and lower dimensional

transition states. The tremendous amount of noise in the system (thousands of molecules of water hitting the

protein) requires robust analysis techniques such as those discussed. Effective dimensionality at a given scale

is in this context equivalent to number of effective equations driving the system, at a given time scale.

and Calderón-Zygmund integral operators [91, 55, 54], and constructions in geometric measure theory

related to the so-called analyst’s traveling salesman problem [92, 90]. Specific goals include:

• build upon these tools to provide quantitative tools for measuring dimension of complicate sets,

at different scales and to approximate sets with simpler sets of controlled complexity.

• Integrate these tools with statistical models of the data (e.g. mixture models, aligned along a

manifold), by showing consistency of the approximation algorithms developed, and by providing

bounds on their approximation rates, depending on the regularity of the set. This can be thought

of as a geometric “wavelet” theory for noisy sets, and will lead to geometric approximation and

denoising algorithms, outlier detection as well as a compression technique for data sets, ideal

for further processing, or communication.

• The techniques above can be generalized to metric spaces. In preliminary work the PI uses

local metric space embeddings techniques to map each Xj,k into RD
, for some large D, with

a bi-Lipschitz map with very good constants, and then the multiscale covariance matrices and

their singular values are estimated in the range of this embedding. This technique to be correct

at least when X is locally Euclidean. The generalization to more general metric spaces is far

from straightforward; the collaboration with R. Schul, who has done work on geometric measure

theory on metric spaces, will be most valuable here.

• The quantitative geometric insight obtained will allow to construct more faithful empirical

models for the data, for example compute better similarity measures between points, needed to

associate graphs to data sets (recall the similarity matrix W in diffusion geometry). This is cur-

rently one of the main obstructions to the portability of several tools of “diffusion geometry” to

different applications, and is also crucial for further developing the mathematical understanding

of the efficacy of these techniques.

From the computational perspective, he will develop algorithms of complexity O(n) (up to log factors),

once the nearest neighbors of each point are given (the problem of finding these efficiently is hard, and

well-studied [86, 52, 85, 130, 31]). He would also like the constant to depend at most exponentially in
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FIG. 5: Alanine dipeptide local scale analysis Raw molecular configuration data plotted as

a function of the 1stDC and 2ndDC , and colored by the local scale εi in Å(top), and the

local intrinsic dimension (bottom). For visual clarity the following cutoffs have been

imposed on the color bars: the maximum value of ε is 0.23Å, and the maximum value of

the intrinsic dimension is set at 8. There are a few outliers near transition regions that

have local scales high above this cutoff. Most of the configurations in the minima have

an intrinsic dimensionality in the range 8 – 24.
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Figure 2: In these preliminary results in collaboration with C. Clementi, we ran Molecular Dynamics simula-

tions of alanine dipeptide in a water bath, whose state space is 60 dimensional. We use diffusion geometry, with

a particular graph construction guaranteed to approximate the true generator of the underlying SDE, and the

eigenfunction embedding theorems mentioned below, to embed the data (each point represents a molecular con-

figuration) in low-dimensional Euclidean space (left), revealing salient geometric features of the effective state

space of the molecule, which is indeed low-dimensional. The distance between two molecular configurations is

not Euclidean, since one needs to mod out rigid motions: in this metric space we apply the multiscale analysis

above to study intrinsic dimensionality (right). This analysis reveal striking differences in dimensionality be-

tween higher dimensional semistable regions, where the molecule dwells for long times, and lower dimensional

transition states. The tremendous amount of noise in the system (thousands of molecules of water hitting the

protein) requires robust analysis techniques such as those discussed. Effective dimensionality at a given scale

is in this context equivalent to number of effective equations driving the system, at a given time scale.

and Calderón-Zygmund integral operators [91, 55, 54], and constructions in geometric measure theory

related to the so-called analyst’s traveling salesman problem [92, 90]. Specific goals include:

• build upon these tools to provide quantitative tools for measuring dimension of complicate sets,

at different scales and to approximate sets with simpler sets of controlled complexity.

• Integrate these tools with statistical models of the data (e.g. mixture models, aligned along a

manifold), by showing consistency of the approximation algorithms developed, and by providing

bounds on their approximation rates, depending on the regularity of the set. This can be thought

of as a geometric “wavelet” theory for noisy sets, and will lead to geometric approximation and

denoising algorithms, outlier detection as well as a compression technique for data sets, ideal

for further processing, or communication.

• The techniques above can be generalized to metric spaces. In preliminary work the PI uses

local metric space embeddings techniques to map each Xj,k into RD
, for some large D, with

a bi-Lipschitz map with very good constants, and then the multiscale covariance matrices and

their singular values are estimated in the range of this embedding. This technique to be correct

at least when X is locally Euclidean. The generalization to more general metric spaces is far

from straightforward; the collaboration with R. Schul, who has done work on geometric measure

theory on metric spaces, will be most valuable here.

• The quantitative geometric insight obtained will allow to construct more faithful empirical

models for the data, for example compute better similarity measures between points, needed to

associate graphs to data sets (recall the similarity matrix W in diffusion geometry). This is cur-

rently one of the main obstructions to the portability of several tools of “diffusion geometry” to

different applications, and is also crucial for further developing the mathematical understanding

of the efficacy of these techniques.

From the computational perspective, he will develop algorithms of complexity O(n) (up to log factors),

once the nearest neighbors of each point are given (the problem of finding these efficiently is hard, and

well-studied [86, 52, 85, 130, 31]). He would also like the constant to depend at most exponentially in
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Figure 2: In these preliminary results in collaboration with C. Clementi, we ran Molecular Dynamics simula-

tions of alanine dipeptide in a water bath, whose state space is 60 dimensional. We use diffusion geometry, with

a particular graph construction guaranteed to approximate the true generator of the underlying SDE, and the

eigenfunction embedding theorems mentioned below, to embed the data (each point represents a molecular con-

figuration) in low-dimensional Euclidean space (left), revealing salient geometric features of the effective state

space of the molecule, which is indeed low-dimensional. The distance between two molecular configurations is

not Euclidean, since one needs to mod out rigid motions: in this metric space we apply the multiscale analysis

above to study intrinsic dimensionality (right). This analysis reveal striking differences in dimensionality be-

tween higher dimensional semistable regions, where the molecule dwells for long times, and lower dimensional

transition states. The tremendous amount of noise in the system (thousands of molecules of water hitting the

protein) requires robust analysis techniques such as those discussed. Effective dimensionality at a given scale

is in this context equivalent to number of effective equations driving the system, at a given time scale.

and Calderón-Zygmund integral operators [91, 55, 54], and constructions in geometric measure theory

related to the so-called analyst’s traveling salesman problem [92, 90]. Specific goals include:

• build upon these tools to provide quantitative tools for measuring dimension of complicate sets,

at different scales and to approximate sets with simpler sets of controlled complexity.

• Integrate these tools with statistical models of the data (e.g. mixture models, aligned along a

manifold), by showing consistency of the approximation algorithms developed, and by providing

bounds on their approximation rates, depending on the regularity of the set. This can be thought

of as a geometric “wavelet” theory for noisy sets, and will lead to geometric approximation and

denoising algorithms, outlier detection as well as a compression technique for data sets, ideal

for further processing, or communication.

• The techniques above can be generalized to metric spaces. In preliminary work the PI uses

local metric space embeddings techniques to map each Xj,k into RD
, for some large D, with

a bi-Lipschitz map with very good constants, and then the multiscale covariance matrices and

their singular values are estimated in the range of this embedding. This technique to be correct

at least when X is locally Euclidean. The generalization to more general metric spaces is far

from straightforward; the collaboration with R. Schul, who has done work on geometric measure

theory on metric spaces, will be most valuable here.

• The quantitative geometric insight obtained will allow to construct more faithful empirical

models for the data, for example compute better similarity measures between points, needed to

associate graphs to data sets (recall the similarity matrix W in diffusion geometry). This is cur-

rently one of the main obstructions to the portability of several tools of “diffusion geometry” to

different applications, and is also crucial for further developing the mathematical understanding

of the efficacy of these techniques.

From the computational perspective, he will develop algorithms of complexity O(n) (up to log factors),

once the nearest neighbors of each point are given (the problem of finding these efficiently is hard, and

well-studied [86, 52, 85, 130, 31]). He would also like the constant to depend at most exponentially in
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FIG. 5: Alanine dipeptide local scale analysis Raw molecular configuration data plotted as

a function of the 1stDC and 2ndDC , and colored by the local scale εi in Å(top), and the

local intrinsic dimension (bottom). For visual clarity the following cutoffs have been

imposed on the color bars: the maximum value of ε is 0.23Å, and the maximum value of

the intrinsic dimension is set at 8. There are a few outliers near transition regions that

have local scales high above this cutoff. Most of the configurations in the minima have

an intrinsic dimensionality in the range 8 – 24.

27

W e u s e m u l t i s c a l e 
singular values to detect a 
natural local scale of the 
data. Different regions of 
the effective state space 
do exhibit very different 
local scales.

FIG. 5: Alanine dipeptide local scale analysis Raw molecular configuration data plotted as

a function of the 1stDC and 2ndDC , and colored by the local scale εi in Å(top), and the

local intrinsic dimension (bottom). For visual clarity the following cutoffs have been

imposed on the color bars: the maximum value of ε is 0.23Å, and the maximum value of

the intrinsic dimension is set at 8. There are a few outliers near transition regions that

have local scales high above this cutoff. Most of the configurations in the minima have

an intrinsic dimensionality in the range 8 – 24.

27

Different regions of the 
state space have different 
intrinsic dimension.

Joint with C. Clementi, M. Rohrdanz, W. Zheng, JCP 2011

NEW type of diffusion maps THANKS to this
BETTER STATISTICS for the DYNAMICS

φ

ψ
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Molecular Dynamics data for alanine
Joint with C. Clementi, M. Rohrdanz, W. Zheng, JCP 2011

FIG. 2: Top: Free energy of alanine dipeptide as a function of the first and second diffusion

coordinates. Bottom: Free energy profile along the first diffusion coordinate. The

Kramers rate along 1stDC is shown in Table I.
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Molecular Dynamics data for alanine
Joint with C. Clementi, M. Rohrdanz, W. Zheng, JCP 2011

FIG. 2: Top: Free energy of alanine dipeptide as a function of the first and second diffusion

coordinates. Bottom: Free energy profile along the first diffusion coordinate. The

Kramers rate along 1stDC is shown in Table I.
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Diffusion coord.’s - empirical coord.’s
Joint with C. Clementi, M. Rohrdanz, W. Zheng, JCP 2011

FIG. 3: Comparison of 1stDC with empirical coordinates Φ and Ψ. Top: Free energy

(kcal/mol) as a function of dihedral angles Φ and Ψ; displayed to show the locations of

the free energy minima in Φ-Ψ space. Bottom: Raw molecular configuration data

plotted according to Φ and Ψ, and colored according to 1stDC . The smooth color

change between the pairs of minima C5–P‖ and αR–αP shows that 1stDC corresponds

to a transition between these pairs, and that 1stDC correlates well with Ψ. Analogous

figures for 2ndDC and 3rdDC are available in the Supplementary Material.

25

S 6: Alanine dipeptide correlation of 2ndDC and 3rdDC with dihe-

dral angles. Raw molecular configuration data points plotted as a function
of the dihedral angles Φ and Ψ. On the left, the coloring is according to the
2ndDC; on the right, the coloring is according to the 3rdDC, as indicated on
the corresponding colorscale. These plots provide another representation of
what is already clear from the free energy graphs: the 2ndDC separates the
P‖ minimum from the C5 minimum, and the 3rdDC separates the αP and
αR minima from one another.

9

We may plot the diffusion coordinates as functions of the 
physical observables given by the angles and notice they 
are essentially in one-to-one correspondence, with the 
diffusion coordinates emphasizing energy barriers 
separating minima.
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Example: SH-3
Joint with C. Clementi, M. Rohrdanz, W. Zheng, JCP 2011

e−
λ

i

1st DC

2nd
 D

C

foldedun
fol
ded

Free energy in terms of 
diffusion coordinates
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Example: b3s

Qi B., Muff S., Caflisch A., Dinner A., 
J. Phys. Chem. B 2010, 114, 6979

20-residue antiparallel β-sheet miniprotein  (Beta3s)

169 non-hydrogen atoms
507 degrees of freedom

Previous work from other groups:
- Clustering method
- Genetic neural network approach

C. Clementi, M. Rohrdanz, W. Zheng, ongoing
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Example: b3s

Clustering by using 
secondary  structure 

sequence

Qi B., Muff S., Caflisch A., Dinner A., 
J. Phys. Chem. B 2010, 114, 6979
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Example: b3s
The main folding process
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Example: b3s

Qi B., Muff S., Caflisch A., Dinner A., 
J. Phys. Chem. B 2010, 114, 6979

The helix state
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Example: b3s

Misfolded states
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Example: b3s

Another 
misfolded state
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Example: b3s
The intermediate 

state
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Example: b3s
The 4th DC shows the folded state splits into two 
sub-states. Sub-states J and K correspond to 
fluctuations in the native state. Compared to the 
completely folded structure, in state J the last 
hydrogen bond in the C-terminus  β-sheet is not 
formed; in state K all the hydrogen bonds are formed 
and an additional one can be formed, although with 
low probability. 
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Future directions/other projects

THANK YOU!

www.math.duke.edu/~mauro

. More general sampling schemes

. Exploiting geometry for adaptive sampling

. Nonlinear versions of geometric properties

. Larger proteins, with higher dimensional dynamics

. Analysis of time series of graphs and points clouds, and related multiscale

distances.

. Multiscale homogenization of random walks on graphs.

. Active learning and visualization of large data sets.

Collaborators: D. Brady (EE, Duke), R. Brady (CS, Duke), C. Clementi (Che,

Rice), J. Mattingly (Math, Duke), E. Monson (CS, Duke), S. Mukherjee (Stats,

Duke), R. Rajae (EE, Oregon), M. Rohrdanz (Rice), R. Schul (Math, Stony Brook),

W. Willinger (AT&T)
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