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•  Multiple environments: solution, membranes, surfaces! 
•  Many functionalities   

–  Solution: catalysis, recognition, signals, pigments! 
–  Membranes: channels, energy transduction, light harvesting, 

signaling! 

Proteins: many length scales and functions 

Å! nm!
> 10 nm!



Theory and Design of Proteins (and Self-Organizing Macromolecules) 

• Methods for probabilistic protein design !
• Input:!

– Target tertiary and quaternary structure!
– Features, e.g., well-packed, hydrophobic interior!
– Atomistic energy functions!
– Physical, synthetic and functional constraints on sequences!

• Output:  Site-specific probabilities of the amino acids for a given structure!
• Advantages:!

• Large structures and diversity!
• Application to de novo protein design and combinatorial design!
• Transferable to nonbiological systems!

Target structure! Atomistic model of 
structure and monomers!

Site-specific monomer 
probabilities!



10!

Fix target structure!
Vary sequence!

Sequence design: search methods 

S. Mayo (Caltech), H. Hellinga (Duke); D. Baker (UW Seattle); T. Alber (UC Berkeley), P. Kim, B. Tidor, A. Keating 
(MIT); P. Harbury (Stanford); J. Desjarlais (Xencor); C. Floudas (Princeton); L. Lai (Beijing); S. Takada (Kyoto)…!

Simulated annealing!
Monte Carlo methods!

Genetic 
algorithms!
!

Folded!
state!

Objective !
Function!
!
Energy!
!
“Foldability”!

Pruning methods !
(dead end elimination)!
!



Apply methods from statistical thermodynamics to estimate probabilities 
(effective thermodynamic quantities: T, E, S!) 

•  Solve for probabilities wi(a) subject to constraints on sequences 
–  Self-consistent field methods based on entropy maximization 

H. Kono and J. G. Saven. J Mol. Biol.,. 306:  607-627 (2001). 
J. Zou and J. G. Saven, J. Mol. Biol., 296:  281-294 (2000). 

•  Sample sequences and count frequencies of amino acids 
–  Efficient (biased with replica exchange) Monte Carlo methods 

X. Yang and J. G. Saven, Chem. Phys. Lett., 401: 205-210 (2005). 
J. Zou and J. G. Saven, J. Chem. Phys. 118: p. 3843–3854 (2003). 

 

Thermodynamic analogy 
Thermodynamic ensemble Sequence ensemble 
!=no. configurations !=no. sequences 

!(x) 
N,V,E 

wi(a) 



Sequences are not enumerated 
Solve for probabilities wi(a):  a = amino acid state, i = position in sequence 
Maximize subject to physical and synthetic constraints on sequences: Ei, fi 

– Constrain effective energies Ei (low energy sequences for target structure) 
– Other possible constraints: 

•  Pattern amino acids: hydrophobic inside, hydrophilic outside 
•  Specify identities and/or conformations of functionally important residues 

Self-consistent, entropy maximization 

! 

E1 = E folded ( a{ }) " Funfolded ( a{ })

E2 = Esolvation ( a{ })

! 

V ({wi(a)}) = S "#1E1 "#2E2 " ..." $1 f1 " $2 f2 " ...

! 

"V
"wi(a)

= 0,  and  Ei = E
i sequence H. Kono and J. G. Saven. J Mol. Biol.,. 306:  607-627 (2001).!

J. Zou and J. G. Saven, J. Mol. Biol., 296:  281-294 (2000).!

! 

S = " wi(a)lnwi(a)
a
#

i
#

Atomic potential energy!

Solvation energy!





Local average energy  
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Energy of sequence (a1,
…, aN) in structure!

Local energy of a at site i!

Average over sequences!

...!



Atomistic Models of Proteins 
•  Amino acid and side chain conformation  
•  “Energy” 

Discrete conformational 
states for amino acids 
(rotamers) 
Dunbrack & Cohen, Protein Sci., 6:1661 (1997) 

Atomic interactions (AMBER) 
Solvation (Hydrophobic effect) 
[Kono & Saven, J. Mol. Biol, 306:607 (2001)] 
 
 

wi(a) wi(a, ri
a )

rotamer 
states 

Ala 
Arg 
Asn 
... 

! 

wi(a) = wi(a,r
a )

ra
"



Relative entropy:  SH3 domain 
- 57 residue protein!
- Allow all amino acids at each position!
- Compare with multiple sequence alignment!



Designing protein complexes with 
nonbiological cofactors 

Groups of  
Michael Therien, William DeGrado,  

& J. Saven 



Protein complexes with nonbiological cofactors 
•  Cofactors confer function to proteins 

–  e.g., Heme (oxygen binding, catalysis) 

•  New function and materials: proteins containing 
nonbiological cofactors 
–  Controlled cofactor environment 
–  Controlled protein assembly 
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- near IR emitters!
-  large molecular hyperpolarizability (NLO)!
-  long lived charge separated states!
    (M. J. Therien)!
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The equation of the helical coiled-coil 

Crick predicted the structural 
topology of the coiled-coil 

F.  H .  C. CRICK 687 

I f  m 1 is positive the  minor  helix is r ight-handed.  I f  
negative,  lef t-handed.  

Thus we finally get for the  equat ion of a coiled-coil 
in the  original f rame 

x---- -  

r 0 cos mot+r 1 cos mot. cos m~t--rt cos a .  sin mot. sin m~t, 
y =  

r 0 sin mot+ h sin mot.Cos m i t + r  ~ cos ~ .cos  m0t.sin ml t ,  
z = P(mot /2z  ) -  r 1 sin a .  sin mi t . 

P u t  
r l + A  = rl, r l - A  = rt cos o¢, 

so t h a t  
r l  = r . ( l + c o s  c¢)/2, A = r l ( 1 - c o s  a ) / 2 ,  

and we easily obtain 

x = r o cos mot+71 cos [(mo+m~)t]+A cos [(mo-m~)t] ,  
y = r 0 sin mot+~ ~ sin [(m0+m~)t]+A sin [ (m0-ml) t ] ,  
z = P(mot/27e)-r  1 sin o~. sin m~t. 

We now neglect A, since for cases we are likely to 
consider it  is ve ry  small. The theory  can easily be 
extended to include it, and  this has  been done in the  
full result  given later  in equat ion (13). 

We shall now assume t h a t  while the  major  helix 
makes  exact ly  N O turns  in the  repeat  distance c, the  
minor  helix makes  exact ly  N~ turns  in  its own co- 
ordinate frame.  We shall also restr ict  ourselves to the  
ease of a lef t -handed minor  helix and a r ight -handed 
major  helix, so t h a t  - m l / m o  = N~/No. Thus our para-  
metr ic  equat ion for the  coiled-coil becomes 

x = r 0 cos mot+~ ~ cos [(N~/No-1)mot  ] , ] 
y = r 0 sin m0t-7~ sin [ ( N x / N ° - l ) m ° t ] '  i (6) 
z = P(~oot/2~r ) +r~ sin ~ sin [(N~/No)mot ] . 

The s t ructure  repeats  af ter  a distance No P in the Z 
direction. We have  c = NoP. 

T h e  t r a n s f o r m  of the c o n t i n u o u s  co i l ed-co i l  
We write, as usual, for the  t r ans fo rm at  the  point  
(X, Y, Z) in reciprocal space:  

f C(X, Y, Z) = exp ( 2 ~ i [ x X + y Y + z Z ] ) d t ,  (7) 
0 

since we need only integrate  over the  wire because the  
electron densi ty elsewhere is zero. We now subst i tu te  
from (6) into (7), and pu t t ing  

R2 = X 2 + y2 ,  tan ~p -- Y / X ,  

we easily obta in  

C(R,  vJ, Z) -- l ~ e x p  2~i  (Rro cos (mot-v2) 

+R~ 1 cos [(N1/No-1)wot+vd] 
+ Z r  1 sin ~ cos [ ( N1 /No)mo t - g /2 ]+ZP(mo t /2 ~ ) )d t .  (8) 

Notice t h a t  since the  s t ruc ture  repeats  af ter  a distance 
c in the  Z direction, the  t r ans fo rm will be non-zero 
only when Z = 1/c, where 1 is an integer. 

Equa t ion  (8) is in the  general  form we have  discussed 
earlier, namely  

f ~ f  x ( t) f  2(t)f 3(t) C(R,  % Z) = f4(t)dt , 

where we define 

f l ( t )  - exp [27dRr o cos (w0t-~?)] , 
f2(t) --- exp [27dR-f 1 cos ((N1/N 0-1)co0t + V)] ,  
f3(t) =- exp [27riZrl sin ~ . c o s  ( ( N 1 / N o ) m o t - 7 ~ / 2 } ]  , 
f4(t) =- exp [27dZP(mot/27r)] . 

We obtain  the  corresponding t r ans fo rm of the  first  
three of these by  using the  ident i ty  

f 2~exp (iw cos 0) exp (inO)dO = 2~inJn(w) (9) 
o 

for integral  n, where Jn(w)  is the Bessel function of 
order n. 

I f  f ( t )  can be wri t ten  in the  form 

f ( t )  = exp [iw cos ( a t + f l ) ] ,  

and if it repeats  m t imes in the  interval  to, then  from 
(1) and  (9) we eventual ly  obtain 

F(n .m/ to)  = Jn(w) exp  ( - in f l+ in7~ /2 )  , 

where n is an integer.  Note  t h a t  at o = 2~m. 
This case covers f l ,  f2 and f3- To obtain  F4(T ) we 

write  
1 f t° F4(T) = ~o o exp (2~riZP(°~°t/2~r)) exp (2~i tT)d t .  

This is zero except  when the  t~vo exponentials  cancel, 
i.e. when ZP(mo/27r) = - T .  Now NoP = c, the repeat  
distance of the  s t ructure .  I f  we write  Z = 1/c (so t h a t  
1 is the number  of the  layer-line),  we obtain 

F4(T) = 1 when T = - l / t  o . 

Applying these results, and using the  general  for- 
mula  of equat ions (2) and (3), we finally obta in  

C(R,vd,1/c)=.,~,.~,.~,Jp(27eRro)Jq(2~R-r,)Js(27~(1/c)r ~ s ins)  
p q s 

! e x p i [ p ( ~ / 2 + ~ f ) + q ( : ~ / 2 - v 2 ) + s ~ ] ,  (10) 

the  sums to be t aken  over all integer values for which 

Nop + ( N~ - No)q + N t s  = 1. ( l l )  

This has been normal ized to make  F00 o uni ty.  The 
solution is of course only non-zero on a set of planes 
corresponding to integer values of l, since the s t ruc ture  
is periodic in the  z direction but  non-periodic in the  
other  directions. 

T h e  d i s c o n t i n u o u s  co i l ed-co i l  
This is the  case of a set of points placed a t  regular  
intervals  on a coiled-coil, the  scat ter ing being due to 

R O S A L I N D  E. F R A N K L I N  AND R. G. GOSLING (685 
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The Fourier transforms are given for a continuous coiled-coil, and for a set of atoms spaced a~ 
regular intervals along a coiled-coil. The nature of the solution is briefly discussed. 

Introduction 
I t  has recently been suggested simultaneously by 
Pauling & Corey (1953) and by Crick (1952) that  the 
structure of s-keratin may be based on a coiled-coil, 
i.e. on a helix with a small repeat whose axis has been 
slightly deformed so that  it follows a larger more 
gradual helix. The small helix proposed is the s-helix 
of Pauling, Corey & Branson (1951). 

I t  is therefore of interest to calculate the Fourier 
transform (or continuous structure factor) of structures 
of this sort. Those considered here are the continuous 
coiled-coil and the discontinuous coiled-coil. The for- 
mer is an infinitely thin 'wire' of electron density, 
and the latter is a set of scattering points (atoms) 
placed at regular intervals on a coiled-coil locus. I t  
will be shown that the two results are very closely 
related. 

To obtain the structure factors for a structure of 
this type made up of real atoms, one follows a similar 
procedure to that  described by Cochran, Crick & 
Vand (1952) in calculating the transform of the simple 
s-helix, i.e. one considers the atoms as being in sets, 
each set consisting of one atom from each residue. 
Thus all the nitrogen atoms of the polypeptide back- 
bone will be in one set, all the oxygen atoms of the 
backbone in another, and so on. One then uses the 
formula derived in this paper to calculate the con- 
tribution of each set separately, allowance being made 
for the finite size of the atom by multiplying the result 
for a set of points by the appropriate atomic scattering 
factor in the usual way. The results are then added 
together, with proper allowance for phase, to give the 
structure factor for the complete structure. 

The advantage of a general solution of the type given 
here is that  instead of calculating the contribution 
of each atom separately one can group them into sets, 
in this case with a large number in each, and calculate 
the whole contribution of a set at one go. 

We shall call the small helix the minor helix and the 
larger helix followed by its axis the major helix. 

Mathemat ica l  method  
A general description is given first, and the particular 
case of the coiled-coil is then derived afterwards. 

Consider first the problem of a continuous infinitely 
thin 'wire' of electron density. Let us suppose that  it is 
defined parametrically in terms of a parameter, t, 
which may be proportional to the length along the wire, 
though this is not essential. We also assume that  the 
structure repeats exactly after a distance c in the 
z direction. 

We can form the expression for the value of the 
Fourier transform of such a wire at some particular 
point in reciprocal space. We will call this C(R, y~, Z), 
where R, yJ and Z are the cylindrical co-ordinates of 
the point in reciprocal space under consideration. 

Now it will often happen that  the expression for the 
transform at this point will be an integral of the form 

I:f~(t)f~(t)fa(t)dt ¢(R, % Z) = 

where t o is the value of t after which the structure 
repeats, and fl(t), f2(t) and f3(t) are simple functions 
of t. They may also be functions of R, ~ and Z, but 
for the moment we are considering these as fixed. 



Manipulating coiled-coils and 
generating ensembles 



Porphyrin 



Porphyrin + His 



Porphyrin + His + Thr + tetrameric backbone 



Porphyrin + His + Thr + tetrameric backbone + sequence!



Designed protein binds nonbiological Fe-porphyrin cofactor!
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DPP-Fe!
HC-3 + DPP-Fe  (2:1)!
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Computationally designed tetra-"-helical has 
target structure and protein selectively binds 
DPP-Fe.!
!
Helical peptide (CD)!
Helicity increases upon addtion of cofactor (CD)!
Asymmetry about cofactor (CD in Soret band)!
Correct MW (Gel filtration; HPLC)!
Selective binding to nonbiological cofactor!
!

0

0.5

1

1.5

2

250 350 450 550 650 750

25 µM PPXI-Fe!
25 µM PPXI -Fe + 50 µM HC-3!

F. Cochran, W. Wang, V. Nanda, S. Wu, W. F. DeGrado, J. G. Saven, M. J. Therien, JACS, 2005, 127, 1346-1347!



Tetramer to single chain protein 

Tetramer  ! Single-Chain!

Gretchen M. Bender, Andreas Lehmann, Hongling Zou, Hong Cheng, H. Christopher Fry, Don Engel, Michael J. Therien, J. Kent Blasie, 
Heinrich Roder, Jeffrey G. Saven, and William F. DeGrado, J. Am. Chem. Soc., 2007. 129: 10732-10740.  



Selective binding of nonbiological Zn-porphyrin to 
designed "-helical A2B2 hetero-tetramer 

C. Fry, A. Lehmann, J. Saven, W. DeGrado, M. Therien.  J. Am. Chem. Soc. (2010) 



Tailoring protein to NLO cofactor: RuPZn 

Build helical!
bundle!

Build loops to arrive at !
Single chain!

Computational design !
of sequence!

RuPZn!



Designed proteins are helical and bind cofactor 

Shift in Q band as cofactor binds 
Titration has correct stoichiometry 
Kd ~ 30 nM, 1 uM 
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