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Steps in Comparative Protein Structure Modeling

No

Target – Template
Alignment MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE

ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE

Model Building

START

ASILPKRLFGNCEQTSDEGLK
IERTPLVPHISAQNVCLKIDD
VPERLIPERASFQWMNDK

TARGET

Template Search

TEMPLATE

OK?

Model Evaluation

END

Yes

M. Marti-Renom et al. Ann. Rev. Biophys. Biomolec. Struct. 29, 291, 2000. 
http://salilab.org/
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05/27/2006

Comparative modeling by satisfaction of spatial restraints 
MODELLER

3D  GKITFYERGFQGHCYESDC-NLQP…

SEQ GKITFYERG---RCYESDCPNLQP…

1. Extract spatial restraints

P(R / I) = Π pi (ri / Ii)i

2. Satisfy spatial restraints

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993.
J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994.
A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

 http://salilab.org/
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Comparative modeling of the UniProt database

Unique sequences processed: 2,130,404
Sequences with fold assignments or models: 1,273,766 (60%)
70% of models based on <30% sequence identity to template.
On average, only a domain per protein is modeled (an “average” protein has 2.5 
domains of 175 aa).

Pieper et al. Nucleic Acids Research, 2006, 2011.
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Comprehensive mapping of interactions 
between proteins and small ligands

all binding sites on
all proteins 
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Genome-Wide Mapping of  Protein-Ligand Interactions

Testing

Computational applications

Testing and Applications

Annotated
protein structure modelsVirtual ligand libraries

Comparative modeling

Refine protein models

Identify ligand
binding sites on models

All known protein structures
All known protein sequences

Rescore ligand-protein
complexes

Central data warehouse

Graphical User Interface

Lists of  small ligands

Build ligand-protein
complexes

Computer hardware and software environment

Software backplane

Cluster hardware and
software

Global optimization

Information navigation and 
search
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• Comparative “docking” of small molecules to proteins
• Overlap between binding sites for proteins and small molecules

2. Enzyme Function Initiative

3. Docking against comparative models

4. Application to norepinephrine transporter (NET)
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What is the physiological ligand of Brain Lipid-Binding Protein?

L. Xu, R. Sánchez, A. Šali, N. Heintz, J. Biol. Chem. 271, 24711, 1996.

BLBP/docosahexaenoic acidBLBP/oleic acid

Ligand binding 
cavity

Cavity is not filled Cavity is filled

1. BLBP binds fatty 
acids.

2. Build a 3D model.

3. Find the fatty acid that 
fits most snuggly into 
the ligand binding 
cavity.

Predicting features of a model that are not present in the template
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Localization of a binding site of a given type by 
optimizing a scoring function that depends on 

properties of a surface residue patch

patch residue

surface residue

protein

patch

Rossi, Marti-Renom, Sali, Prot Sci, 2006.
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Methods: Scoring Function

Our current scoring function assesses any patch based on these properties (requires 
examples of the binding site):

o Conservation (BLAST generated profiles)
o Compactness (average residue distance) 
o Protrusion (nearest neighbor list)
o Convexity (exposure vectors)
o Rigidity (B-factor from crystallographic coordinates)
o Hydrophobicity (hydrophobicity scale)
o Charge density (CHARMM)
o Number of residues

  
Zk = fk − fk( ) / σ k

Properties are transformed into Z-scores (scored patch versus random patches):

  
F(P;{wk}) = wk Zk

k=1

N p

∑ (P)

The scoring function is a linear combination of property Z-scores:
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Methods: Patch optimization
Monte Carlo Simulated Annealing

12Wednesday, April 27, 2011



Example: NAD binding site localization on dihydropteridine 
reductase (1dhr)

For nonsugar ligands, such as various nucleotides, 20 different types of 
binding sites in 1008 structures were correctly identified in 55%–73% of 
the cases.

Large benchmark
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Prediction of a binding site and ligand by homology

Marti-Renom et al, Nucl Acids Res, 2007
Marti-Renom et al, BMC Bioinformatics 2006

Many others have explored these
relationships (Thornton, Sternberg, Rost, ...)
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Number of targets with at least one predicted binding site
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Figure 2. Ortí et al.

A kernel for open source drug discovery in tropical diseases

L. Orti, R.J. Carbajo, U. Pieper, N. Eswar, S. M. Maurer, A. K. Rai, G. Taylor, M. H. Todd, A. Pineda-Lucena, 
A. Sali, M. A. Marti-Renom, PLoS Negl Trop Dis, 2009

At least one binding site for a small molecule was predicted for 3499 proteins in 10 pathogen 
genomes, based on similarity to known binding sites. Relating ligands in the PDB to 
compounds in MSDChem and DrugBank predicts that 297 of these proteins bind a molecule 
similar to a known drug (143 are predicted to bind a known drug).

TrEMBL
PDB
ModPipe
ModBase
LigBase
DBAli
MSDChem
DrugBank
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Drug indication:
 For the treatment of initial episodes of uncomplicated urinary 
 tract infections.

Trimethoprim
Small Molecule; Approved

Drug categories:
 Antimalarials
 Anti-Infectives

Drug indication:
 For the treatment of cutaneous manifestations in patients with cutaneous 
 T-cell lymphoma who have progressive, persistent or recurrent disease on 
 or following two systemic therapies.

Vorinostat
Small Molecule; Approved; Investigational

Drug categories:
 Anti-In!ammatory Agents, Non-Steroidal
 Anticarcinogenic Agents
 Antineoplastic Agents
 Enzyme Inhibitors

A)

B)

Figure 3. Ortí et al.
Examples of recovered known pathogen drugs

Orti et al, PLoS Negl Trop Dis, 2009

The original PDB structure with the ligand bound is shown in blue; the transferred binding site in the template structure 
is shown in green; and a comparative protein structure model of the target sequence is shown in magenta.

M. leprae dihydrofolate reductase

L. major histone deacetylase
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ATM Zidovudine

6.46.66.87.07.27.47.67.8 mpp0.8 6.26.46.66.87.07.27.47.67.8 ppm

6.46.66.87.07.27.47.67.8 ppm

dTMP

A)

Orti et al, PLoS Negl Trop Dis, 2009

cAMP Fludarabine

6.57.07.58.0 mpp5.8 6.57.07.58.0 ppm

6.06.57.07.58.0 ppm

GDP

B)

*

*

*

Testing of predicted pathogen protein - drug interactions
Water-LOGSY NMR spectroscopy

Each NMR spectrum shows a detail of the aromatic region for the interacting molecules, the bottom spectra corresponding to the reference 1D 
1H experiment (black line). In this experimental setting, a non-interacting compound results in negative resonances in the Water-LOGSY 
experiment and no signals in the STD spectrum. In contrast, protein-ligand interactions in the Water-LOGSY (magenta line) are characterized by 
positive signals or by a reduction in the negative signals obtained in the absence of the protein (reference spectrum, grey line). In the STD 
experiment, a positive interaction is recognized by the presence of positive signals (green line). Signals marked with an asterisk arise from 
exchangeable protons, and although positive, do not indicate an interaction between the protein and the ligand, as they also show the same 
behavior in the absence of protein.

Validated: P. falciparum thymidylate kinase interactions 
with dTMP, ATM and Zidovudine. 

Invalidated: M. leprae nucleoside diphosphate kinase 
interactions with GDP, cAMP and Fludarabine.

18Wednesday, April 27, 2011



Contents

1. Vignettes: 
• Specificity of Brain Lipid-Binding Protein (BLBP) 
• Identifying binding sites on proteins 
• Comparative “docking” of small molecules to proteins
• Overlap between binding sites for proteins and small molecules

2. Enzyme Function Initiative

3. Docking against comparative models

4. Application to norepinephrine transporter (NET)

19Wednesday, April 27, 2011



Do small molecule and protein binding sites overlap within families?

Davis and Sali, PLoS Comp Biol 2010. 

(LIGBASE: 2o22)(PIBASE: 2jm6)

Overlapping
(bi-functional)

Protein binding site Ligand binding site

(ASTRAL alignment)

Mcl-1 – NoxA Bcl-2 – acyl-sulfonamide ligand
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1165 Apo families

Protein
1,591

Ligand
103

Both
1,028

Total: 3,643 families (SCOP v1.73)

Many families bind both small molecules and proteins

Davis and Sali, PLoS Comp Biol 2010.

Ligand:
250-1000 Da

Start with a 
Protein Family

ASTRAL
PIBASE,LIGBASE

Map binding 
sites onto 
alignment

Identify
bi-functional 

positions
Stuart et al. ASTRAL, Bioinformatics 2002
Davis et al, PIBASE, Bioinformatics 2005
Chandonia et al. LIGBASE, Nucl Acids Res 2004

*197 statistically significant

*

21Wednesday, April 27, 2011



Properties of bi-functional positions:
composition and conservation

Davis and Sali, PLoS Comp Biol 2010.

• residue propensities are 
significantly different than 
mono-functional positions; 
similar to energetic hot-spots

• enriched for Trp and Tyr; 

• less conserved than other 
surface positions
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Davis and Sali, PLoS Comp Biol 2010.

Calmodulin – Anthrax Edema Factor (1K93; 2002)
Troponin C – bepridil (1MRW; 2002)

Overlapping binding sites can suggest structural 
mechanisms for the effects of small molecules

• Bepridil was an FDA-approved Ca++-
channel blocker for refractory angina

• Bepridil inhibits cellular entry of 
anthrax edema and lethal factors. 
(Sanchez, et al. Antimicrob Agents 
Chemother 2007)
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The number of protein sequences is “exploding” !
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At least one-half have unknown/uncertain functions

Functional assignment:  high-throughput computation ?
26Wednesday, April 27, 2011



U54 GM093342:  “Enzyme Function Initiative” (EFI)

Sequence Structure Reaction
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1.  Develop a robust sequence/structure-based strategy for 
facilitating discovery of in vitro enzymatic and in vivo 
metabolic/physiological functions of unknown enzymes 
discovered in genome projects.  

2.  Disseminate to the community the intellectual, 
computational, and experimental tools, protocols, materials, 
and guidelines for determining in vitro and in vivo functions 
of unknown enzymes.

3.  Collaborate with the community to facilitate sequence/
superfamily analyses as well as homology modeling and 
in silico docking of ligand libraries to unknown membes 
of other enzyme superfamilies.

EFI:  Deliverables
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Isoprene synthase: > 4,700 sequencesGST: > 8,000 sequences

Enolase: > 7,000 sequences
Amidohydrolase: > 23,000 sequences

HAD: > 34,000 sequences

EFI targets:  5 structurally diverse superfamilies
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EFI pipeline:  develop function assignment strategy 

Target Selection
(Bioinformatics)

Homology Modeling
(Computation)

Structure Determination
(Experimental)

Ligand Docking
(Computation)

Refinement/Rescoring
(Computation)

Activity Measuement
(Experimental)

Library Synthesis
(experimental)

Ligand Binding
(Experimental)
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EFI pipeline:  if correct, functional assignment 
Target Selection
(Bioinformatics)

Homology Modeling
(Computation)

Structure Determination
(Experimental)

Ligand Docking
(Computation)

Refinement/Rescoring
(Computation)

Activity Measuement
(Experimental)

High activity
in vitro 

Function

Phenotype

Library Synthesis
(experimental)

Ligand Binding
(Experimental)

in vivo 
Function

in vivo Testing
(experimental)

Annotation Transfer
(Bioinfomatics)
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EFI pipeline:  if incorrect, inform and improve strategy
Target Selection
(Bioinformatics)

Homology Modeling
(Computation)

Structure Determination
(Experimental)

Ligand Docking
(Computation)

Refinement/Rescoring
(Computation)

Activity Measuement
(Experimental)

in vitro 
Function

Library Synthesis
(experimental)

Ligand Binding
(Experimental)

No/low activity

in vivo 
Function

in vivo Testing
(experimental)

Annotation Transfer
(Bioinfomatics)

High activity

Phenotype
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Enzyme Function Initiative
http://enzymefunction.org

33Wednesday, April 27, 2011

http://enzymefunction.org
http://enzymefunction.org


Genome-Wide Mapping of  Protein-Ligand Interactions

Testing

Computational applications

Testing and Applications
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Global optimization

Information navigation and 
search
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Benchmarking Comparative Models In 
Virtual Ligand Screening

Hao Fan, John J. Irwin, Benjamin M. Webb, Gerhard Klebe, 

Brian K. Shoichet, and Andrej Sali 

J. Chem. Inf. Model., 2009
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Questions

1. How does docking against comparative models compare to 
random selection?

2. How does docking against comparative models compare to 
docking against the template structures? 

3. If multiple models are calculated on the basis of different 
templates, can any of them outperform apo and even holo X-ray 
structures of the target? 

4. If so, can one reliably identify which model will be most enriching?

5. Can the docking screens be improved by employing multiple 
models?
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Method

Automated comparative modeling by MODELLER (Sali & Blundell, 
J Mol Biol, 1993). 

Automated virtual screening by DOCK (Meng, Shoichet, & Kuntz, J 
Comp Chem, 1992).

“Directory of useful decoys” (DUD): 38 proteins with known ligands, 
ligand decoys, apo, holo, and related X-ray structures(Huang et al, 
J Med Chem, 2006).

Consensus enrichment for virtual screening: For a given target 
protein, rank a compound by the best score against any of the 
alternative models or templates for the target (this project).
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Results: Enrichment curves for DUD targets

!!

holo X-ray apo X-ray model consensus random
38Wednesday, April 27, 2011



 

27% 29% 37%

49% 70% 87%

72 102 9

15 1167 26

Results: Sample accurate docking poses
Sequence identity and rank among 95,316 DUD decoys.

Both scoring and sampling need to be improved.
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Answers
1. How does docking against comparative models compare to random selection? Comparative 

models typically outperform random selection significantly, doing so for 27 out of the 38 targets.
2. How does docking against comparative models compare to docking against the template 

structures? For the entire benchmark, comparative models are on average no more enriching than the 
corresponding templates. This measurement, however, is confounded by the likelihood of orthologous 
templates genuinely recognizing the ligands for the modeled target. Conversely, a modeled structure 
based on a paralogous template with at least 25% sequence identity to the target is 2.5 times more likely 
to be significantly more enriching than the template.

3. If multiple models are calculated for a target, each one based on a different template, can any of 
them outperform apo and even holo X-ray structures of the target? Typically, the holo X-ray 
structure returns the best enrichments, but the modeled structures are often competitive. For 15 of the 38 
targets, the most enriching model is better for virtual screening than the holo X-ray structure; for nine 
targets, the most enriching model is as good as the holo X-ray structure. As compared to apo X-ray 
structures, the best model performance is better still.

4. Can one reliably identify which model will be most enriching? No, none of the tested sequence or 
structural attributes (i.e., the overall target-template sequence identity, the binding site target-template 
sequence identity, and the predicted accuracy of a model) can reliably predict the accuracy of ligand 
docking.

5. Can the docking screens be improved by employing multiple models instead of a single model? 
Yes. For the 38 targets, the enrichment of the model based on the highest sequence identity is better 
than or comparable to the enrichment for the apo and holo X-ray structures in 65% and 45% cases, 
respectively; in contrast, the consensus enrichment for multiple models (and templates) is better than or 
comparable to the enrichment for the apo and holo X-ray structures in 70% (79%) and 47% (50%) cases, 
respectively. For the 222 target-template pairs, the consensus enrichment is better and worse than the 
template enrichment in 23% and 10% of the cases, respectively. For the 87 paralogous target-template 
pairs related at more than 25% sequence identity, the consensus enrichment is better and worse than 
the template enrichment in 33% and 3% of the cases, respectively.
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Structure-based discovery of prescription drugs that 
interact with the norepinephrine transporter (NET)

Avner Schlessinger, Ethan Geier, Hao Fan, John J. Irwin, Brian K. Shoichet, 

Kathleen M. Giacomini, and Andrej Sali
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The norepinephrine transporter (NET, SLC6A2)

Schousboe et al. Trends Pharmacol Sci., 2006.

Biological Function:

• Na+- and Cl-- dependent neurotransmitter 
transporter, from the synapse to presynaptic neurons

• Mutations are associated with attention deficit 
hyperactivity disorder (ADHD), panic disorder, and 
severe orthostatic hypotension 

Pharmacology:

• Antidepressants, psychostimulants, 
ADHD, neuropathic pain, weight loss, 
nasal decongestion, hypotension

norepinephrine

NET
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Solute Liquid Carrier (SLC) transporters
NET has the neurotransmitter: sodium symporter-like fold

Schlessinger et al. Protein Sci., 2010. Sing et al. Science, 2008.

LeuT transporter from Aquifex aeolicus 
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Goals of NET ligand discovery

• Find unknown biological functions

• Find leads for drug development (eg, Pt derivative transport)

• Explain drug efficacy and side effects

• Rationalize impact of point mutations on the function

• Describe substrate specificity in the SLC6 family

• Aid crystallographic structure determination

Pharmacogenetics of Membrane Transporters (K. Giacomini, UCSF)
Center for Structures of Membrane Proteins (R. Stroud, UCSF)
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5. Validate binding site
    DOCK, DUD

1. Search for template
    PDB, OPM

2. Align target and template
SALIGN, PROMALS3D

GGMEAVITGLADDFQAA
AIM--QPMIAFLEDELKL-

Target sequence:
GGMEAVITGLADDFQAA

Approach: comparative modeling, docking, and virtual screening

4. Refine side chains
    SCRWL4

6. Virtual screening
    DOCK

3. Construct and assess model
    MODELLER, DOPE
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Final model can discriminate between ligands and 
non-ligands

(DUD)

logAUC for final model 37.6
(without optimizing for enrichment)
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Virtual screening of 6,436 drugs from the Kyoto 
Encyclopedia of Genes (KEGG DRUG) database against 

the NET model 

• 200 highest-ranked drugs (the top 3.1% of the library) were analyzed 
manually for the similarities of their predicted poses to those in 
structurally defined complexes, frequent scaffolds, and common 
pharmacological function. 

• 5 high-confidence (similar to NE) and 13 medium-confidence (dissimilar 
to NE) compounds were selected for validation in the lab.
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High-confidence hits

norepinephrine
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Medium-confidence hits (10 of 13)

norepinephrine
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Experimental validation of 18 hits
(positives only shown)

Tranylcypromine 
IC50=8.7µM 

NET uptake inhibition measured in transfected 
human embryonic kidney 293 (HEK293) cells
Chen et al, J Pharmacol Exp Ther., 2007
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Clinical implications

Giacomini et al. Nat Rev Drug Discov. 2010.
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1. Possible efficacy of drugs for other primary targets (enzymes, receptors):

• Sympathetic drugs: Epirenor, Stryphnasal, Zondel, Corbadrin 

• Antidepressants: Parnate (monoamine oxidase inhibitor)

2. Possible side effects of drugs with other primary targets:

• Anorexia and high blood pressure

• Phenformin (anti diabetic)

• Anti-malarial drug proguanil

3. Novel NET ligand scaffolds discovered:

• eg, Tuaminoheptane – no aromatic ring

Clinical implications of NET positives

versus
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Summary

Even when the target is a membrane protein sharing only 27% sequence 
identity and a dissimilar binding profile to the template structure, 
comparative modeling, docking, and virtual screening can be informative.
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Future

It is difficult to imagine how significant progress towards this goal can be 
achieved without virtual screening against comparative models, though 
there are also many other bottlenecks. As we progress, an optimal, 
integrative approach involving a variety of techniques will evolve.

For docking against models, both scoring and sampling need to be 
improved.
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Statistical Potentials for Modeling and 
Ranking of Protein-Ligand Interactions

Hao Fan, Dina Schneidman, John J. Irwin, Guangqiang Dong, Brian 
K. Shoichet, and Andrej Sali
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idea of stat pot - DOPE joint pdf
app to prot-lig eq, sample, atm types, reference, optimization on training (criteria)
sample distribution
testing on testing set
results: absolute, relative
discussion points: glass ceiling
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DOPE philosophy
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Equation

P C | dij( ) = P C( )∗
P dij |C( )
P dij( )

 Conditional probability - statistical preference

     P(C|dij), the probability that a structure is correct, given 
distances {dij}. The score. 

     P(dij|C) - the probability of observing {dij} in a correct structure. 
Given by the sample of known structures.      

     P(dij) - the probability of observing {dij} in any structure.             
The reference state - remains to be determined.

     P(C) - the probability of observing a correct structure.                  
Constant for a given ligand (but not in virtual screening).  
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Variables

Protein atom type: 158 DOPE types.
Small molecule atom type: 26 Sybyl types
X-ray structure resolution: 2.0 Å, 2.5 Å. 
Distance cut-off: 6 Å, 8 Å, 10 Å, 12 Å, 14 Å.
Reference equation: Sippl, DFIRE.
Reference resource: PDB, 
        PDB + DOCK decoys,
        Random distribution.
P(C) in virtual screening.
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Sippl reference: 
assume no 
atom type 
difference  

Sippl, J Mol Biol 
1990

 One example for ASP_OD & N.pl3 (10, 0.1)

Pairwise score
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Sippl reference: 
assume no 
atom type 
difference   

 One example for ASP_OD & N.pl3 (10, 0.1)

Pairwise score
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04/07/11

 One example for ASP_OD & N.pl3 (10, 0.1)

Pairwise score
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Training and Validation  

• Training set on the basis of Astex, generated by DOCK  
    70 targets, 100 decoys
    For all targets, at least 1 decoy ≤ 2.0 rmsd Å to X-ray

 Geometry (single ligand, X-ray and decoy poses)
         X-ray pose or decoy pose ≤ 2.0 Å ranked first

• Validation set - Wang’s dataset, generated by autodock  
    100 targets, 100 decoys
     For 91 targets, at least 1 decoy ≤ 2.0 rmsd Å to X-ray
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Training and Validation 

• Training set : DUD-1

 Enrichment (ligands and decoy compounds)
       compare rescoring LogAUC to DOCK LogAUC 

ACE ALR2 PNP P38 MAP
COMT COX-1 SAHH AR
PDE5 GPB ERantagonist

FXa HIVRT CDK2 MR
Trypsin InhA FGFr1 PR

ADA AmpC PARP TK
DHFR COX-2 HSP90 ERagonist

GART HIVPR GR
Thrombin HMGR EGFr PPARg
AChE NA SRC RXRa

• Validation set : DUD-2
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Result 

Scores Native Native / Decoy<2 Å Decoy < 2 Å

Gscore 70 88 69

Gscorerandom 73 89 69

DrugScoreCSD 77 87 66

DrugScorePDB 49 72 65

PMF 32 52 48

PLP 52 76 70

AutoDock 8 62 66

• Geometry validation
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Result 
• Enrichment validation - rescoring vs DOCK 

Protein DOCK Escor
e

Protei
n

DOCK Escor
e

Protein DOCK Escor
eADA 22.7 45.8 HIVP

R
11.9 33.1 SRC 9.5 26.6

DHFR 18.9 62.0 HMG
R

40.9 35.3 TK 63.5 75.4
GART 35.3 40.0 NA 47.6 58.4
Thrombi
n

29.4 22.1 PARP 8.2 40.7 ERagoni

st

55.4 61.9
AChE 38.5 39.8 HSP9

0
24.6 29.6 GR 20.5 28.2

AmpC 47.4
(53.8)

10.3
(19.3)

PPARg 4.4 17.6

COX-2 40.8 19.2 EGFr 21.5 17.0 RXRa 37.9 45.1

 13 out of 19, score > DOCK (1.4 Å desolvation radius)
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Result 
• Enrichment validation - rescoring vs DOCK 

Protein Rank of ligand 
1
Rank of ligand 
1

Protei
n

Rank of ligand 
1
Rank of ligand 
1

Protein Rank of ligand 
1
Rank of ligand 
1

Protein
DOCK Escor

e

Protei
n DOCK Escor

e

Protein
DOCK Escor

eADA 2989 74 HIVP
R

5200 24 SRC 7536 2
DHFR 166 2 HMG

R
19 3 TK 319 40

GART 123 72 NA 15 1
Thrombi
n

21 1 PARP 15976 292 ERagoni

st

3 4
AChE 304 107 HSP9

0
2967 108 GR 9 1

AmpC 1098
(628)

27680
(14)

PPARg 16898 462

COX-2 12 74 EGFr 257 103 RXRa 1 5

     AmpC A chain is broken in X-ray structure
     The rank of the best ranked ligand is < 500 in all cases

69Wednesday, April 27, 2011



04/07/11

Result 

• Enrichment validation - rescoring vs rescoring 

Escore FLEXX PMF PLP Screen PLOP

Better 10 11 11 10 13

Equal 3 3 6 4 1

Worse 6 5 2 5 5
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Discussion 

• Geometry validation - failed cases

3CLA, 1.75 Å; type III chloramphenicol acetyltransferase (1CLA)  
Only H-bond with crystal water, No decoy < 2.0 Å

X-ray pose ranked 4th

NH

O

Cl

Cl

OHOH

N
O

O
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Discussion 

• Geometry validation - failed cases

1DR1, 2.20 Å; chicken DHFR  
cofactor NADP+, H-bond with crystal water; 

X-ray pose ranked 2nd

N

H
N

NH

N NH2

O

OH

OH

72Wednesday, April 27, 2011



04/07/11

Discussion 

• Geometry validation - failed cases

1ZZZ, 1.90 Å; Thrombin
Transition state with Ser195, H-bond with crystal water; 

X-ray pose ranked 2nd

H
S

N
HO

O

N
N
H

O

CHO

O

N

H2N NH2
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Discussion 

• Geometry validation - failed cases

2SNS, 1.50 Å; Staphylococcal nuclease
Close distance (1.9 Å) with Arg35 and Ca; 

Decoy < 2 Å (1.44 Å) ranked 2nd

NH

N

O

O O

H3C

O

O

PO3O3P
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Discussion 

• Geometry validation - failed cases

1tha, 2.00 Å; human serum transthyretin
Protein co-crystallized with two ligands;  

X-ray pose ranked 3rd

O

OH

O

I

I

OH

H2N
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Discussion 

• Geometry validation - failed cases

1tnj, 1.80 Å; serine proteinase trypsin;
X-ray pose ranked 2nd

1tni, 1.80 Å; serine proteinase trypsin
X-ray or decoy < 2.0 Å not top 5 

NH3
NH2
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Conclusion

When interested in maximum accuracy, it may be worth 
considering a statistical potential.

77Wednesday, April 27, 2011


