# Virtual screening against comparative protein models (bioinformatician's toying with small molecules)







Andrej Sali http://salilab.org/



Department of Bioengineering and Therapeutic Sciences Department of Pharmaceutical Chemistry California Institute for Quantitative Biosciences University of California, San Francisco

# **Steps in Comparative Protein Structure Modeling**



M. Marti-Renom *et al. Ann. Rev. Biophys. Biomolec. Struct.* **29**, 291, 2000. <u>http://salilab.org</u>/

### Comparative modeling by satisfaction of spatial restraints MODELLER

3DGKITFYERGFQGHCYESDC-NLQP...SEQGKITFYERG---RCYESDCPNLQP...



A. Šali & T. Blundell. *J. Mol. Biol.* 234, 779, 1993.
J.P. Overington & A. Šali. *Prot. Sci.* 3, 1582, 1994.
A. Fiser, R. Do & A. Šali, *Prot. Sci.*, 9, 1753, 2000.

# **Comparative modeling of the UniProt database**

Unique sequences processed: 2,130,404

Sequences with fold assignments or models: 1,273,766 (60%)

70% of models based on <30% sequence identity to template.

On average, only a domain per protein is modeled (an "average" protein has 2.5 domains of 175 aa).



Pieper et al. Nucleic Acids Research, 2006, 2011.

# Comprehensive mapping of interactions between proteins and small ligands



all binding sites on all proteins



# **Genome-Wide Mapping of Protein-Ligand Interactions**



# Contents

- 1. Vignettes:
  - Specificity of Brain Lipid-Binding Protein (BLBP)
  - Identifying binding sites on proteins
  - Comparative "docking" of small molecules to proteins
  - Overlap between binding sites for proteins and small molecules
- 2. Enzyme Function Initiative
- 3. Docking against comparative models
- 4. Application to norepinephrine transporter (NET)

### What is the physiological ligand of Brain Lipid-Binding Protein?

Predicting features of a model that are not present in the template



- 1. BLBP binds fatty acids.
- 2. Build a 3D model.
- 3. Find the fatty acid that fits most snuggly into the ligand binding cavity.

L. Xu, R. Sánchez, A. Šali, N. Heintz, J. Biol. Chem. 271, 24711, 1996.

# Contents

- 1. Vignettes:
  - Specificity of Brain Lipid-Binding Protein (BLBP)
  - Identifying binding sites on proteins
  - Comparative "docking" of small molecules to proteins
  - Overlap between binding sites for proteins and small molecules
- 2. Enzyme Function Initiative
- 3. Docking against comparative models
- 4. Application to norepinephrine transporter (NET)

Localization of a binding site of a given type by optimizing a scoring function that depends on properties of a surface residue patch



Rossi, Marti-Renom, Sali, Prot Sci, 2006.

# **Methods: Scoring Function**

Our current scoring function assesses any patch based on these properties (requires examples of the binding site):

- Conservation (BLAST generated profiles)
- Compactness (average residue distance)
- Protrusion (nearest neighbor list)
- Convexity (exposure vectors)
- Rigidity (B-factor from crystallographic coordinates)
- Hydrophobicity (hydrophobicity scale)
- Charge density (CHARMM)
- Number of residues

Properties are transformed into Z-scores (scored patch versus random patches):

$$Z_k = \left(f_k - \overline{f}_k\right) / \boldsymbol{\sigma}_k$$

The scoring function is a linear combination of property Z-scores:

$$F(P; \{w_k\}) = \sum_{k=1}^{N_p} w_k Z_k(P)$$

# Methods: Patch optimization Monte Carlo Simulated Annealing



# Example: NAD binding site localization on dihydropteridine reductase (1dhr)



### Large benchmark

For nonsugar ligands, such as various nucleotides, 20 different types of binding sites in 1008 structures were correctly identified in 55%–73% of the cases.

# Contents

- 1. Vignettes:
  - Specificity of Brain Lipid-Binding Protein (BLBP)
  - Identifying binding sites on proteins
  - Comparative "docking" of small molecules to proteins
  - Overlap between binding sites for proteins and small molecules
- 2. Enzyme Function Initiative
- 3. Docking against comparative models
- 4. Application to norepinephrine transporter (NET)

# Prediction of a binding site and ligand by homology





known structure with predicted binding site

Marti-Renom et al, Nucl Acids Res, 2007 Marti-Renom et al, BMC Bioinformatics 2006



templates with known or predicted binding sites

Many others have explored these relationships (Thornton, Sternberg, Rost, ...)

### A kernel for open source drug discovery in tropical diseases



TrEMBL PDB ModPipe ModBase LigBase DBAli MSDChem DrugBank

At least one binding site for a small molecule was predicted for 3499 proteins in 10 pathogen genomes, based on similarity to known binding sites. Relating ligands in the PDB to compounds in MSDChem and DrugBank predicts that 297 of these proteins bind a molecule similar to a known drug (143 are predicted to bind a known drug).

L. Orti, R.J. Carbajo, U. Pieper, N. Eswar, S. M. Maurer, A. K. Rai, G. Taylor, M. H. Todd, A. Pineda-Lucena, A. Sali, M. A. Marti-Renom, PLoS Negl Trop Dis, 2009

### Examples of recovered known pathogen drugs

- A)
- M. leprae dihydrofolate reductase



**Trimethoprim** Small Molecule; Approved

Drug categories: Antimalarials Anti-Infectives



Drug indication:

For the treatment of initial episodes of uncomplicated urinary tract infections.

B)



L. major histone deacetylase

#### Vorinostat

Small Molecule; Approved; Investigational

#### Drug categories:

Anti-Inflammatory Agents, Non-Steroidal Anticarcinogenic Agents Antineoplastic Agents Enzyme Inhibitors

#### Drug indication:

For the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies.

The original PDB structure with the ligand bound is shown in blue; the transferred binding site in the template structure is shown in green; and a comparative protein structure model of the target sequence is shown in magenta.

Orti et al, PLoS Negl Trop Dis, 2009

### Testing of predicted pathogen protein - drug interactions Water-LOGSY NMR spectroscopy



**Validated**: *P. falciparum* thymidylate kinase interactions with dTMP, ATM and Zidovudine.

**Invalidated**: *M. leprae* nucleoside diphosphate kinase interactions with GDP, cAMP and Fludarabine.

Each NMR spectrum shows a detail of the aromatic region for the interacting molecules, the bottom spectra corresponding to the reference 1D 1H experiment (black line). In this experimental setting, a non-interacting compound results in negative resonances in the Water-LOGSY experiment and no signals in the STD spectrum. In contrast, protein-ligand interactions in the Water-LOGSY (magenta line) are characterized by positive signals or by a reduction in the negative signals obtained in the absence of the protein (reference spectrum, grey line). In the STD experiment, a positive interaction is recognized by the presence of positive signals (green line). Signals marked with an asterisk arise from exchangeable protons, and although positive, do not indicate an interaction between the protein and the ligand, as they also show the same behavior in the absence of protein.

#### Orti et al, PLoS Negl Trop Dis, 2009

# Contents

- 1. Vignettes:
  - Specificity of Brain Lipid-Binding Protein (BLBP)
  - Identifying binding sites on proteins
  - Comparative "docking" of small molecules to proteins
  - Overlap between binding sites for proteins and small molecules
- 2. Enzyme Function Initiative
- 3. Docking against comparative models
- 4. Application to norepinephrine transporter (NET)

### Do small molecule and protein binding sites overlap within families?



#### Davis and Sali, PLoS Comp Biol 2010.

### Many families bind both small molecules and proteins



Stuart et al. ASTRAL, Bioinformatics 2002 Davis et al, PIBASE, Bioinformatics 2005 Chandonia et al. LIGBASE, Nucl Acids Res 2004

1



Total: 3,643 families (SCOP v1.73)

| Number of families         | Total | bind small<br>molecules | ≥ 5 bi-functional<br>positions |
|----------------------------|-------|-------------------------|--------------------------------|
| Total                      | 3,463 | 1,131                   |                                |
| Domain-peptide             | 469   | 232                     | 150                            |
| Domain-domain, inter-chain | 2,120 | 900                     | 570                            |
| Domain-domain, intra-chain | 1,189 | 562                     | 356                            |
| Total protein-binding      | 2,619 | 1,028                   | 736*                           |

Davis and Sali, PLoS Comp Biol 2010.

\*197 statistically significant

### Properties of bi-functional positions: composition and conservation

- residue propensities are significantly different than mono-functional positions; similar to energetic hot-spots
- enriched for Trp and Tyr;
- less conserved than other surface positions



#### Davis and Sali, PLoS Comp Biol 2010.

Overlapping binding sites can suggest structural mechanisms for the effects of small molecules

- Bepridil was an FDA-approved Ca++channel blocker for refractory angina
- Bepridil inhibits cellular entry of anthrax edema and lethal factors. (Sanchez, et al. Antimicrob Agents Chemother 2007)



Davis and Sali, PLoS Comp Biol 2010.

# Contents

- 1. Vignettes:
  - Specificity of Brain Lipid-Binding Protein (BLBP)
  - Identifying binding sites on proteins
  - Comparative "docking" of small molecules to proteins
  - Overlap between binding sites for proteins and small molecules
- 2. Enzyme Function Initiative
- 3. Docking against comparative models
- 4. Application to norepinephrine transporter (NET)

# The number of protein sequences is "exploding" !

Release 2011\_03 of 08-Mar-2011 of UniProtKB/TrEMBL contains 13897064 sequence entries, comprising 4465597779 amino acids .



#### Number of entries in UniProtKB/TrEMBL

# At least one-half have unknown/uncertain functions

Release 2011\_03 of 08-Mar-2011 of UniProtKB/TrEMBL contains 13897064 sequence entries, comprising 4465597779 amino acids .



#### Number of entries in UniProtKB/TrEMBL

# U54 GM093342: "Enzyme Function Initiative" (EFI)



Illinois John Gerlt John Cronan Jonathan Sweedler

> Texas A&M Frank Raushel

UCSF Patricia Babbitt Matthew Jacobson Andrej Sali Brian Shoichet **Boston University** 

**Karen Allen** 

University of New Mexico Debra Dunaway-Mariano

Albert Einstein Steven Almo

University of Virginia Wladek Minor University of Utah C. Dale Poulter

Vanderbllt University Richard Armstrong

### **EFI: Deliverables**

- Develop a robust sequence/structure-based strategy for facilitating discovery of *in vitro* enzymatic and *in vivo* metabolic/physiological functions of unknown enzymes discovered in genome projects.
- 2. **Disseminate to the community** the intellectual, computational, and experimental tools, protocols, materials, and guidelines for determining *in vitro* and *in vivo* functions of unknown enzymes.
- 3. Collaborate with the community to facilitate sequence/ superfamily analyses as well as homology modeling and *in silico* docking of ligand libraries to unknown membes of other enzyme superfamilies.

### EFI targets: 5 structurally diverse superfamilies



Enolase: > 7,000 sequences Amidohydrolase: > 23,000 sequences



HAD: > 34,000 sequences



**GST:** > 8,000 sequences



**Isoprene synthase:** > 4,700 sequences

### EFI pipeline: develop function assignment strategy



# EFI pipeline: if correct, functional assignment



# EFI pipeline: if incorrect, inform and improve strategy



# **Enzyme Function Initiative**

#### http://enzymefunction.org



#### DATA ACCESS

The Enzyme Function Initiative (EFI) will develop a robust sequence/structure-based strategy for facilitating discovery of in vitro enzymatic and in vivo metabolic/physiological functions of unknown enzymes discovered in genome projects, a crucial limitation in genomic biology. This goal will be accomplished by integrating bioinformatics, structural biology, and computation with enzymology, genetics, and metabolomics. The EFI will establish five Scientific Cores for: 1) directing target selection as well as devising strategies for functional assignment based on sequence relationships and genome context; 2) expression and purification of targets; 3) experimental determination of structures of targets; 4) computational determination of structures of targets (homology modeling) and, also, in silico docking of ligand libraries to direct experimental assignment of in vitro functions by focused library screening; and 5) microbiological and metabolomic characterization of the in vivo roles of the in vitro assigned functions.

Signup for our e-mail alert!

The Computational Core is accepting proposals for external collaborations. Please contact the Director of the Computational Core, Prof. Matt Jacobson, at Matt.Jacobson@ucsf.edu for more information,

New NIGMS 'Glue Grant' Takes Aim at Unknown Enzymes - nigms.nih.gov

# **Genome-Wide Mapping of Protein-Ligand Interactions**



# Benchmarking Comparative Models In Virtual Ligand Screening

Hao Fan, John J. Irwin, Benjamin M. Webb, Gerhard Klebe,

Brian K. Shoichet, and Andrej Sali

J. Chem. Inf. Model., 2009

# Questions

- 1. How does docking against comparative models compare to random selection?
- 2. How does docking against comparative models compare to docking against the template structures?
- 3. If multiple models are calculated on the basis of different templates, can any of them outperform apo and even holo X-ray structures of the target?
- 4. If so, can one reliably identify which model will be most enriching?
- 5. Can the docking screens be improved by employing multiple models?
## Method

- Automated comparative modeling by MODELLER (Sali & Blundell, *J Mol Biol*, 1993).
- Automated virtual screening by DOCK (Meng, Shoichet, & Kuntz, J Comp Chem, 1992).
- "Directory of useful decoys" (DUD): 38 proteins with known ligands, ligand decoys, apo, holo, and related X-ray structures(Huang *et al*, *J Med Chem*, 2006).
- Consensus enrichment for virtual screening: For a given target protein, rank a compound by the best score against any of the alternative models or templates for the target (this project).

#### **Results: Enrichment curves for DUD targets**



#### **Results: Sample accurate docking poses**

Sequence identity and rank among 95,316 DUD decoys.



DHFR

NA

PNP



SAHH





Both scoring and sampling need to be improved.

## Answers

- 1. How does docking against comparative models compare to random selection? Comparative models typically outperform random selection significantly, doing so for 27 out of the 38 targets.
- 2. How does docking against comparative models compare to docking against the template structures? For the entire benchmark, comparative models are on average no more enriching than the corresponding templates. This measurement, however, is confounded by the likelihood of orthologous templates genuinely recognizing the ligands for the modeled target. Conversely, a modeled structure based on a paralogous template with at least 25% sequence identity to the target is 2.5 times more likely to be significantly more enriching than the template.
- 3. If multiple models are calculated for a target, each one based on a different template, can any of them outperform apo and even holo X-ray structures of the target? Typically, the holo X-ray structure returns the best enrichments, but the modeled structures are often competitive. For 15 of the 38 targets, the most enriching model is better for virtual screening than the holo X-ray structure; for nine targets, the most enriching model is as good as the holo X-ray structure. As compared to apo X-ray structures, the best model performance is better still.
- 4. Can one reliably identify which model will be most enriching? No, none of the tested sequence or structural attributes (i.e., the overall target-template sequence identity, the binding site target-template sequence identity, and the predicted accuracy of a model) can reliably predict the accuracy of ligand docking.
- 5. Can the docking screens be improved by employing multiple models instead of a single model? Yes. For the 38 targets, the enrichment of the model based on the highest sequence identity is better than or comparable to the enrichment for the apo and holo X-ray structures in 65% and 45% cases, respectively; in contrast, the consensus enrichment for multiple models (and templates) is better than or comparable to the enrichment for the apo and holo X-ray structures in 70% (79%) and 47% (50%) cases, respectively. For the 222 target-template pairs, the consensus enrichment is better and worse than the template enrichment in 23% and 10% of the cases, respectively. For the 87 paralogous target-template pairs related at more than 25% sequence identity, the consensus enrichment is better and worse than the template enrichment in 33% and 3% of the cases, respectively.

# Structure-based discovery of prescription drugs that interact with the norepinephrine transporter (NET)

Avner Schlessinger, Ethan Geier, Hao Fan, John J. Irwin, Brian K. Shoichet, Kathleen M. Giacomini, and Andrej Sali

### The norepinephrine transporter (NET, SLC6A2)

#### **Biological Function:**

- Na<sup>+</sup>- and Cl<sup>-</sup>- dependent neurotransmitter transporter, from the synapse to presynaptic neurons
- Mutations are associated with attention deficit hyperactivity disorder (ADHD), panic disorder, and severe orthostatic hypotension

#### **Pharmacology:**

 Antidepressants, psychostimulants, ADHD, neuropathic pain, weight loss, nasal decongestion, hypotension



Schousboe et al. Trends Pharmacol Sci., 2006.

#### Solute Liquid Carrier (SLC) transporters NET has the neurotransmitter: sodium symporter-like fold



Schlessinger et al. Protein Sci., 2010.



LeuT transporter from *Aquifex aeolicus* Sing *et al.* Science, 2008.

# **Goals of NET ligand discovery**

Pharmacogenetics of Membrane Transporters (K. Giacomini, UCSF) Center for Structures of Membrane Proteins (R. Stroud, UCSF)

- Find unknown biological functions
- Find leads for drug development (eg, Pt derivative transport)
- Explain drug efficacy and side effects
- Rationalize impact of point mutations on the function
- Describe substrate specificity in the SLC6 family
- Aid crystallographic structure determination

#### Approach: comparative modeling, docking, and virtual screening



# Final model can discriminate between ligands and non-ligands



logAUC for final model 37.6 (without optimizing for enrichment)

#### Virtual screening of 6,436 drugs from the Kyoto Encyclopedia of Genes (KEGG DRUG) database against the NET model

- 200 highest-ranked drugs (the top 3.1% of the library) were analyzed manually for the similarities of their predicted poses to those in structurally defined complexes, frequent scaffolds, and common pharmacological function.
- 5 high-confidence (similar to NE) and 13 medium-confidence (dissimilar to NE) compounds were selected for validation in the lab.

## **High-confidence hits**

|                   | High-confidence predictions |                   |                                                             |                |            |  |  |  |  |
|-------------------|-----------------------------|-------------------|-------------------------------------------------------------|----------------|------------|--|--|--|--|
| Rank <sup>a</sup> | ZINC idb                    | Name <sup>c</sup> | Indication <sup>d</sup>                                     | Tce            | Structuref |  |  |  |  |
| 3                 | 119286                      | Norfenefrine      | Cardiac stimulant                                           | 0.34<br>(0.94) |            |  |  |  |  |
| 4                 | 34159                       | Levonordefrin     | Vasoconstrictor; hypotensive;<br>topical nasal decongestant | 0.47<br>(0.90) | Net CH.    |  |  |  |  |
| 10                | 388198                      | Octopamine        | Cardiac stimulant; hypotensive                              | 0.34<br>(0.90) |            |  |  |  |  |
| 25                | 1482197                     | Tranylcypromine   | Antidepressant                                              | 0.37<br>(0.38) |            |  |  |  |  |
| 112               | 57542                       | Adrenalone        | Hemostatic; vasoconstrictor                                 | 0.40<br>(0.61) |            |  |  |  |  |

## Medium-confidence hits (10 of 13)

|     |          | Mediu            | m-confidence predictions                                |                |                                                                                                                                                                                                              |
|-----|----------|------------------|---------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16  | 896658   | Metformin        | Antidiabetic                                            | 0.13<br>(0.09) | $H_{2}C \xrightarrow{\overset{CH_{1}}{\mathbb{N}}}_{NH_{1}} \overset{H}{\overset{H}{\longrightarrow}} \overset{H}{\overset{H}{\longrightarrow}}_{NH_{2}} \overset{H}{\overset{H}{\longrightarrow}}_{NH_{2}}$ |
| 18  | 2015538  | Tuaminoheptane   | Nasal decongestant; stimulant;<br>vasoconstrictor       | 0.23<br>(0.18) | H,C ~ G                                                                                                                                                                                                      |
| 40  | 16952920 | Lamivudine       | Antiviral (HIV and HBV).                                | 0.18<br>(0.14) | and and the second                                                                                                                                                                                           |
| 46  | 391812   | Nicotine         | Stimulant                                               | 0.28<br>(0.46) |                                                                                                                                                                                                              |
| 79  | 1542229  | Lazabemide       | Alzheimer disease                                       | 0.25<br>(0.20) | Ol~                                                                                                                                                                                                          |
| 92  | 18119521 | 6-mercaptopurine | Antineoplastic;<br>immunosuppressive;<br>antimetabolite | 0.13<br>(0.16) |                                                                                                                                                                                                              |
| 93  | 1535336  | Talsaclidine     | Alzheimer's Disease                                     | 0.17<br>(0.26) | And                                                                                                                                                                                                          |
| 98  | 1644     | Mafenide         | Severe burns; synthetic<br>antimicrobial agent          | 0.35<br>(0.56) |                                                                                                                                                                                                              |
| 104 | 125006   | Tolazolin        | Vasodilator (peripheral)                                | 0.29<br>(0.45) |                                                                                                                                                                                                              |
| 124 | 14768667 | Phenformin       | Antidiabetic                                            | 0.29<br>(0.35) | Q~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                       |



# Experimental validation of 18 hits (positives only shown)



# **Clinical implications**

# Membrane transporters in drug development

#### The International Transporter Consortium\*

Abstract | Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labelling.

Giacomini et al. Nat Rev Drug Discov. 2010.

# **Clinical implications of NET positives**

#### **1.** Possible efficacy of drugs for other primary targets (enzymes, receptors):

- Sympathetic drugs: Epirenor, Stryphnasal, Zondel, Corbadrin
- Antidepressants: Parnate (monoamine oxidase inhibitor)

#### 2. Possible side effects of drugs with other primary targets:

- Anorexia and high blood pressure
- Phenformin (anti diabetic)
- Anti-malarial drug proguanil





#### 3. Novel NET ligand scaffolds discovered:

• eg, Tuaminoheptane – no aromatic ring



# Summary

Even when the target is a membrane protein sharing only 27% sequence identity and a dissimilar binding profile to the template structure, comparative modeling, docking, and virtual screening can be informative.

## **Future**



It is difficult to imagine how significant progress towards this goal can be achieved without virtual screening against comparative models, though there are also many other bottlenecks. As we progress, an optimal, integrative approach involving a variety of techniques will evolve.

For docking against models, both scoring and sampling need to be improved.

## Acknowledgments http://salilab.org

#### QB3 @ UCSF:

Hao Fan Avner Schlessinger Patrick Weinkam Quanqiang Dong Jeremy Horst Backy Chen Ben Webb Ursula Pieper Elina Tjioe

#### Alumni:

Narayanan Eswar (Du Pont) Marc Marti-Renom (Valencia) Fred Davis (HHMI) Roberto Sanchez (MSSM) Andrea Rossi (Pfizer) M.S. Madhusudhan (Singapore) David Eramian (UCSF) Min-Yi Shen (Applied Biosys) Mark Peterson (BCG) Francisco Melo (Catholic U.) Ash Stuart (Rampallo Coll.) Eric Feyfant (Pfizer) Valentin Ilyin (NEU) Andras Fiser (AECOM) Ranyee Chiang (NYU)

#### **Collaborators:**

**Brian Shoichet (UCSF)** 

Patsy Babbitt (UCSF) Matt Jacobson (UCSF) Frank Raushel (TAMU) Steven Almo (AECOM) Stephen Burley (Lilly) Gerhard Klebe (Marburg U) Robert Stroud (UCSF) Kathy Giacomini (UCSF) Wah Chiu (Baylor) Judith Frydman (Stanford) Charly Craik (UCSF) Jim Wells (UCSF) Tom Ferrin (UCSF)

#### NIH, NSF

The Sandler Family Foundation Human Frontiers Science Program IBM, Intel, Hewlett-Packard, NetApps Pfizer, Structural Genomix Pharmaceuticals, Mike Homer, Ron Conway

56

# **Statistical Potentials for Modeling and Ranking of Protein-Ligand Interactions**

Hao Fan, Dina Schneidman, John J. Irwin, Guangqiang Dong, Brian K. Shoichet, and Andrej Sali

- idea of stat pot DOPE joint pdf
- app to prot-lig eq, sample, atm types, reference, optimization on training (criteria)
- sample distribution
- testing on testing set
- results: absolute, relative
- discussion points: glass ceiling

## **DOPE** philosophy

# Equation

## **Conditional probability - statistical preference**

$$P(C \mid d_{ij}) = P(C) * \frac{P(d_{ij} \mid C)}{P(d_{ij})}$$

 $P(C|d_{ij})$ , the probability that a structure is correct, given distances  $\{d_{ij}\}$ . The score.

 $P(d_{ij}|C)$  - the probability of observing  $\{d_{ij}\}$  in a correct structure. Given by the sample of known structures.

 $P(d_{ij})$  - the probability of observing  $\{d_{ij}\}$  in any structure. The reference state - remains to be determined.

**P(C)** - the probability of observing a correct structure. Constant for a given ligand (but not in virtual screening).

60

# Variables

**Protein atom type: 158 DOPE types.** Small molecule atom type: 26 Sybyl types X-ray structure resolution: 2.0 Å, 2.5 Å. Distance cut-off: 6 Å, 8 Å, 10 Å, 12 Å, 14 Å. **Reference equation: Sippl, DFIRE. Reference resource: PDB**, **PDB + DOCK decoys**, **Random distribution. P(C)** in virtual screening.



# Pairwise score

#### One example for ASP\_OD & N.pl3 (10, 0.1)



Sippl reference: assume no atom type difference Sippl, J Mol Biol

Sippl, J Mol Biol 1990

# **Pairwise score**

#### One example for ASP\_OD & N.pl3 (10, 0.1)

## ASP\_OD & N.pl3



63

## Pairwise score

#### One example for ASP\_OD & N.pl3 (10, 0.1)



# **Training and Validation**

Geometry (single ligand, X-ray and decoy poses) X-ray pose or decoy pose ≤ 2.0 Å ranked first

- Training set on the basis of Astex, generated by DOCK 70 targets, 100 decoys
  For all targets, at least 1 decoy ≤ 2.0 rmsd Å to X-ray
- Validation set Wang's dataset, generated by autodock 100 targets, 100 decoys
  For 91 targets, at least 1 decoy ≤ 2.0 rmsd Å to X-ray

65

# **Training and Validation**

**Enrichment (ligands and decoy compounds)** 

compare rescoring LogAUC to DOCK LogAUC

#### • Training set : DUD-1

| ACE     | ALR2  | PNP   | P38 MAP                  |
|---------|-------|-------|--------------------------|
| COMT    | COX-1 | SAHH  | AR                       |
| PDE5    | GPB   |       | ER <sub>antagonist</sub> |
| FXa     | HIVRT | CDK2  | MR                       |
| Trypsin | InhA  | FGFr1 | PR                       |

#### Validation set : DUD-2

| ADA      | AmpC  | PARP  | TK                    |
|----------|-------|-------|-----------------------|
| DHFR     | COX-2 | HSP90 | ER <sub>agonist</sub> |
| GART     | HIVPR |       | GR                    |
| Thrombin | HMGR  | EGFr  | PPARg                 |
| AChE     | NA    | SRC   | RXRa                  |

#### Geometry validation

| Scores                   | Native | Native / Decoy<2 Å | Decoy < 2 Å |
|--------------------------|--------|--------------------|-------------|
| Gscore                   | 70     | 88                 | 69          |
| Gscore <sub>random</sub> | 73     | 89                 | 69          |
| DrugScore <sub>CSD</sub> | 77     | 87                 | 66          |
| DrugScore <sub>PDB</sub> | 49     | 72                 | 65          |
| PMF                      | 32     | 52                 | 48          |
| PLP                      | 52     | 76                 | 70          |
| AutoDock                 | 8      | 62                 | 66          |

#### • Enrichment validation - rescoring vs DOCK

| Protein | DOCK   | Escor  | Protei | DOCK | Escor | Protein             | DOCK | Escor |
|---------|--------|--------|--------|------|-------|---------------------|------|-------|
| ADA     | 22.7   | 45.8   | HIVP   | 11.9 | 33.1  | SRC                 | 9.5  | 26.6  |
| DHFR    | 18.9   | 62.0   | HMG    | 40.9 | 35.3  | TK                  | 63.5 | 75.4  |
| GART    | 35.3   | 40.0   | NA     | 47.6 | 58.4  |                     |      |       |
| Thrombi | 29.4   | 22.1   | PARP   | 8.2  | 40.7  | ER <sub>agoni</sub> | 55.4 | 61.9  |
| AChE    | 38.5   | 39.8   | HSP9   | 24.6 | 29.6  | GR                  | 20.5 | 28.2  |
| AmpC    | 47.4   | 10.3   |        |      |       | PPARg               | 4.4  | 17.6  |
|         | (53.8) | (19.3) |        |      |       |                     |      |       |
| COX-2   | 40.8   | 19.2   | EGFr   | 21.5 | 17.0  | RXRa                | 37.9 | 45.1  |

### 13 out of 19, score > DOCK (1.4 Å desolvation radius)

#### • Enrichment validation - rescoring vs DOCK

| Protein | Rank of | fligand | Protei Rank of ligand |       | Protein | Rank of ligand      |       |       |
|---------|---------|---------|-----------------------|-------|---------|---------------------|-------|-------|
|         | DOCK    | Escor   | n                     | DOCK  | Escor   |                     | DOCK  | Escor |
| ADA     | 2989    | 74      | HIVP                  | 5200  | 24      | SRC                 | 7536  | 2     |
| DHFR    | 166     | 2       | HMG                   | 19    | 3       | TK                  | 319   | 40    |
| GART    | 123     | 72      | NA                    | 15    | 1       |                     |       |       |
| Thrombi | 21      | 1       | PARP                  | 15976 | 292     | ER <sub>agoni</sub> | 3     | 4     |
| AChE    | 304     | 107     | HSP9                  | 2967  | 108     | GR                  | 9     | 1     |
| AmpC    | 1098    | 27680   |                       |       |         | PPARg               | 16898 | 462   |
|         | (628)   | (14)    |                       |       |         |                     |       |       |
| COX-2   | 12      | 74      | EGFr                  | 257   | 103     | RXRa                | 1     | 5     |

AmpC A chain is broken in X-ray structure The rank of the best ranked ligand is < 500 in all cases

Enrichment validation - rescoring vs rescoring

| Escore | FLEXX | PMF | PLP | Screen | PLOP |
|--------|-------|-----|-----|--------|------|
| Better | 10    | 11  | 11  | 10     | 13   |
| Equal  | 3     | 3   | 6   | 4      | 1    |
| Worse  | 6     | 5   | 2   | 5      | 5    |

# Discussion

#### Geometry validation - failed cases

3CLA, 1.75 Å; type III chloramphenicol acetyltransferase (1CLA) Only H-bond with crystal water, No decoy < 2.0 Å X-ray pose ranked 4th





# Discussion

Geometry validation - failed cases

1DR1, 2.20 Å; chicken DHFR cofactor NADP+, H-bond with crystal water; X-ray pose ranked 2nd





07/11
Geometry validation - failed cases



Geometry validation - failed cases

2SNS, 1.50 Å; Staphylococcal nuclease Close distance (1.9 Å) with Arg35 and Ca; Decoy < 2 Å (1.44 Å) ranked 2nd





Geometry validation - failed cases

1tha, 2.00 Å; human serum transthyretin Protein co-crystallized with two ligands; X-ray pose ranked 3rd



Geometry validation - failed cases





### Conclusion

• When interested in maximum accuracy, it may be worth considering a statistical potential.