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Projects:
Drug binding (activity, selectivity, resistance)

- neuraminidase project: flu
- kinase project: cancer
- gp41 project: HIV

All projects have lead discovery component
- virtual screening
- method / protocol development: DOCK

Lab Mission:
Develop, validate, and apply computational tools and protocols for

drug discovery and design targeted towards human disease.

Driving Hypotheses:
Molecular recognition (drug binding, activity, potency, resistance) can be 

understood and predicted through interpretation of
accurate computational results (structural and energetic).

Primary computational tools: Molecular Dynamics, docking
Goal: Quantify → Understand → Predict
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Flu Inhibitor Resistance

Chachra, R.; Rizzo, R. C.  J. Chem. Theory Comput., 2008,4, 1526-1540 
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Exptl activities: neuraminidase (NA) subtype N9 
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Known inhibitor binding geometry (pose) with NA

Schematic adapted from Stoll et al.,
Biochemistry 2003, 42, 718-727

N9 mutation
site

Coordinates from
Smith, B.J.; et al.,
Protein Sci. 2001, 10 689-96
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All-atom computational modeling:
Molecular Mechanics 

Each atom is represented as a sphere in 3-D space
- atom type (C, N, H, O, S, etc)
- radius (size)
- partial charge

Energy = bonds + angles + torsions + charge-charge + steric fit

Simulation setups constructed using crystallographic coordinates
and model building

Explicit solvent molecular dynamics simulations and analysis 

Simulations yield detailed atomic level structures and energies
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Computational protocol:  Free energy of
binding ( ΔGbind ) estimates: MM-GBSA

Srinivasan, J. ; et al. J. Am. Chem. Soc. 1998, 120, 9401-9409
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Simulation stability / convergence
S01 components ΔGbind calcd



11ΔGb
correlation

Energy component breakdown with exptl binding
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ΔEcoul and H-bond terms show strong
correlation with ΔGbind exptl
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Which residues interact significantly with inhibitors?
Per-residue energetic footprints (interaction signature)

WT Coulombic (ΔEcoul) footprints

ligand

neuraminidase (388aa)

important receptor residues
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Coulombic footprints for:
(a) wildtype and (b) mutant - wildtype

Ligands with formal charge of -1 (S00 and S01) have different WT footprint than 
do ligands with formal charge of 0 (S02 and S03).

profile suggests S03 relies less on R292K for intrinsic binding affinity 
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H-bond footprints for:
(a) wildtype and (b) mutant - wildtype

S03 makes less H-bonds with R292
However, increased H-bonding observed at E119, E227, E277

S03 does not lose H-bonds as a result of the mutation
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– WT/R292K simulations with N9 yield quantitative agreement with expt

– coulombic energy (ΔEcoul) correlates most strongly with exptl activities

– Hbond populations parallel exptl ordering

– S03: less reliance on R292K for intrinsic affinity, flatter ΔEcoul and ΔH-bond 
profiles

– S03: minor loss of ΔΔEcoul (no loss of H-bonds) when localized to 292 

– S03: enhanced binding via E199, E227, and E277

– S03: less-ordered glycerol --- R292 interaction

– S03: greater avg distances to R292, shorter avg distances to E227 and E277

Conclusions (neuraminidase study)



17

EGFR Inhibitor Resistance

Balius, T. E.; Rizzo, R. C. Biochemistry, 2009, 48, 8435-8448
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aFold Resistance (FR) = ratio of experimental activities.  ΔΔGFR exptl ≈ RTln(FR) at 298.15 K in kcal/mol.  bKi
values (nM) from Carey, K. D., et al. , Cancer Res 66, 8163-8171. (2006).  c IC50 values (nM) from Ji, H., et al., Proc 
Natl Acad Sci U S A 103, 7817-7822. (2006).  d Kd values (nM) from Yun, C. H., et al., Proc Natl Acad Sci U S A 
105, 2070-2075. (2008).  eKd values (nM) from Yun, C. H., et al., Cancer Cell 11, 217-227. (2007).  

FR = ratio of activities (exptl or calcd)
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EGFR inhibitor pose
and key mutations 
• Cancer Causing

– L858R 
increase binding to 
erlotinib & gefitinib

– Del E746-A750
increase binding to 
erlotinib & gefitinib

– G719S
decrease binding to 
gefitinib 

• Drug Resistance 
– T790M

decrease binding to all 

Coordinates from Stamos, J.; Sliwkowski, M. X.; Eigenbrot, C. J. Biol. Chem., 2002, 277, 46265-46272
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Relative Free Energies and Components  
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Correlation With Exptl Fold Resistance (ΔΔG) 
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Structure Comparison: Erlotinib

The T790M mutation does not lead to a steric clash with erlotinib 
however there is change in H-bonding at position C797



23

Energetic
Footprints 

• Highly conserved and variant 
regions (suggests convergence)

• H-bonds visible at M793 in 
Coulombic graphs 

• Delta FP appear flatter for 
gefitinib (less affected by 
mutations) 

• No steric clash at T790 as 
previously proposed

• Computed losses suggests 
affinity differences for ATP are 
not the sole cause of drug 
resistance (recently proposed)
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Water-mediated ligand binding and changes 
that result from T790M appear important  
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• Good agreement with activity data (ΔΔGFR calcd vs. exptl), r2 = 0.84, N=7 

• VDW is the most correlated term (ΔΔGFR)

• FP regions with similar and dissimilar energies suggest convergence/reproducibility

• Coulombic energies mirror H-bond trends
– AEE788 shows largest interactions at M793

• Flatter ΔFP profiles for gefitinib shows agreement with exptl FR trend

• T790M resistance does not appear to be caused by a steric clash
– increased favorable VDW interactions occur at M790

• Results suggest resistance not solely a function of increased affinity for ATP
– strong correlations without ATP considerations, water-mediated changes

Conclusions (EGFR Study)
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HIV Inhibitor Resistance

McGillick, B. E.; Balius, T.E.; Mukherjee, S.; Rizzo, R. C. Biochemistry, 2010, 49, 3575-3592
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Viral Entry (membrane fusion)

C34 and TRI-1144 are experimental inhibitors, T20 approved as Fuzeon 2003
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residue-based VDW
decomposition

Energy/footprint
decomposition: C34

Strockbine, B.; Rizzo, R. C. Proteins: Struct. Func. Bioinformatics, 2007, 67, 630-642
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T20 Clinical
Mutations

T20-gp41 
structures

not reported

→ model 
construction

See McGillick, B. E.; et al Biochemistry, 2010, 49, 3575–3592 for experimental references
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(a)

(c)

(b)

T20 Model & MD Protocol
• Equilibration: Energy 

Minimization and MD

• Force Field: CHARMM27 (protein 
and lipids), TIP3P (water)

• Production Runs: NAMD 
10,000ps (saved every 1 ps) 

• NPT: T=310K, P=1.01325bar

• Complex
– Periodic Boundary 

60x60x200Å3

– Analysis Details
• Energy decomposition, 

footprinting, H-bond
• MM-GBSA: binding 

energy method
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Molecular footprints reveal energetically important
gp41 residues which map to clinical mutation sites 
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Correlation with Experiment Fold Resistance 
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gp41-based footprint interactions (ΔΔE)
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Steric packing footprint interaction matrix
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T20-based footprints with membrane

WNWF motif
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Recent Crystal Structure Similar to T20-gp41 Model

orange: McGillick, B. E.; Balius, T.E.; Mukherjee, S.; Rizzo, R. C. Biochemistry, 2010, 49, 3575–3592
blue:      Buzon, V; et al. PLoS Pathogens, 2010, 6, e1000880

F162

W161

W159
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General conclusions about the complex:
- Stable simulations (models include fusion peptide region embedded in membrane)
- Footprints yield qualitative agreement with clinically observed resistance sites
- Point mutation simulations yield good quantitative agreement (r2 = 0.7, N=6)

Analysis suggests:
- Mutations disrupt H-bonding and reduce favorable contact with gp41 at M19
- Charged mutations yield significant Coulombic changes that reduce favorable VDW
- Q40K > I37K resistance involves interaction differences in the initial (wildtype) state
- L33S vs L33Q resistance involves packing differences in the final (mutated) state.  

- identified favorable interactions between the C-terminal end of T20 (WNWF motif),  
residues on gp41 (including the fusion peptide), and head groups in the adjacent 
membrane  

Results suggest a complete T20 binding site would contribute to a stable complex, 
which could help to explain why prior studies, that employed truncated gp41 constructs, 

reported that C-terminal T20 residues may not interact with gp41.  

Results suggest that modified T20 peptides designed to increase favorable contact with 
membrane could lead to enhanced activity.

Conclusions (T20-gp41 study)
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DOCK Development Projects

Mukherjee, S.; Balius, T.E.; Rizzo, R. C. Journal of Chemical Information and Modeling, 2010, 50, 1986-2000.
Balius, T.E.; Mukherjee, S.; Rizzo, R. C. Journal of Computational Chemistry, 2011, in press

Developers (partial list)
Tack Kuntz Group (UCSF)
Brian Shoichet Group (UCSF), John Irwin (UCSF)
David Case Group (Rutgers), Scott Brozell (Half Moon Bay)
Demetri Moustakas (AstraZeneca), Terry Lang (Berkeley)
Rizzo Group (Stony Brook)
Latest version: DOCK 6.4 (2010)
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Importance of controls (protocol validation)

Rizzo, R. C.; Wang, D.-P.; Tirado-Rives, J.; Jorgensen, W. L.  J. Am. Chem. Soc., 2000, 122, 12898-12900
Ren J.; Milton J.; Weaver K. L.; Short S. A.; Stuart D. I.; Stammers D. K.  Structure, 2000, 8, 1089-1094 
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Specific goals: Stony Brook project

Testset construction (termed SB2010 testset)

Three core DOCK experiments:
RGD = Rigid Ligand Docking (tests orienting code)
FAD = Fixed Anchor Docking (tests flexible ligand growth)
FLX = Flexible Ligand Docking (tests both)

Primary analysis :
success rate (pose reproduction to within 2.0 Å of x-ray ref)
sampling failures (pose not generated)
scoring failures (pose generated but not selected)

Note: success + sampling failures + scoring failures = 100%
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Most problematic for flexible molecules
lack of torsional energy term

Repulsive vdw term (intra-ligand)
interaction pair list for speedup

Input parameter "use_internal_energy" [yes no] anchor & 
grow, rigid docking, (minimizations)

Optimized (repaired) active atom flag logic segment-based 
energy evaluations and multiple anchor orienting array

Implementation of growth trees (FAD and FLX protocols)

FAD, and FLX protocols: ligand internal clashes 
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Growth tree examples: HIVPR

Multiple anchor option enabled
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Pose reproduction statistics: global rmsd spectrum

At any RMSD: total success + sampling failures + scoring failures = 100%

N=780 systems



44Total success + sampling failures + scoring failures = 100% (N=780 systems)

Pose reproduction statistics: by flexibility
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On-the-fly flexible growth (FLX) shows improvment
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Family-based crossdocking heat maps

diagonal elements represent cognate protein-ligand pairs
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Neuraminidase studies (43 x 43 matrix)

See Birch, L.; et al J. Comput.-Aided Mol. Des. 2002, 16, 855-869 for a related study
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Recent ACS symposium (pose identification)

As provided (mods by Roe and Brozell)

Stony Brook Prep

Progressive removal of bias in ligand starting conditions 



50

System    1HWR
Std RMSD  7.28
Hungarian 0.37
Min RMSD  0.09

Initial studies: symmetry corrected rmsds

System     1H22
Std RMSD  12.32
Hungarian  0.83
Min RMSD   0.13
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DUD enrichment AUC 

Cognate Receptor

Semi-random pairing
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Footprint similarity (FPS) score examples

Similar work using binary footprints:
Deng, Z. et al., J Med Chem 2004, 47, 337-44
Brewerton, S. C., Curr Opin Drug Discov Devel 2008, 11, 356-64 (review article)
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FPS evaluations: pose identification SB2010 
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False positives (rmsd > 5 Å; FPS < 0.6)
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Enrichment studies: EGFR
(different MW bias for top scoring compounds)
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HIVgp41 studies
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Conclusions / summary

Test set development:
characterized RGD, FAD, FLX protocols for pose reproduction
family-based analysis
cross docking experiments
vs protocol developed for BlueGene

Code-base enhancements:
internal ligand geometry issues repaired
growth trees (pruning statistics)
footprint-based continuous scoring
available as DOCK6.4

Footprints:
identify ligands and/or poses that look like a reference query
pose reproduction: improvement in success vs standard score 
initial enrichments studies promising (DUD) 
ongoing project example (gp41) 
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