Molecular Dynamics and Docking Approaches to Characterize Drug Resistance and Assist Lead Discovery

Robert C. Rizzo

Department of Applied Mathematics and Statistics, and Institute of Chemical Biology & Drug Discovery

Stony Brook University, Stony Brook, NY 11794

2011 IPAM Meeting

Acknowledgments

Current Students:

Trent Balius Patrick Holden Yulin Huang Lingling Jiang Sudipto Mukherjee Jibril Ashiru-Balogun Brian Shea

Collaborators:

HIV: Miriam Gochin (Touro/UCSF) HIV: Mark Wilson (U of Nebraska) HIV: Iwao Ojima ICB&DD (SBU) Flu: Janet Hearing (SBU) Kinases: Todd Miller (SBU) DOCK: Tack Kuntz (UCSF), Brian Shoichet (UCSF), Dave Case (Scripps), Carlos Sosa (IBM)

Support:

Applied Math & Stat (SBU) Computational Science Center at Brookhaven National Laboratory (NewYork Blue) NYSTAR Investigator Award School of Medicine (SBU) Influenza TRO, Carol M. Baldwin Breast Cancer Research Award National Institutes of Health R01GM083669 (NIGMS), F31CA134201 (NCI, to TEB) 2 Lab Mission:

Develop, validate, and apply computational tools and protocols for drug discovery and design targeted towards human disease.

Driving Hypotheses:

Molecular recognition (drug binding, activity, potency, resistance) can be understood and predicted through interpretation of accurate computational results (structural and energetic).

Primary computational tools: Molecular Dynamics, docking Goal: Quantify \rightarrow Understand \rightarrow Predict

Projects:

- Drug binding (activity, selectivity, resistance)
 - neuraminidase project: flu
 - kinase project: cancer
 - gp41 project: HIV
- All projects have lead discovery component
 - virtual screening
 - method / protocol development: DOCK

Flu Inhibitor Resistance

Chachra, R.; Rizzo, R. C. J. Chem. Theory Comput., 2008, 4, 1526-1540

Exptl activities: neuraminidase (NA) subtype N9

^aS00, sialic acid, *N*-acetylneuraminic acid (Neu5Ac); S01, DANA, 2-deoxy-2,3dehydro-*N*-acetylneuraminic acid, (Neu5Ac2en); S02, 4-amino Neu5Ac2en; S03, zanamivir, 4-guanidinio Neu5Ac2en. ^bMcKimm-Breschkin, J.L.; et al. *J Virology* 1998, 72 2456-2462 for A/NWS/Tern/Australia/G70C (subtype N9). ^cBlick, T.J.; et al. *Virology* 1995, 214 475-484 for A/NWS/Tern/Australia/G70C (subtype N9). Free energies of binding estimated as $\Delta G_{exptl} \approx RTln(K_i \text{ in molar})$ at 37 °C.

Known inhibitor binding geometry (pose) with NA

Schematic adapted from Stoll et al., *Biochemistry* **2003**, *4*2, 718-727

All-atom computational modeling: Molecular Mechanics

- Each atom is represented as a sphere in 3-D space
 - atom type (C, N, H, O, S, etc)
 - radius (size)
 - partial charge
- Energy = bonds + angles + torsions + charge-charge + steric fit
- Simulation setups constructed using crystallographic coordinates and model building
- Explicit solvent molecular dynamics simulations and analysis
- Simulations yield detailed atomic level structures and energies

Computational protocol: Free energy of binding (ΔG_{bind}) estimates: MM-GBSA

 $\Delta G_{\text{bind}} = \Delta G_{\text{gas}} + \Delta G_{\text{hyd}}(\text{RL}) - [\Delta G_{\text{hyd}}(\text{R}) + \Delta G_{\text{hyd}}(\text{L})] \approx \Delta G_{\text{exptl}}$

Srinivasan, J.; et al. J. Am. Chem. Soc. 1998, 120, 9401-9409

Simulation stability / convergence

Energy component breakdown with exptl binding

system	ΔE_{vdw}	ΔE_{coul}	$\Delta\Delta G_{polar}$	$\Delta\Delta G_{nonpolar}$	ΔG_{bind} calcd	ΔG _{bind} expt
system	Α	В	С	D	= A+B+C+D	$\approx \operatorname{RT} \ln(\mathrm{K}_{\mathrm{i}})$
S00 _{wildtype}	-23.62 ± 0.09	-182.32 ± 0.31	146.36 ± 0.23	-4.35 ± 0.002	-64.07 ± 0.13	-5.81
S01 _{wildtype}	-21.93 ± 0.09	-193.71 ± 0.29	154.70 ± 0.22	-4.28 ± 0.002	-65.58 ± 0.11	-7.61
S02 _{wildtype}	-22.84 ± 0.11	-228.66 ± 0.33	194.81 ± 0.18	-4.41 ± 0.002	$\textbf{-61.18} \pm 0.14$	-9.32
S03 _{wildtype}	-29.26 ± 0.10	-265.78 ± 0.29	218.79 ± 0.18	-4.70 ± 0.001	-81.26 ± 0.15	-11.87
S00 _{R292K}	-23.98 ± 0.10	-163.63 ± 0.33	145.77 ± 0.27	-4.36 ± 0.003	-46.56 ± 0.11	-3.74
S01 _{R292K}	-23.31 ± 0.08	-146.52 ± 0.25	131.67 ± 0.19	$\textbf{-4.37} \pm 0.001$	-42.85 ± 0.13	-4.85
S02 _{R292K}	-21.40 ± 0.10	-185.63 ± 0.29	162.95 ± 0.21	-4.36 ± 0.002	-49.02 ± 0.12	-6.62
S03 _{R292K}	-22.92 ± 0.10	-258.67 ± 0.30	216.12 ± 0.20	-4.63 ± 0.001	-70.49 ± 0.13	-10.21
	$r^2 = 0.23$	$r^2 = 0.93$	$r^2 = 0.88$	$r^2 = 0.62$	$r^2 = 0.76$	
						Gb elation

ΔE_{coul} and H-bond terms show strong correlation with ΔG_{bind} exptl

Which residues interact significantly with inhibitors? Per-residue energetic footprints (interaction signature)

Coulombic footprints for: (a) wildtype and (b) mutant - wildtype

Ligands with formal charge of -1 (S00 and S01) have different WT footprint than do ligands with formal charge of 0 (S02 and S03). profile suggests S03 relies less on R292K for intrinsic binding affinity¹⁴

H-bond footprints for: (a) wildtype and (b) mutant - wildtype

S03 makes less H-bonds with R292 However, increased H-bonding observed at E119, E227, E277 S03 does not lose H-bonds as a result of the mutation

Conclusions (neuraminidase study)

- WT/R292K simulations with N9 yield quantitative agreement with expt
- coulombic energy (Δ Ecoul) correlates most strongly with exptl activities
- Hbond populations parallel exptl ordering
- S03: less reliance on R292K for intrinsic affinity, flatter Δ Ecoul and Δ H-bond profiles
- S03: minor loss of $\Delta\Delta$ Ecoul (no loss of H-bonds) when localized to 292
- S03: enhanced binding via E199, E227, and E277
- S03: less-ordered glycerol --- R292 interaction
- S03: greater avg distances to R292, shorter avg distances to E227 and E277

EGFR Inhibitor Resistance

Balius, T. E.; Rizzo, R. C. *Biochemistry*, **2009**, *48*, 8435-8448

FR = ratio of activities (exptl or calcd)

Inhihitan	Structure	Experimental Fold Resistance ^a			
mmbnor	Structure	L858R / WT	L858R&T790M / L858R	G719S / WT	
erlotinib		6.25 / 17.5 nM ^b 0.36 FR -0.61 ΔΔG _{FR}	>10000 / 12.5 nM ^c >800 FR >3.96 ΔΔG _{FR}	_	
gefitinib		2.4 / 35.3 nM ^d 0.068 FR -1.59 ΔΔG _{FR}	10.9 / 2.4 nM ^d 4.54 FR 0.90 ΔΔG _{FR}	123.6 / 53.5 nM ^e 2.31 FR 0.50 ΔΔG _{FR}	
AEE788	NH NH	1.1 / 5.3 nM ^d 0.21 FR –0.92 ΔΔG _{FR}	18.6 / 1.1 nM ^d 16.9 FR 1.68 ΔΔG _{FR}	11.3 / 10.9 nM ^e 1.04 FR 0.02 ΔΔG _{FR}	

 Table 1. Experimental Fold Resistance (FR) values for ATP-competitive inhibitors with EGFR.

^aFold Resistance (FR) = ratio of experimental activities. $\Delta\Delta G_{FR} \exp tl \approx RTln(FR)$ at 298.15 K in kcal/mol. ^bKi values (nM) from Carey, K. D., et al., Cancer Res 66, 8163-8171. (2006). ^c IC₅₀ values (nM) from Ji, H., et al., Proc Natl Acad Sci U S A 103, 7817-7822. (2006). ^d Kd values (nM) from Yun, C. H., et al., Proc Natl Acad Sci U S A 105, 2070-2075. (2008). ^eKd values (nM) from Yun, C. H., et al., Cancer Cell 11, 217-227. (2007).

EGFR inhibitor pose and key mutations

- Cancer Causing
 - L858R
 - increase binding to erlotinib & gefitinib
 - Del E746-A750
 increase binding to erlotinib & gefitinib
 - G719S
 - decrease binding to gefitinib
- Drug Resistance
 - T790M

decrease binding to all

Coordinates from Stamos, J.; Sliwkowski, M. X.; Eigenbrot, C. J. Biol. Chem., 2002, 277, 46265-46272

Relative Free Energies and Components

Table 2. Experimental versus calculated Fold Resistance (FR) energies ($\Delta\Delta G_{FR}$) and energy components for ligands with EGFR.

inhibitor	$\Delta\Delta E_{vdw}$	$\Delta\Delta E_{coul}$	$\Delta\Delta G_{polar}$	$\Delta\Delta G_{nonpolar}$	$\Delta\Delta G_{FR}$ calcd	∆∆G _{FR} exptl
minibitor	Α	В	С	D	$\mathbf{E} = (\mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D})$	F
			L858R	– WT		
erlotinib	-0.86 ± 0.06	-0.34 ± 0.13	0.21 ± 0.11	0.06 ± 0.003	-0.97 ± 0.07	-0.61
gefitinib	-0.99 ± 0.06	-0.72 ± 0.07	-0.58 ± 0.06	-0.01 ± 0.004	-2.30 ± 0.07	-1.59
AEE788	-2.41 ± 0.06	-0.48 ± 0.07	0.36 ± 0.06	-0.30 ± 0.005	-2.84 ± 0.06	-0.92
L858R&T790M – L858R						
erlotinib	2.30 ± 0.06	7.42 ± 0.11	-6.56 ± 0.10	0.09 ± 0.003	3.30 ± 0.06	>3.96
gefitinib	-0.10 ± 0.05	-0.06 ± 0.07	0.49 ± 0.06	-0.06 ± 0.004	0.27 ± 0.06	0.90
AEE788	3.39 ± 0.07	3.15 ± 0.09	-4.33 ± 0.07	0.20 ± 0.004	2.40 ± 0.08	1.68
			G719S	– WT		
erlotinib	-2.08 ± 0.06	-0.05 ± 0.12	-0.24 ± 0.11	0.04 ± 0.003	-2.38 ± 0.07	not reported
gefitinib	0.74 ± 0.07	-0.85 ± 0.07	1.59 ± 0.07	0.04 ± 0.004	1.50 ± 0.08	0.50
AEE788	-0.65 ± 0.06	-0.78 ± 0.06	0.55 ± 0.05	0.08 ± 0.005	-0.81 ± 0.07	0.02
$\mathbf{r}^2 =$	0.70	0.47	0.19	0.30	0.84	7 data points ^c

 $^{a}\Delta\Delta G_{FR}$ calcd derived from the difference of two independent simulations (eg L858R – WT) computed using eqs 1-3. $^{b}\Delta\Delta G_{FR}$ exptl values from Table 1. Correlations coefficients (r² values) obtained from fitting the change in each energy component to $\Delta\Delta G_{FR}$ exptl. All energies in kcal/mol ± standard errors of the mean from 5000 MD snapshots. ^cData point for erlotinib with double mutant (>3.96) excluded from r² calculations given ambiguity in the experimental $\Delta\Delta G_{FR}$ measurement.

Correlation With Exptl Fold Resistance ($\Delta\Delta G$)

Structure Comparison: Erlotinib

The T790M mutation does not lead to a steric clash with erlotinib however there is change in H-bonding at position C797²²

Energetic Footprints

- Highly conserved and variant regions (suggests convergence)
- H-bonds visible at M793 in Coulombic graphs
- Delta FP appear flatter for gefitinib (less affected by mutations)
- No steric clash at T790 as previously proposed
- Computed losses suggests affinity differences for ATP are not the sole cause of drug resistance (recently proposed)

Water-mediated ligand binding and changes that result from T790M appear important

Conclusions (EGFR Study)

- Good agreement with activity data ($\Delta\Delta G_{FR}$ calcd vs. exptl), r² = 0.84, N=7
- VDW is the most correlated term ($\Delta\Delta G_{FR}$)
- FP regions with similar and dissimilar energies suggest convergence/reproducibility
- Coulombic energies mirror H-bond trends
 - AEE788 shows largest interactions at M793
- Flatter Δ FP profiles for gefitinib shows agreement with exptl FR trend
- T790M resistance does not appear to be caused by a steric clash
 - increased favorable VDW interactions occur at M790
- Results suggest resistance not solely a function of increased affinity for ATP
 - strong correlations without ATP considerations, water-mediated changes

HIV Inhibitor Resistance

McGillick, B. E.; Balius, T.E.; Mukherjee, S.; Rizzo, R. C. Biochemistry, 2010, 49, 3575-3592

Viral Entry (membrane fusion)

C34 and TRI-1144 are experimental inhibitors, T20 approved as Fuzeon 2003

Peptide Inhibitor	$\Delta \mathbf{E}_{coul} \mathbf{A}$	$\Delta \mathbf{E}_{vdw}$ B	∆G _{polar} C	$\Delta \mathbf{G}_{\mathbf{nonpolar}}$ \mathbf{D}	$\Delta \mathbf{G}_{\mathbf{electro}}$ A+C	∆G _{MM-GBSA} A+B+C+D	$\Delta \mathbf{G}_{\mathbf{bind}}$ exptl ^b
Trp120	-1090.66 ± 0.81	-144.58 ± 0.11	1142.36 ± 0.76	-16.55 ± 0.01	51.70	-109.42 ± 0.12	-12.11
Phe120	-1121.06 ± 0.81	-136.01 ± 0.10	1173.36 ± 0.77	-16.24 ± 0.01	52.30	-99.94 ± 0.11	-11.59
Leu120	-1145.73 ± 0.92	-133.66 ± 0.11	1192.61 ± 0.86	-16.23 ± 0.01	46.88	-103.00 ± 0.12	-11.36
Val120	-1070.50 ± 0.79	-129.34 ± 0.10	1119.90 ± 0.74	-15.51 ± 0.01	49.40	-95.45 ± 0.12	-10.82
Ala120	-1086.44 ± 0.90	-129.84 ± 0.10	1136.34 ± 0.88	-15.62 ± 0.01	49.90	-95.55 ± 0.11	-10.15
Gly120	-1078.06 ± 0.81	-127.48 ± 0.10	1124.30 ± 0.75	-15.62 ± 0.01	46.24	-96.85 ± 0.13	-10.18
	$r^2 = 0.22$	$r^2 = 0.84$	$r^2 = 0.27$	$r^2 = 0.84$	$r^2 = 0.32$	$r^2 = 0.75$	

Strockbine, B.; Rizzo, R. C. Proteins: Struct. Func. Bioinformatics, 2007, 67, 630-642

T20 Mu	Clinic tations	al r	C34 (34	a.a.) T20 (36 a.a.)	 T20-gp41
	mutation	FR = mutant/wildtype	ΔΔG _F	$_{\mathbf{R}} = \mathbf{RT} \ln \mathbf{FR}^{\mathrm{f}}$	not reported
*	L33Q	924 ^a	4.05		notreponed
*	L335	64, ^a 108 ^a	2.62 ^g	2.46, 2.77	
	G36D	8, ^b 10, ^c 46 ^d	1.62 ^g	1.23, 1.36, 2.27	. 11
	G36E	39 ^c	2.17		\rightarrow model
	G36S	7, ^b ,7 ^c	1.15		a a construction
*	G36V	45 ^d	2.26		construction
*	I37K	212 ^e	3.17		
	I37T	13 ^e	1.15		
	V38A	16, ⁶ 18, ^c 54 ^d	1.90 ^g	1.64, 1.71, 2.36	
*	V38E	494, ^u 1100 ^c	3.92 ^g	3.68, 4.15	
.1.	V38M	17, ^a 26 ^c	1.81 ^s	1.68, 1.93	
*	Q40H	21,° 28,° 34°	1.95	1.80, 1.97, 2.09	
*	Q40K	1268"	4.23	4 00 4 17 4 21	
	Q41R N40T	983, "1137," 1433,"	4.19 ⁵	4.08, 4.17, 4.31	
	N421 N42D	$4, 26^{\circ}$	1.58°	0.82, 1.93	
	N43D	18, 23, 37	1.90°	1./1, 1.86, 2.14	

See McGillick, B. E.; et al *Biochemistry*, **2010**, 49, 3575–3592 for experimental references

T20 Model & MD Protocol

- Equilibration: Energy Minimization and MD
- Force Field: CHARMM27 (protein and lipids), TIP3P (water)
- Production Runs: NAMD 10,000ps (saved every 1 ps)
- NPT: T=310K, P=1.01325bar
- Complex
 - Periodic Boundary 60x60x200Å³
 - Analysis Details
 - Energy decomposition, footprinting, H-bond
 - MM-GBSA: binding energy method

Molecular footprints reveal energetically important gp41 residues which map to clinical mutation sites

Correlation with Experiment Fold Resistance

gp41-based footprint interactions ($\Delta\Delta E$)

Steric packing footprint interaction matrix

T20-based footprints with membrane

WNWF motif

Recent Crystal Structure Similar to T20-gp41 Model

orange: McGillick, B. E.; Balius, T.E.; Mukherjee, S.; Rizzo, R. C. *Biochemistry*, **2010**, 49, 3575–3592 blue: Buzon, V; et al. *PLoS Pathogens*, **2010**, 6, e1000880

Conclusions (T20-gp41 study)

General conclusions about the complex:

- Stable simulations (models include fusion peptide region embedded in membrane)
- Footprints yield qualitative agreement with clinically observed resistance sites
- Point mutation simulations yield good quantitative agreement (r2 = 0.7, N=6)

Analysis suggests:

- Mutations disrupt H-bonding and reduce favorable contact with gp41 at M19
- Charged mutations yield significant Coulombic changes that reduce favorable VDW
- Q40K > I37K resistance involves interaction differences in the initial (wildtype) state
- L33S vs L33Q resistance involves packing differences in the final (mutated) state.

- identified favorable interactions between the C-terminal end of T20 (WNWF motif), residues on gp41 (including the fusion peptide), and head groups in the adjacent membrane

Results suggest a complete T20 binding site would contribute to a stable complex, which could help to explain why prior studies, that employed truncated gp41 constructs, reported that C-terminal T20 residues may not interact with gp41.

Results suggest that modified T20 peptides designed to increase favorable contact with membrane could lead to enhanced activity.

DOCK Development Projects

Developers (partial list) Tack Kuntz Group (UCSF) Brian Shoichet Group (UCSF), John Irwin (UCSF) David Case Group (Rutgers), Scott Brozell (Half Moon Bay) Demetri Moustakas (AstraZeneca), Terry Lang (Berkeley) Rizzo Group (Stony Brook) Latest version: DOCK 6.4 (2010)

Mukherjee, S.; Balius, T.E.; Rizzo, R. C. *Journal of Chemical Information and Modeling*, **2010**, *50*, 1986-2000. Balius, T.E.; Mukherjee, S.; Rizzo, R. C. *Journal of Computational Chemistry*, **2011**, *in press*

Importance of controls (protocol validation)

Rizzo, R. C.; Wang, D.-P.; Tirado-Rives, J.; Jorgensen, W. L. *J. Am. Chem. Soc.*, **2000**, *122*, 12898-12900 Ren J.; Milton J.; Weaver K. L.; Short S. A.; Stuart D. I.; Stammers D. K. *Structure*, **2000**, *8*, 1089-1094

Specific goals: Stony Brook project

- Testset construction (termed SB2010 testset)
- Three core DOCK experiments:
 RGD = Rigid Ligand Docking (tests orienting code)
 FAD = Fixed Anchor Docking (tests flexible ligand growth)
 FLX = Flexible Ligand Docking (tests both)
- Primary analysis :

success rate (pose reproduction to within 2.0 Å of x-ray ref) sampling failures (pose not generated) scoring failures (pose generated but not selected)

Note: success + sampling failures + scoring failures = 100%

FAD, and FLX protocols: ligand internal clashes

Most problematic for flexible molecules

lack of torsional energy term

Repulsive vdw term (intra-ligand) interaction pair list for speedup

Input parameter "use_internal_energy" [yes no] anchor & grow, rigid docking, (minimizations)

Optimized (repaired) active atom flag logic segment-based energy evaluations and multiple anchor orienting array

Implementation of growth trees (FAD and FLX protocols) 41

Growth tree examples: HIVPR

Multiple anchor option enabled

Pose reproduction statistics: global rmsd spectrum

At any RMSD: total success + sampling failures + scoring failures = 100%

N=780 systems

Pose reproduction statistics: by flexibility

Docking Method	No. of RB	Subset Size	To succ	tal ess ^a	Samj failu	pling ıres ^a	Sco failt	ring 1res ^a	Avg time
A	В	С	(No.) D	(%) E	(No.) F	(%) G	(No.) H	(%) I	(min/mol) J
RGD	7 or less	423	352	83.2	3	0.7	68	16.1	2.0
RGD	8 to 15	268	225	83.9	1	0.4	42	15.7	5.8
RGD	15 plus	89	70	78.7	1	1.1	18	20.2	13.6
RGD	all	780	647	82.9	5	0.6	128	16.4	4.6
FAD	7 or less	423	370	87.5	4	0.9	49	11.6	0.9
FAD	8 to 15	268	192	71.6	14	5.2	62	23.1	11.2
FAD	15 plus	89	47	52.8	16	18.0	26	29.2	67.1
FAD	all	780	609	78.1	34	4.4	137	17.6	11.9
FLX	7 or less	423	315	74.5	18	4.3	90	21.3	3.5
FLX	8 to 15	268	148	55.2	41	15.3	79	29.5	17.3
FLX	15 plus	89	35	39.3	35	39.3	19	21.3	74.4
FLX	all	780	498	63.8	94	12.1	188	24.1	16.6

Table 2. Success Rates for Rigid (RGD), Fixed-Anchor (FAD, and Flexible (FLX) Ligand Docking.

^aComputed using a 2.0 Å rmsd definition of success using experimentally observed ligand poses as reference.

Total success + sampling failures + scoring failures = 100% (N=780 systems)

On-the-fly flexible growth (FLX) shows improvment

DOCK	#RB	Succes				
Version	Subset	(%)				
DOCK 4	7orless	60.9%		D		x x <i>x</i>
DOCK 6.3	7orless	74.2%	Pdb code	Drug/Inhibitor	#RB	Indication
Stony Brook (6.4)	7orless	74.5%	8KME 1AGM 1G7F	SEL2770 acarbose PNU177496	29 22 19	anticoagulant type 2 diabetes diabetes
DOCK /	8to15	20.8%	1CNY	benzene sulfonamide	17	glaucoma
DOCK 4	81015	29.070 A1.00	4TMN	peptidomimetic	16	antibacterial
DOCK 6.3	8to15	41.0%	ISDT	indinavir	16	antiviral HIV/AIDS
Stony Brook (6.4)	8to15	55.2%		atorvastatin	15 12	heart disease
			1H22	buperazine analog	13	alzheimers
DOCK 4	15+	4.4%	1HFC 1NJJ	hydroxamate inhibitor geneticin	13 13 12	anticancer antibiotic
DOCK 6.3	15+	7.8%	1A4G	zanamivir	10	antiviral influenza
Stony Brook (6.4)	15+	39.3%	•			
DOCK 4	all	43.8%				
DOCK 6.3	all	55.1%				
Stony Brook (6.4)	all	63.8%				

Family-based crossdocking heat maps

diagonal elements represent cognate protein-ligand pairs ⁴⁷

Neuraminidase studies (43 x 43 matrix)

See Birch, L.; et al J. Comput.-Aided Mol. Des. 2002, 16, 855-869 for a related study

Recent ACS symposium (pose identification)

As provided (mods by Roe and Brozell)

ASTEX (N=85)						
RMSD	Mean	Std Dev	Median	Min	Max	Success%
Top Score	2.61	2.64	1.23	0.18	10.25	68.2
Least (32)	1.31	0.99	1.15	0.18	6.45	89.4

Stony Brook Prep

ASTEX84						
Bias	Finished	Success	SampFail			
lig.10ps.trans	(84/84)=100.0%	(53/84)=63.0%	(6/84)=7.1%			
lig.min.trans	(84/84)=100.0%	(59/84)=70.2%	(7/84)=8.3%			
lig.min	(84/84)=100.0%	(54/84)=64.2%	(8/84)=9.5%			

Progressive removal of bias in ligand starting conditions

Initial studies: symmetry corrected rmsds

System1HWRStd RMSD7.28Hungarian0.37Min RMSD0.09

Syst	11	I22	
Std	RMSD	12.	.32
Hung	0.	.83	
Min	RMSD	0.	.13

DUD enrichment AUC

Footprint similarity (FPS) score examples

Table I.	Examples of	possible reference type	es to derive molec	ular footprints.
----------	-------------	-------------------------	--------------------	------------------

Reference Types	Description
Known inhibitor	FDA-approved drug or experimental inhibitor validated to bind
Natural substrate	Native peptide or cofactor
Transition state	Predicted transition state geometry for a chemical reaction
Modified structure	Key functionality/substructure (side-chain mediating protein-protein interactions)
Text file footprint	Modified entries to increase/decrease importance of select residues (resistance mutations)
Ensemble-weighted	Averaged footprints derived from MD/MC simulations

Similar work using binary footprints: Deng, Z. *et al.*, *J Med Chem* **2004**, *47*, 337-44 Brewerton, S. C., *Curr Opin Drug Discov Devel* **2008**, *11*, 356-64 (review article)

FPS evaluations: pose identification SB2010

Table III. Pose identification success using Footprint similarity (FPS) vs DOCK Cartesian energy (DCE) methods to rescore rigid (RGD), fixed anchor (FAD) and flexible ligand (FLX) pose ensembles.

Row	Ligand Ensemble	FPS Standard	FPS Standard	FPS Threshold	FPS Normalized	DCE						
		Pearson	Euclidean	Pearson	Euclidean							
		Α	В	С	D	Ε						
1	RGD	691 (89.2%) ^a	718 (92.6%)	683 (88.1%)	707 (91.2%)	627 (80.9%)						
2	FAD	642 (85.8%)	638 (85.3%)	644 (86.1%)	652 (87.2%)	606 (81.0%)						
3	FLX	563 (82.8%)	565 (83.1%)	556 (81.8%)	574 (84.4%)	489 (71.9%)						
VDW												
4	RGD	687 (88.6%)	684 (88.3%)	662 (85.4%)	687 (88.6%)	445 (57.4%)						
5	FAD	638 (85.3%)	630 (84.2%)	621 (83.0%)	638 (85.3%)	464 (62.0%)						
6	FLX	545 (80.1%)	539 (79.3%)	525 (77.2%)	545 (80.1%)	309 (45.4%)						
ES												
7	RGD	579 (74.7%)	583 (75.2%)	576 (74.3%)	579 (74.7%)	398 (51.4%)						
8	FAD	601 (80.3%)	573 (76.6%)	598 (79.9%)	603 (80.6%)	460 (61.5%)						
9	FLX	521 (76.6%)	505 (74.3%)	513 (75.4%)	522 (76.8%)	314 (46.2%)						
VDW+ES+HB												
10	RGD	670 (86.5%)	726 (93.7%)	590 (76.1%)	685 (88.4%)	633 (81.7%)						
11	FAD	621 (83.0%)	643 (86.0%)	590 (78.9%)	632 (84.5%)	606 (81.0%)						
12	FLX	557 (81.9%)	564 (82.9%)	501 (73.7%)	561 (82.5%)	492 (72.4%)						

^a Number of molecules in which the pose identified was ≤ 2 Å from the x-tal structure pose followed by success rates in parenthesis. Pose ensembles (RGD = 775, FAD = 748, FLX= 680) derived from docking runs reported by Mukherjee et al.⁷

Table IV. FLX results scored with FPS_{VDW+ES} for three differing footprint threshold cutoffs using a 2 Å rmsd to separate positive from negative regions.

Set	Cutoff	Positive	Negative	Predicted Positive	Predicted Negative	True Positive	False Positive	True Negative	False Negative
best scored ^a	0.3 0.6 0.9	574	106	251 507 618	429 173 62	240 458 537	11 49 81	95 57 25	334 116 37
all poses ^b	0.3 0.6 0.9	965	25,865	295 1,185 3,026	26,535 25,645 23,804	261 577 759	34 608 2267	25,831 25,257 23,598	704 388 206

 $^{a}N = 680. ^{b}N = 26,830.$

False positives (rmsd > 5 Å; FPS < 0.6)

Enrichment studies: EGFR (different MW bias for top scoring compounds)

HIVgp41 studies

Conclusions / summary

Test set development:

characterized RGD, FAD, FLX protocols for pose reproduction family-based analysis cross docking experiments vs protocol developed for BlueGene

Code-base enhancements:

internal ligand geometry issues repaired growth trees (pruning statistics) footprint-based continuous scoring available as DOCK6.4

Footprints:

identify ligands and/or poses that look like a reference query pose reproduction: improvement in success vs standard score initial enrichments studies promising (DUD) ongoing project example (gp41)

Acknowledgments

Current Students:

Trent Balius Patrick Holden Yulin Huang Lingling Jiang Sudipto Mukherjee Jibril Ashiru-Balogun Brian Shea

Collaborators:

HIV: Miriam Gochin (Touro/UCSF) HIV: Mark Wilson (U of Nebraska) HIV: Iwao Ojima ICB&DD (SBU) Flu: Janet Hearing (SBU) Kinases: Todd Miller (SBU) DOCK: Tack Kuntz (UCSF), Brian Shoichet (UCSF), Dave Case (Scripps), Carlos Sosa (IBM)

Support:

Applied Math & Stat (SBU)Computational Science Center at Brookhaven National Laboratory (NewYork Blue)NYSTAR Investigator AwardSchool of Medicine (SBU) Influenza TRO, Carol M. Baldwin Breast Cancer Research AwardNational Institutes of Health R01GM083669 (NIGMS), F31CA134201 (NCI, to TEB)60