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Why do we need to compute free energies?

vs

Crystal phase stabilities

Solubility

Docking
Melting
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Free energy from simulations

F = −kBT lnQ(N,V, T ) = −kBT ln
��

dpN
�

drN exp(−βH(pN , rN ))
ΛNN !

� Not an ensemble 
average. F is a thermal 

quantity

Absolute free energies cannot be measured experimentally, 
and from simulations using direct methods.
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Describes the “coupling 
parameter method”, more 

commonly known as 
Thermodynamic Integration
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Thermodynamic Integration: Relating a thermal 
variable to an ensemble average

U(λ) = (1− λ)U1 + λU2

S1

(N,V, T, U1)
Sint S2

(N,V, T, U(λ)) (N,V, T, U2)

U(λ) = f1(λ)U1 + f2(λ)U2
Simplest case: 
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�
∂F (λ)

∂λ

�

N,V,T

= − 1
β

∂

∂λ
lnQ(N,V, T, λ)

= − 1
βQ(N,V, T, λ)

∂Q(N,V, T, λ)
∂λ

=
�

drN (∂U(λ)/∂λ exp(−βU(λ)))�
drN exp(−βU(λ))
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• What are the intermediate states? 

• Scaling functions?

7

Choice of thermodynamic path

U(λ) = f1(λ)U1 + f2(λ)U2

Reference States:

Einstein Crystal

- Linear, quadratic, cubic, quartic
- Which components of the potential do 
we scale? LJ -    ,    :both? σ �

Need smooth, reversible paths to compute free energies

Friday, March 18, 2011



8

Reference states

Einstein Crystal

• Frequently used reference state for computing free 
energies of solids

• Free energy can be computed analytically

Molecular dynamics investigation of the crystal-fluid 
interface. I. Bulk properties 

Jeremy Q. Broughton and George H. Gilmer 
Bell Laboratories. Murray Hill. New Jersey 07974 
(Received 15 July 1983; accepted 4 August 1983) 

Properties of the crystal and liquid phases have been measured for a system of particles interacting through a 
modified Lennard-Jones potential. Through constant pressure molecular dynamics, we have evaluated the 
density and internal energy of these phases at a pressure that approximates that of the vapor phase. The free 
energy of the crystal is obtained with the Einstein crystal as a reference state, and the liquid free energy is 
measured relative to the ideal gas. The triple point temperature is obtained. Compressibilities and Gruneisen 
parameters are obtained at zero temperature and the triple point. Dynamic properties of the supercooled 
liquid state are also calculated. These results are applied in forthcoming publications which calculate surface 
excess quantities and dynamic properties of the fcc (Ill), (I (0), and (110) faces. 

I. INTRODUCTION 
Recently, several Monte Carlo (MC) and molecular 

dynamics (MO) simulations of crystal surfaces have ap-
peared in the literature. 1- 10 These simulations provide 
atomic-scale information on the transition region be-
tween the bulk crystal and the fluid phases. For exam-
ple, crystal-melt interface simulations have revealed 
the nature of the order imposed on the adjacent liquid 
by the crystal lattice. Also, in the case of the crystal-
vapor interface, enhanced vibrational amplitudes and 
pre melting phenomena have been observed in layers of 
atoms near the crystal surface. 1,4 

In this series of papers we intend to compare the prop-
erties of the fcc (111), (100), and (110) faces. Surface 
free energy, mass transport, stress, and other proper-
ties will be discussed in detail. But the first step is to 
obtain the properties of the bulk phases using the precise 
form of the modified (truncated) Lennard-Jones (LJ) 
interaction that will be employed in the interface simu-
lations. This data is required for the calculation of sur-
face excess quantities. 

In thi s paper we calculate the bulk properties of the 
crystal and melt phases at a pressure (P = 0) correspond-
ing closely to that of the equilibrium vapor phase. The 
crystal density along the crystal-vapor coexistence line 
is calculated from T = 0 to the melting point. Adams and 
McDonald l1 have performed similar zero pressure calcu-
lations by Monte Carlo simulation for alkali halide sys-
tems. The approximate density dependence of zero pres-
sure LJ fcc systems has been obtained for comparison 
with isobaric glass data by Kristensen12 and by Clarke,13 
but (to the best of our knowledge), accurate lattice pa-
rameter data has not been explicitly obtained for a LJ-
like potential in three dimensions. Without this informa-
tion there is ambiguity in the choice of the lattice param-
eter in crystal-fluid and crystal-vapor systems that can 
lead to unphysical uniaxial stresses. These stresses 
have been observed in some Simulations. 2,8,10 

We calculate the free energy of the crystal relative to 
an Einstein crystal with force constants that are equal 
to those measured for the LJ crystal. The free energy 

of the melt is measured relative to the ideal gas. The 
transition from the melt to the gas is accomplished in 
two steps in order to avoid the liquid-vapor phase change. 
First, the attractive part of the potential is removed at 
constant density. Then the Lennard-Jones reference sys-
tem is expanded until the interaction becomes negli-
gible. In this way, accurate polynomial expressions for 
the free energy vs temperature are obtained, and the trip-
le point temperature (T3) is calculated by equating these 
expressions. The triple point temperature of the full 
Lennard-Jones system is then estimated by treating the 
long-range attractive tail as a perturbation that does not 
influence the radial distri bution function. 

Lastly we calculate some thermodynamic and dynamic 
properties of the supercooled liquid along the P = 0 iso-
bar. This data is required for the analysis of machine 
simulated crystal growth experiments that are in prog-
ress. We also estimate the glass transition and Kauz-
mann temperatures. 

II. MODEL AND SIMULATION METHOD 

A. Potential 

We require a potential that is simply related to the LJ 
interaction, 

(1 ) 

but which has none of the vagaries associated with a dis-
continuity in the force at the truncation point. Street 
and Tildesley14 added a constant term to the force gen-
erated by Eq. (1) which eliminated the total force at the 
2. 5a cutoff. Unfortunately, this changes the potential 
energy (PEl at the minimum to - O. 93E from - E for Eq. 
(1). This difference can have a large effect on some of 
the properties of the system. 

Our approach is to retain the full Lennard-Jones force 
in the range 0 < rS 2. 3a, but to use a modified force in 
the range 2. 3a<r<2. 5a. The modified force is continuous 
and approaches zero as r - 2. 5a. The new potential is 
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Reference state for Liquids: Ideal gas

Other reference states for solids: Harmonic 
crystal,Wigner-Seitz cells (Hoover and Ree)

βFideal = 3N lnΛ

Λ = h

�
β

2πm
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28 S. BORESCH ET AL. 

TABLE I. Free Energy 
Differences (kcaYmol)* 

AA AAA 
Cl-+Br- 4.65 ) 3.53 

) 3.53 

CI0+Br0 1.12 
c1r+c10 94.09 

Br--+Bro 90.56 
*The parameters used are E = -0.107 kcall 
mol, u = 4.446 A for C1- and Cl0 and E'  = 
-0.090 kcal/mol, u' = 4.623 A for Br- and 
Bro; a TIP3P water model modified for RISM 
calculations was used. 

solvent interaction terms and the solvent-solvent in- 
teraction terms, do not change their values in the 
transformation of C1- into Br- . They have their full 
value (Eq. 15 with A, = 1) so that the difference in 
the Lennard-Jones contribution to the solvation of 
Br- versus C1- is being evaluated in the presence of 
the normal system. The numerical results of the 
RISM-HNC calculation are given in Table I; the 
Lennard-Jones parameters E and u for the two ions 
are listed in the footnote to  the table. 

To obtain insight into the origin of the free energy 
difference between the two ions, we consider the sol- 
vation of two uncharged atoms (Cl', Br') with the 
same set of Lennard-Jones parameters. The change 
in the potential function, AV, is identical to that 
given by Eq. 17, but the free energy difference, 
which involves the ensemble average, (AV),., is dif- 
ferent. From Table I, it can be seen that the free 
energy change equals 1.12 kcal/mol, a value signif- 
icantly smaller than that for the charged system, 
which is 4.65 kcal/mol. The difference arises from 
the probability factor P(rN,A), which appears in 
(AV),.; see Eq. 4. In the first case, the potential 
V(rN,A) in the exponential of P(rN,A) corresponds to 
that for a negative ion, and in the second case the 
potential is that for a neutral (Lennard-Jones) 
sphere. For the present case, we can 

where psolv is the solvent number density and 
gsolu,v(rN, Am)x,=l represents the solute-solvent ra- 
dial distribution functions; the sum over v goes over 
the hydrogen and oxygen atoms in the solvent mol- 
ecule. The radial distribution function, which is sim- 
ply related to the probability distribution P(rN,A)," 
depends on the integration parameter h,  and on A,, 
the parameter determining the other contributions 
to the potential, i.e., the charged and neutral 
spheres correspond to different A, and the solute- 
solvent radial distributions functions are different. 
Figure 1 shows the solute-solvent radial distribution 

functions for C1- and for the neutral sphere with the 
same van der Waals parameters ((21'). The functions 
are more sharply peaked and closer to the solute for 
the charged sphere than the neutral sphere. This 
leads to the larger Lennard-Jones solvation free en- 
ergy for C1- than Cl0; the interaction between the 
anion and the water hydrogens is particularly im- 
portant. 

The above results show how the path-dependent 
decomposition can be used to  demonstrate the role of 
the system properties in the free energy change. In 
the example, we considered the effect of the particle 
charge on the Lennard-Jones contribution to the sol- 
vation free energy. An exact decomposition was 
made for both the mononegative ion and the neutral 
sphere, with fixed values of A, in Eq. 15. 

Use of the Simple Example to Demonstrate 
the Essential Path Dependence of 
the Components 

To demonstrate explicitly the path dependence of 
the free energy decomposition, we consider a ther- 
modynamic cycle (Scheme I) of the type that is often 
used in such  calculation^.^^^^ Values for the free en- 
ergy changes corresponding to the four arrows in 
Scheme I were calculated with the RISM-HNC 
model and are listed in the scheme, as well as in 
Table I; all values are in kcal/mol. Scheme I involves 
the four species we have considered already. Two of 
them (C1- and Br-) 

AAa = 4.65 

C1- I Br- I AA,, = 94.09 

Cl0 -@ Bro 

A A ~  = 1.12 

have a charge of minus one and the other two ((31' 
and Br') are uncharged spheres with the same Len- 
nardJones parameters. The transformations de- 
scribed above correspond to the horizontal arrows in 
Scheme I; they yielded the difference in the solva- 
tion free energy for the negative ions, AAa, and for 
the neutral spheres, AAL, due the same change in 
the Lennard-Jones potential parameters. The verti- 
cal arrows, which correspond to discharging the C1- 
and Br- ions, are discussed in relation to double free 
energy differences (see below). 

By use of Scheme I, we can compare the decompo- 

• Different energy terms can be transformed independent 
of each other - smoother path/no added complexities? 
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Intermediate states

PROTEINS: Structure, Function, and Genetics 20:25-33 (1994) 

Free Energy Simulations: The Meaning of the 
Individual Contributions From a Component Analysis 
Stefan Boresch, Georgios Archontis, and Martin Karplus 
Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138 

ABSTRACT A theoretical analysis is made 
of the decomposition into contributions from 
individual interactions of the free energy cal- 
culated by thermodynamic integration. It is 
demonstrated that such a decomposition, often 
referred to as “component analysis,” is mean- 
ingful, even though it is a function of the inte- 
gration path. Moreover, it is shown that the 
path dependence can be used to determine the 
relation of the contribution of a given interac- 
tion to the state of the system. 

To illustrate these conclusions, a simple 
transformation (C1- to Br- in aqueous solution) 
is analyzed by use of the Reference Interaction 
Site Model-Hypernetted Chain Closure integral 
equation approach; it avoids the calculational 
difficulties of macromolecular simulation while 
retaining their conceptual complexity. The dif- 
ference in the solvation free energy between 
chloride and bromide is calculated, and the 
contributions of the Lennard-Jones and elec- 
trostatic terms in the potential function are an- 
alyzed by the use of suitably chosen integration 
paths. The model is also used to examine the 
path dependence of individual contributions to 
the double free energy differences (AAG or  
AAA) that are often employed in free energy 
simulations of biological systems. The alchemi- 
cal path, as contrasted with the experimental 
path, is shown to be appropriate for interpret- 
ing the effects of mutations on ligand binding 
and protein stability. The formulation is used to 
obtain a better understanding of the success of 
the Poisson-Boltzmann continuum approach 
for determining the solvation properties of po- 
lar and ionic systems. o 1994 Wiley-Liss, Inc. 

Key words: hemodynamic integration, RISM 
theory, alchemical path 

INTRODUCTION 
Molecular dynamics and Monte Carlo simula- 

tions, as well as Poisson-Boltzmann calculations and 
integral equation methods, are widely used for eval- 
uating free energy differences in solution and in 
macromolecules.’-3 Applications to  biomolecules 
have attracted considerable attention, in particular 
because they provide information concerning contri- 
butions of different system components to  the over- 

0 1994 WILEY-LISS, INC. 

all free energy change. Examples include the effect 
of mutations on protein ~ t a b i l i t y , ~ - ~  on ligand bind- 
ing,738 and on co~perativity.~ Insights obtained from 
such simulations concerning the role of different 
residues and the effect of solvent supplement inter- 
pretations are based on structural and thermody- 
namic data. A recent simulation of substrate bind- 
ing by Tyrosyl-t RNA synthetase,’ for example, has 
provided a deeper understanding of the widely used 
hydrogen-bond inventory model.lo~l’ 

In spite of their demonstrated utility and agree- 
ment with experiment, the validity of results ob- 
tained from free energy simulations of biomolecules 
has been questioned Both calcula- 
tional and theoretical aspects of the simulations 
have been criticized. The calculational concerns fo- 
cus primarily on the possibility of statistical errors 
in the simulations due to  the difficulty of adequate 
sampling. Although the convergence of the calcu- 
lated free energy change needs to be assessed in 
each application, many published simulations have 
been done carefully and have obtained significant 
res~l t s .~ , ’ , ’~  One area in which detailed verification 
of the statistical error limits has been possible is in 
the simulation of the effect of sidechain mutations 
on the stability of small peptides.16 The present ar- 
ticle addresses a theoretical aspect of the published 
criticisms. Although the overall free energy differ- 
ence between two end states is independent of the 
path connecting them, the individual contributions 
can depend on the path.8,12,13,17,18 It has been 
stated? “In a number of studies, a breakdown of a 
free energy change or difference into components 
consisting of contributions of groups of atoms, e.g., 
amino acid residues, or of types of interaction, e.g., 
van der Waals, electrostatic, bonding interaction, 
has been presented. Yet such a decomposition can- 
not be meaningfully defined. . . .” We disagree with 
this statement. By formulating the thermodynamic 
integration method so as to make clear the depen- 
dence on the system parameters, we show how the 
decomposition can be used to obtain meaningful in- 

Received February 22, 1994; revision accepted May 5, 1994. 
Address reprint requests to Martin Karplus, Department of 

Chemistry, 12 Oxford St., Harvard University, Cambridge, 
MA 02138. 

PROTEINS: Structure, Function, and Genetics 20:25-33 (1994) 

• Solvation free energy 
difference between Cl- and Br-

• Different paths yield different 
LJ free energy changes!      

Friday, March 18, 2011
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Intermediate states - Importance of the scaling 
function

• Compare different scaling 
schemes to eliminate endpoint 
singularity - Occurs when a 
scaled and an unscaled LJ 
particle interact

• Linear scheme performs 
poorly, non-linear schemes 
eliminate singularity. 

Nonlinear scaling schemes for Lennard-Jones interactions
in free energy calculations

Thomas Steinbrechera!

Department of Molecular Biology, The Scripps Research Institute, La Jolla, San Diego,
California 92037, USA and Center for Theoretical Biological Physics, University of California,
La Jolla, California 92093-0374, USA

David L. Mobley
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco,
California 94143, USA

David A. Case
Department of Molecular Biology, The Scripps Research Institute, La Jolla, San Diego,
California 92037, USA and Center for Theoretical Biological Physics, University of California,
La Jolla, California 92093-0374, USA

!Received 25 June 2007; accepted 21 September 2007; published online 7 December 2007"

Alchemical free energy calculations provide a means for the accurate determination of free energies
from atomistic simulations and are increasingly used as a tool for computational studies of
protein-ligand interactions. Much attention has been placed on efficient ways to deal with the
“endpoint singularity” effect that can cause simulation instabilities when changing the number of
atoms. In this study we compare the performance of linear and several nonlinear transformation
methods, among them separation shifted “soft core” scaling, for a popular test system, the hydration
free energy of an amino acid side chain. All the nonlinear methods yield similar results if extensive
sampling is performed, but soft core scaling provides smooth ! curves that are best suited for
commonly used numerical integration schemes. Additionally, results from a more flexible solute,
hexane, will also be discussed. © 2007 American Institute of Physics. #DOI: 10.1063/1.2799191$

I. INTRODUCTION

Molecular mechanics force fields can provide a robust
and computationally efficient model for chemical systems at
atomic resolution.1,2 Their application in molecular dynamics
simulations provides a tool to generate Boltzmann-weighted
conformational ensembles around a given starting structure
that are suitable for analysis using the methods of statistical
thermodynamics. As with any scientific model, a path to con-
nect simulation results to experimental data is crucial for
molecular dynamics !MD" to have any predictive power.
Free energy methods provide a rigorous way to obtain im-
portant and readily measurable thermodynamic observables
from MD simulations.3–6 An important class of calculations
is known as “computational alchemy” because it involves
simulating a transformation of one chemical system to a dif-
ferent one along a nonphysical path to compute the free en-
ergy change associated with the transformation. There are
two methods that are mainly used to simulate such transfor-
mations, the free energy perturbation7 and thermodynamic
integration8 methods. Both describe the transition between
systems by introducing an additional nonspatial coordinate,
usually termed ! and ranging from zero to one, that couples
the “start-state” and “end-state” potential functions of the
unperturbed systems, V0 and V1, into a combined, mixed
potential function V!!".

Starting from the statistical thermodynamics expression

for the free energy of a system, the free energy difference
between two !-coupled states according to the thermody-
namic integration formalism can be easily derived as

"GTI
0 = %

0

1 & "V!!"
"!

'
!

d! , !1"

where the angular brackets denote an ensemble average, us-
ing V!!" as the potential. The integration cannot typically be
performed analytically, and in practice a numerical integra-
tion scheme is used, based on simulations at a number of
fixed ! values.

There are many possible ways to couple the two end-
point potential functions into the mixed potential V!!" in Eq.
!1" including

V!!" = f!!"V1 + #1 − f!!"$V0. !2"

In fact, any function f!!" that continuously changes from
zero to one could be used here. While the resulting free
energy change is a state function and thus independent of the
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I. INTRODUCTION

Molecular mechanics force fields can provide a robust
and computationally efficient model for chemical systems at
atomic resolution.1,2 Their application in molecular dynamics
simulations provides a tool to generate Boltzmann-weighted
conformational ensembles around a given starting structure
that are suitable for analysis using the methods of statistical
thermodynamics. As with any scientific model, a path to con-
nect simulation results to experimental data is crucial for
molecular dynamics !MD" to have any predictive power.
Free energy methods provide a rigorous way to obtain im-
portant and readily measurable thermodynamic observables
from MD simulations.3–6 An important class of calculations
is known as “computational alchemy” because it involves
simulating a transformation of one chemical system to a dif-
ferent one along a nonphysical path to compute the free en-
ergy change associated with the transformation. There are
two methods that are mainly used to simulate such transfor-
mations, the free energy perturbation7 and thermodynamic
integration8 methods. Both describe the transition between
systems by introducing an additional nonspatial coordinate,
usually termed ! and ranging from zero to one, that couples
the “start-state” and “end-state” potential functions of the
unperturbed systems, V0 and V1, into a combined, mixed
potential function V!!".

Starting from the statistical thermodynamics expression

for the free energy of a system, the free energy difference
between two !-coupled states according to the thermody-
namic integration formalism can be easily derived as
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It was used with k set to a value of 6 in this study. Here, f!!"
becomes flat at both !=0 and !=1, allowing appearing and
disappearing atoms in the same simulation, which was not
feasible in previous versions of AMBER. Finally, a linear mix-
ing soft core potential as employed in Ref. 22 was imple-
mented into the AMBER program in which nonbonded vdW
interactions are represented by a !-dependent modified LJ
equation

V“softcore”vdW = 4"!1 − !"$ 1
%#! + !r/$"6&2 −

1
#! + !r/$"6' ,

!8"

in which " and $ are the common LJ parameters, r is the
atomic distance, and # is an adjustable constant set to 0.5 in

this study. It should be noted that when !=0, Eq. !8" is
equivalent to the normal formulation of the LJ equation,
while for ! values close to 1 it represents a smooth interac-
tion function that allows other atoms to be situated on top of
a vanishing atom, with a finite energy penalty that goes to
zero at !=1. These five tested approaches will be referred to
as LM, K4, K6, CO, and SC, respectively.

Atoms “missing” in one of the end states of a thermody-
namic integration !TI" calculation are difficult to describe in
a computational implementation. Therefore, vanishing atoms
are commonly implemented as “dummy” atoms that share all
properties of their corresponding existing atoms but have
zero vdW parameters. While atoms connected to dummy at-
oms will be influenced by their unchanged mass, this contri-
bution does not change the average conformational distribu-
tion or the resulting free energies. !If one neglects the
introduction of additional noninteracting degrees of freedom
with the dummy atoms that manifest, e.g., in their ideal gas
contribution to the pressure." The first four scaling schemes
tested necessitated the use of this dummy atom formalism,
while the implementation of soft core potentials into the

FIG. 2. Free energy curves for the hy-
dration free energy of toluene deter-
mined by five different !-scaling
schemes. All four nonlinear scaling
schemes yield smooth and finite
curves; in contrast the endpoint catas-
trophe as ! approaches 1 can clearly
be seen in the LM case. The plotted
error bars are enlarged 30-fold, as they
would otherwise be hard to distinguish
from the actual curve. electrostatic en-
ergy !EEL" gives the results for the
change of atomic partial charges using
three different charge sets !from top to
bottom: ff94, ff03, and RESP charges".
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Abstract. Accurate calculation of the free energy of defects is important in understanding 
many mechmical processes and properties in materials. Here a method is proposed for directly 
calculating the free energy difference between bulk crystal and defect multi-component 310miC 
systems. Based on A-integration techniques it involves defining a nonphysical but reversible 
thermodynamic pathway that connecB the bulk reference crystal and defect structures. This 
pathway can be thought of as an alchemic route to the free energy as selected atoms are allowed 
to transform their atomic character. The method is demomated by using it to calculate the 
free energy of NisAl antiphase boundaries where atomic interactions are modeled through a 
FinnisSinclair type potential. 

1. Introduction 

Knowledge of the free energy in bulk crystal systems is important in locating thermodynamic 
phase transitions accurately. For defect systems, the free energy of interfaces such as 
antiphase boundaries (APB), superlattice intrinsic stacking faults (SISF) and complex stacking 
faults (CSF) govern the dissociation and movement of dislocations and thus control the 
ductility of a material. Nucleation rates are also determined by the value of interfacial free 
energy between competing phases. 

Given an atomic Hamiltonian, accurately calculating the free energy of materials is 
a hard problem. Except for a few model systems such as a collection of independent 
harmonic oscillators or king models for which closed analytic forms of the free energy are 
available, this typically is accomplished through Monte Carlo (MC) or molecular dynamic 
(MD) simulations. One method of calculating the free energy of a system, that has a long 
and rich history, is through A-integration (see Kirkwood 1935, Broughton and G i h e r  1983, 
Frenkel and Ladd 1984, Frenkel 1986). Here, a fictitious Hamiltonian R(A) is set up 
such that %(I)  is the Hamiltonian of the desired atomistic system, whereas R(0) describes 
a reference Hamiltonian of independent harmonic oscillators. By increasing the control 
parameter, A, from 0 to 1 the reference harmonic interactions are gradually switching off, 
whereas the atomic interactions are gradually introduced. For A = 0 the dynamics are 
purely harmonic for which the free energy has closed analytic form. The free energy of the 
desired system (with reference to the harmonic limit) can then be determined in principle 
from integration over A of the ensemble average of a%/ah. 
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Knowledge of the free energy in bulk crystal systems is important in locating thermodynamic 
phase transitions accurately. For defect systems, the free energy of interfaces such as 
antiphase boundaries (APB), superlattice intrinsic stacking faults (SISF) and complex stacking 
faults (CSF) govern the dissociation and movement of dislocations and thus control the 
ductility of a material. Nucleation rates are also determined by the value of interfacial free 
energy between competing phases. 

Given an atomic Hamiltonian, accurately calculating the free energy of materials is 
a hard problem. Except for a few model systems such as a collection of independent 
harmonic oscillators or king models for which closed analytic forms of the free energy are 
available, this typically is accomplished through Monte Carlo (MC) or molecular dynamic 
(MD) simulations. One method of calculating the free energy of a system, that has a long 
and rich history, is through A-integration (see Kirkwood 1935, Broughton and G i h e r  1983, 
Frenkel and Ladd 1984, Frenkel 1986). Here, a fictitious Hamiltonian R(A) is set up 
such that %(I)  is the Hamiltonian of the desired atomistic system, whereas R(0) describes 
a reference Hamiltonian of independent harmonic oscillators. By increasing the control 
parameter, A, from 0 to 1 the reference harmonic interactions are gradually switching off, 
whereas the atomic interactions are gradually introduced. For A = 0 the dynamics are 
purely harmonic for which the free energy has closed analytic form. The free energy of the 
desired system (with reference to the harmonic limit) can then be determined in principle 
from integration over A of the ensemble average of a%/ah. 
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Abstract: The ability to reliably compute accurate protein-ligand binding affinities is crucial to understanding
protein-ligand recognition and to structure-based drug design. A ligand’s binding affinity is specified by its
absolute binding free energy, ∆Gbind, the free energy difference between the bound and unbound states. To
compute accurate free energy differences by free energy perturbation (FEP), “alchemical” rather than physical
processes are usually simulated by molecular dynamics simulations so as to minimize the perturbation to the
system. Here, we report a novel “alchemistic” application of the FEP methodology involving a large
perturbation. By mutating a ligand with 11 non-hydrogen atoms into six water molecules in the binding site
of a protein, we computed a ∆Gbind within 3 kJ/mol of the experimental value. This is the first successful
example of the computation of ∆Gbind for a protein:ligand pair with full treatment of the solvent degrees of
freedom.

Introduction

Fundamental to understanding how proteins recognize their
ligands and to the rational design of proteins and drugs is the
ability to compute protein-ligand binding affinities. While a
number of approaches are being pursued toward computing
ligand-protein binding affinities with use of empirical models,1-4
and models that treat parts of the system as a continuum,5,6
molecular dynamics simulations in full atomic detail employed
with the FEP methodology offer the prospect of a generally
applicable rigorous “first principles” solution to the “binding
problem”. In applications to protein-ligand binding, the FEP
methodology has usually been used to compute ∆∆Gs, i.e.,
differences between the binding free energies of two similar
ligands to one protein target, or of one ligand to a protein and
a mutant. The “alchemical” mutations involved in such
simulations are often restricted to mutation of a single non-
hydrogen atom although mutations of several non-hydrogen
atoms have been performed.7,8 In the few previous examples
of computing absolute ligand binding free energies, ∆Gbind, to
proteins, either no solvent was present in the binding site9 or
full relaxation of the solvent in the binding site at all stages of

the simulation was not permitted,10-13 possibly due to limitations
of computational resources. Although qualitative agreement
with experiment could be obtained in some of these calculations
(with differences between calculated and experimental values
of∼12 kJ/mol), a procedure with full treatment of the important
degrees of freedom of the solvent is necessary to reliably obtain
accurate results (within 4 kJ/mol of experimental values). To
develop and demonstrate such a procedure, we chose the binding
of the substrate, camphor, to cytochrome P450cam from
Pseudonomas putida as an especially well-suited model system
because camphor binds in a buried active site isolated from bulk
solvent. This facilitates the identification of those solvent
molecules that are expelled from the active site into bulk solvent
upon ligand binding, and thus contribute to the thermodynamics
of the binding process. In addition, cytochrome P450cam has
long served as a model for understanding the structure-function
relationships of the cytochrome P450 superfamily of enzymes
and has thus been very well-characterized in biophysical
experiments.14 Furthermore, cytochrome P450cam is, itself, an
important biotechnological target for bioremediation tasks,15 and
the ability to compute binding constants for ligands to it is of
clear value in design projects.
The active site of cytochrome P450cam as observed crystal-

lographically is shown with camphor bound16 in Figure 1a, and
in the unbound state17 in Figure 1b. In the absence of camphor,
one ordered water molecule was observed as a ligand to the
heme iron and a second region of electron density in the active
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Abstract. Accurate calculation of the free energy of defects is important in understanding 
many mechmical processes and properties in materials. Here a method is proposed for directly 
calculating the free energy difference between bulk crystal and defect multi-component 310miC 
systems. Based on A-integration techniques it involves defining a nonphysical but reversible 
thermodynamic pathway that connecB the bulk reference crystal and defect structures. This 
pathway can be thought of as an alchemic route to the free energy as selected atoms are allowed 
to transform their atomic character. The method is demomated by using it to calculate the 
free energy of NisAl antiphase boundaries where atomic interactions are modeled through a 
FinnisSinclair type potential. 

1. Introduction 

Knowledge of the free energy in bulk crystal systems is important in locating thermodynamic 
phase transitions accurately. For defect systems, the free energy of interfaces such as 
antiphase boundaries (APB), superlattice intrinsic stacking faults (SISF) and complex stacking 
faults (CSF) govern the dissociation and movement of dislocations and thus control the 
ductility of a material. Nucleation rates are also determined by the value of interfacial free 
energy between competing phases. 

Given an atomic Hamiltonian, accurately calculating the free energy of materials is 
a hard problem. Except for a few model systems such as a collection of independent 
harmonic oscillators or king models for which closed analytic forms of the free energy are 
available, this typically is accomplished through Monte Carlo (MC) or molecular dynamic 
(MD) simulations. One method of calculating the free energy of a system, that has a long 
and rich history, is through A-integration (see Kirkwood 1935, Broughton and G i h e r  1983, 
Frenkel and Ladd 1984, Frenkel 1986). Here, a fictitious Hamiltonian R(A) is set up 
such that %(I)  is the Hamiltonian of the desired atomistic system, whereas R(0) describes 
a reference Hamiltonian of independent harmonic oscillators. By increasing the control 
parameter, A, from 0 to 1 the reference harmonic interactions are gradually switching off, 
whereas the atomic interactions are gradually introduced. For A = 0 the dynamics are 
purely harmonic for which the free energy has closed analytic form. The free energy of the 
desired system (with reference to the harmonic limit) can then be determined in principle 
from integration over A of the ensemble average of a%/ah. 
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Abstract: The ability to reliably compute accurate protein-ligand binding affinities is crucial to understanding
protein-ligand recognition and to structure-based drug design. A ligand’s binding affinity is specified by its
absolute binding free energy, ∆Gbind, the free energy difference between the bound and unbound states. To
compute accurate free energy differences by free energy perturbation (FEP), “alchemical” rather than physical
processes are usually simulated by molecular dynamics simulations so as to minimize the perturbation to the
system. Here, we report a novel “alchemistic” application of the FEP methodology involving a large
perturbation. By mutating a ligand with 11 non-hydrogen atoms into six water molecules in the binding site
of a protein, we computed a ∆Gbind within 3 kJ/mol of the experimental value. This is the first successful
example of the computation of ∆Gbind for a protein:ligand pair with full treatment of the solvent degrees of
freedom.

Introduction

Fundamental to understanding how proteins recognize their
ligands and to the rational design of proteins and drugs is the
ability to compute protein-ligand binding affinities. While a
number of approaches are being pursued toward computing
ligand-protein binding affinities with use of empirical models,1-4
and models that treat parts of the system as a continuum,5,6
molecular dynamics simulations in full atomic detail employed
with the FEP methodology offer the prospect of a generally
applicable rigorous “first principles” solution to the “binding
problem”. In applications to protein-ligand binding, the FEP
methodology has usually been used to compute ∆∆Gs, i.e.,
differences between the binding free energies of two similar
ligands to one protein target, or of one ligand to a protein and
a mutant. The “alchemical” mutations involved in such
simulations are often restricted to mutation of a single non-
hydrogen atom although mutations of several non-hydrogen
atoms have been performed.7,8 In the few previous examples
of computing absolute ligand binding free energies, ∆Gbind, to
proteins, either no solvent was present in the binding site9 or
full relaxation of the solvent in the binding site at all stages of

the simulation was not permitted,10-13 possibly due to limitations
of computational resources. Although qualitative agreement
with experiment could be obtained in some of these calculations
(with differences between calculated and experimental values
of∼12 kJ/mol), a procedure with full treatment of the important
degrees of freedom of the solvent is necessary to reliably obtain
accurate results (within 4 kJ/mol of experimental values). To
develop and demonstrate such a procedure, we chose the binding
of the substrate, camphor, to cytochrome P450cam from
Pseudonomas putida as an especially well-suited model system
because camphor binds in a buried active site isolated from bulk
solvent. This facilitates the identification of those solvent
molecules that are expelled from the active site into bulk solvent
upon ligand binding, and thus contribute to the thermodynamics
of the binding process. In addition, cytochrome P450cam has
long served as a model for understanding the structure-function
relationships of the cytochrome P450 superfamily of enzymes
and has thus been very well-characterized in biophysical
experiments.14 Furthermore, cytochrome P450cam is, itself, an
important biotechnological target for bioremediation tasks,15 and
the ability to compute binding constants for ligands to it is of
clear value in design projects.
The active site of cytochrome P450cam as observed crystal-

lographically is shown with camphor bound16 in Figure 1a, and
in the unbound state17 in Figure 1b. In the absence of camphor,
one ordered water molecule was observed as a ligand to the
heme iron and a second region of electron density in the active
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Free energy calculation of extended defects through simulated 
alchemy: application to Ni3AI antiphase boundaries 
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Abstract. Accurate calculation of the free energy of defects is important in understanding 
many mechmical processes and properties in materials. Here a method is proposed for directly 
calculating the free energy difference between bulk crystal and defect multi-component 310miC 
systems. Based on A-integration techniques it involves defining a nonphysical but reversible 
thermodynamic pathway that connecB the bulk reference crystal and defect structures. This 
pathway can be thought of as an alchemic route to the free energy as selected atoms are allowed 
to transform their atomic character. The method is demomated by using it to calculate the 
free energy of NisAl antiphase boundaries where atomic interactions are modeled through a 
FinnisSinclair type potential. 

1. Introduction 

Knowledge of the free energy in bulk crystal systems is important in locating thermodynamic 
phase transitions accurately. For defect systems, the free energy of interfaces such as 
antiphase boundaries (APB), superlattice intrinsic stacking faults (SISF) and complex stacking 
faults (CSF) govern the dissociation and movement of dislocations and thus control the 
ductility of a material. Nucleation rates are also determined by the value of interfacial free 
energy between competing phases. 

Given an atomic Hamiltonian, accurately calculating the free energy of materials is 
a hard problem. Except for a few model systems such as a collection of independent 
harmonic oscillators or king models for which closed analytic forms of the free energy are 
available, this typically is accomplished through Monte Carlo (MC) or molecular dynamic 
(MD) simulations. One method of calculating the free energy of a system, that has a long 
and rich history, is through A-integration (see Kirkwood 1935, Broughton and G i h e r  1983, 
Frenkel and Ladd 1984, Frenkel 1986). Here, a fictitious Hamiltonian R(A) is set up 
such that %(I)  is the Hamiltonian of the desired atomistic system, whereas R(0) describes 
a reference Hamiltonian of independent harmonic oscillators. By increasing the control 
parameter, A, from 0 to 1 the reference harmonic interactions are gradually switching off, 
whereas the atomic interactions are gradually introduced. For A = 0 the dynamics are 
purely harmonic for which the free energy has closed analytic form. The free energy of the 
desired system (with reference to the harmonic limit) can then be determined in principle 
from integration over A of the ensemble average of a%/ah. 
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Computational Alchemy To Calculate Absolute Protein-Ligand
Binding Free Energy

Volkhard Helms† and Rebecca C. Wade*

Contribution from the European Molecular Biology Laboratory, 69012 Heidelberg, Germany

ReceiVed NoVember 10, 1997

Abstract: The ability to reliably compute accurate protein-ligand binding affinities is crucial to understanding
protein-ligand recognition and to structure-based drug design. A ligand’s binding affinity is specified by its
absolute binding free energy, ∆Gbind, the free energy difference between the bound and unbound states. To
compute accurate free energy differences by free energy perturbation (FEP), “alchemical” rather than physical
processes are usually simulated by molecular dynamics simulations so as to minimize the perturbation to the
system. Here, we report a novel “alchemistic” application of the FEP methodology involving a large
perturbation. By mutating a ligand with 11 non-hydrogen atoms into six water molecules in the binding site
of a protein, we computed a ∆Gbind within 3 kJ/mol of the experimental value. This is the first successful
example of the computation of ∆Gbind for a protein:ligand pair with full treatment of the solvent degrees of
freedom.

Introduction

Fundamental to understanding how proteins recognize their
ligands and to the rational design of proteins and drugs is the
ability to compute protein-ligand binding affinities. While a
number of approaches are being pursued toward computing
ligand-protein binding affinities with use of empirical models,1-4
and models that treat parts of the system as a continuum,5,6
molecular dynamics simulations in full atomic detail employed
with the FEP methodology offer the prospect of a generally
applicable rigorous “first principles” solution to the “binding
problem”. In applications to protein-ligand binding, the FEP
methodology has usually been used to compute ∆∆Gs, i.e.,
differences between the binding free energies of two similar
ligands to one protein target, or of one ligand to a protein and
a mutant. The “alchemical” mutations involved in such
simulations are often restricted to mutation of a single non-
hydrogen atom although mutations of several non-hydrogen
atoms have been performed.7,8 In the few previous examples
of computing absolute ligand binding free energies, ∆Gbind, to
proteins, either no solvent was present in the binding site9 or
full relaxation of the solvent in the binding site at all stages of

the simulation was not permitted,10-13 possibly due to limitations
of computational resources. Although qualitative agreement
with experiment could be obtained in some of these calculations
(with differences between calculated and experimental values
of∼12 kJ/mol), a procedure with full treatment of the important
degrees of freedom of the solvent is necessary to reliably obtain
accurate results (within 4 kJ/mol of experimental values). To
develop and demonstrate such a procedure, we chose the binding
of the substrate, camphor, to cytochrome P450cam from
Pseudonomas putida as an especially well-suited model system
because camphor binds in a buried active site isolated from bulk
solvent. This facilitates the identification of those solvent
molecules that are expelled from the active site into bulk solvent
upon ligand binding, and thus contribute to the thermodynamics
of the binding process. In addition, cytochrome P450cam has
long served as a model for understanding the structure-function
relationships of the cytochrome P450 superfamily of enzymes
and has thus been very well-characterized in biophysical
experiments.14 Furthermore, cytochrome P450cam is, itself, an
important biotechnological target for bioremediation tasks,15 and
the ability to compute binding constants for ligands to it is of
clear value in design projects.
The active site of cytochrome P450cam as observed crystal-

lographically is shown with camphor bound16 in Figure 1a, and
in the unbound state17 in Figure 1b. In the absence of camphor,
one ordered water molecule was observed as a ligand to the
heme iron and a second region of electron density in the active

* To whom correspondence should be addressed at the European
Molecular Biology Laboratory, Postfach 10.2209, 69012 Heidelberg,
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Isomolar semigrand ensemble molecular dynamics: Development
and application to liquid-liquid equilibria
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An extended system molecular dynamics method for the isomolar semigrand ensemble !fixed
number of particles, pressure, temperature, and fugacity fraction" is developed and applied to the
calculation of liquid-liquid equilibria !LLE" for two Lennard-Jones mixtures. The method utilizes an
extended system variable to dynamically control the fugacity fraction # of the mixture by gradually
transforming the identity of particles in the system. Two approaches are used to compute
coexistence points. The first approach uses multiple-histogram reweighting techniques to determine
the coexistence # and compositions of each phase at temperatures near the upper critical solution
temperature. The second approach, useful for cases in which there is no critical solution
temperature, is based on principles of small system thermodynamics. In this case a coexistence point
is found by running N-P-T-# simulations at a common temperature and pressure and varying the
fugacity fraction to map out the difference in chemical potential between the two species A and B
($A!$B) as a function of composition. Once this curve is known the equal-distance/equal-area
criterion is used to determine the coexistence point. Both approaches give results that are
comparable to those of previous Monte Carlo !MC" simulations. By formulating this approach in a
molecular dynamics framework, it should be easier to compute the LLE of complex molecules
whose intramolecular degrees of freedom are often difficult to properly sample with MC techniques.
© 2005 American Institute of Physics. %DOI: 10.1063/1.1839172&

I. INTRODUCTION

The Gibbs ensemble Monte Carlo1 !GEMC" method re-
mains one of the most popular and effective means for the
simulation of phase equilibrium. The GEMC method has
been successfully applied to the simulation of vapor-liquid
equilibrium of pure fluids and mixtures as well as liquid-
liquid equilibrium !LLE" of a variety of mixtures.2–10 De-
spite these successes, the prediction of phase equilibrium
properties of complex fluids and fluid mixtures by molecular
simulation remains a challenging task; conseqeuently a vari-
ety of new simulation methods have been developed for this
purpose. These include multiple-histogram reweighting,11–13
Gibbs–Duhem integration !GDI",14–21 the N-P-T plus test
particle method,22,23 multiple-box GEMC,24 expanded-
ensemble simulation,25–27 series expansion methods,28–31 re-
action GEMC,32–34 the grand equilibrium method,35 osmotic
molecular dynamics,36,37 temperature-quench molecular
dynamics,38 and pressure-enthalpy driven molecular
dynamics,39,40 to name a few.

A disadvantage of many of the methods listed above is
their reliance upon trial particle insertion/deletion steps. It is
well known that particle insertions and deletions become
problematical when performed in fluids at high densities.
This problem can be overcome, to a certain extent, by per-
forming trial particle transformations instead of insertions
and deletions. Trial particle transformations are required for
Monte Carlo simulations in the isomolar semigrand !or

N-P-T-#) ensemble41 and have also been employed in
GEMC simulations.3 N-P-T-# ensemble simulation is espe-
cially well suited for tracing out coexistence curves of mix-
tures using GDI, but the particle transformation steps still
become problematical when the mixture components differ
significantly in size and molecular structure.

In this work we extend the grand canonical molecular
dynamics !MD" method42,43 to the N-P-T-# ensemble. In
this method the transformation of molecules occurs gradually
and dynamically. An extended system variable ' is added to
standard N-P-T equations of motion. The purpose of this
variable is to dynamically transform a molecule between two
identities, A and B . Unlike conventional Monte Carlo !MC"
transformation steps, the dynamical transformation is con-
tinuous and automatically adjusts to the difference between
the target and instantaneous fugacity fraction of the system.
In addition, the dynamic nature of the simulation makes it
easy to apply to the simulation of complex molecules with
intramolecular degrees of freedom. The potential of ' is a
function of the specified chemical potential difference be-
tween components in the mixture (($"$B!$A). The
equations of motion for the isomolar semigrand molecular
dynamics !iSGMD" simulation of a system of monatomic
particles is presented in Sec. II A. In Sec. II B we present the
algorithm for iSGMD simulation, and in Sec. II C we de-
scribe how to determine phase coexistence with iSGMD. We
use two binary mixtures of Lennard-Jones atoms as test cases
for this method.a"Electronic mail: ed@nd.edu
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use two binary mixtures of Lennard-Jones atoms as test cases
for this method.a"Electronic mail: ed@nd.edu
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Abstract. Accurate calculation of the free energy of defects is important in understanding 
many mechmical processes and properties in materials. Here a method is proposed for directly 
calculating the free energy difference between bulk crystal and defect multi-component 310miC 
systems. Based on A-integration techniques it involves defining a nonphysical but reversible 
thermodynamic pathway that connecB the bulk reference crystal and defect structures. This 
pathway can be thought of as an alchemic route to the free energy as selected atoms are allowed 
to transform their atomic character. The method is demomated by using it to calculate the 
free energy of NisAl antiphase boundaries where atomic interactions are modeled through a 
FinnisSinclair type potential. 

1. Introduction 

Knowledge of the free energy in bulk crystal systems is important in locating thermodynamic 
phase transitions accurately. For defect systems, the free energy of interfaces such as 
antiphase boundaries (APB), superlattice intrinsic stacking faults (SISF) and complex stacking 
faults (CSF) govern the dissociation and movement of dislocations and thus control the 
ductility of a material. Nucleation rates are also determined by the value of interfacial free 
energy between competing phases. 

Given an atomic Hamiltonian, accurately calculating the free energy of materials is 
a hard problem. Except for a few model systems such as a collection of independent 
harmonic oscillators or king models for which closed analytic forms of the free energy are 
available, this typically is accomplished through Monte Carlo (MC) or molecular dynamic 
(MD) simulations. One method of calculating the free energy of a system, that has a long 
and rich history, is through A-integration (see Kirkwood 1935, Broughton and G i h e r  1983, 
Frenkel and Ladd 1984, Frenkel 1986). Here, a fictitious Hamiltonian R(A) is set up 
such that %(I)  is the Hamiltonian of the desired atomistic system, whereas R(0) describes 
a reference Hamiltonian of independent harmonic oscillators. By increasing the control 
parameter, A, from 0 to 1 the reference harmonic interactions are gradually switching off, 
whereas the atomic interactions are gradually introduced. For A = 0 the dynamics are 
purely harmonic for which the free energy has closed analytic form. The free energy of the 
desired system (with reference to the harmonic limit) can then be determined in principle 
from integration over A of the ensemble average of a%/ah. 
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Computational Alchemy To Calculate Absolute Protein-Ligand
Binding Free Energy
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Abstract: The ability to reliably compute accurate protein-ligand binding affinities is crucial to understanding
protein-ligand recognition and to structure-based drug design. A ligand’s binding affinity is specified by its
absolute binding free energy, ∆Gbind, the free energy difference between the bound and unbound states. To
compute accurate free energy differences by free energy perturbation (FEP), “alchemical” rather than physical
processes are usually simulated by molecular dynamics simulations so as to minimize the perturbation to the
system. Here, we report a novel “alchemistic” application of the FEP methodology involving a large
perturbation. By mutating a ligand with 11 non-hydrogen atoms into six water molecules in the binding site
of a protein, we computed a ∆Gbind within 3 kJ/mol of the experimental value. This is the first successful
example of the computation of ∆Gbind for a protein:ligand pair with full treatment of the solvent degrees of
freedom.

Introduction

Fundamental to understanding how proteins recognize their
ligands and to the rational design of proteins and drugs is the
ability to compute protein-ligand binding affinities. While a
number of approaches are being pursued toward computing
ligand-protein binding affinities with use of empirical models,1-4
and models that treat parts of the system as a continuum,5,6
molecular dynamics simulations in full atomic detail employed
with the FEP methodology offer the prospect of a generally
applicable rigorous “first principles” solution to the “binding
problem”. In applications to protein-ligand binding, the FEP
methodology has usually been used to compute ∆∆Gs, i.e.,
differences between the binding free energies of two similar
ligands to one protein target, or of one ligand to a protein and
a mutant. The “alchemical” mutations involved in such
simulations are often restricted to mutation of a single non-
hydrogen atom although mutations of several non-hydrogen
atoms have been performed.7,8 In the few previous examples
of computing absolute ligand binding free energies, ∆Gbind, to
proteins, either no solvent was present in the binding site9 or
full relaxation of the solvent in the binding site at all stages of

the simulation was not permitted,10-13 possibly due to limitations
of computational resources. Although qualitative agreement
with experiment could be obtained in some of these calculations
(with differences between calculated and experimental values
of∼12 kJ/mol), a procedure with full treatment of the important
degrees of freedom of the solvent is necessary to reliably obtain
accurate results (within 4 kJ/mol of experimental values). To
develop and demonstrate such a procedure, we chose the binding
of the substrate, camphor, to cytochrome P450cam from
Pseudonomas putida as an especially well-suited model system
because camphor binds in a buried active site isolated from bulk
solvent. This facilitates the identification of those solvent
molecules that are expelled from the active site into bulk solvent
upon ligand binding, and thus contribute to the thermodynamics
of the binding process. In addition, cytochrome P450cam has
long served as a model for understanding the structure-function
relationships of the cytochrome P450 superfamily of enzymes
and has thus been very well-characterized in biophysical
experiments.14 Furthermore, cytochrome P450cam is, itself, an
important biotechnological target for bioremediation tasks,15 and
the ability to compute binding constants for ligands to it is of
clear value in design projects.
The active site of cytochrome P450cam as observed crystal-

lographically is shown with camphor bound16 in Figure 1a, and
in the unbound state17 in Figure 1b. In the absence of camphor,
one ordered water molecule was observed as a ligand to the
heme iron and a second region of electron density in the active
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Molecular Biology Laboratory, Postfach 10.2209, 69012 Heidelberg,
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Isomolar semigrand ensemble molecular dynamics: Development
and application to liquid-liquid equilibria
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An extended system molecular dynamics method for the isomolar semigrand ensemble !fixed
number of particles, pressure, temperature, and fugacity fraction" is developed and applied to the
calculation of liquid-liquid equilibria !LLE" for two Lennard-Jones mixtures. The method utilizes an
extended system variable to dynamically control the fugacity fraction # of the mixture by gradually
transforming the identity of particles in the system. Two approaches are used to compute
coexistence points. The first approach uses multiple-histogram reweighting techniques to determine
the coexistence # and compositions of each phase at temperatures near the upper critical solution
temperature. The second approach, useful for cases in which there is no critical solution
temperature, is based on principles of small system thermodynamics. In this case a coexistence point
is found by running N-P-T-# simulations at a common temperature and pressure and varying the
fugacity fraction to map out the difference in chemical potential between the two species A and B
($A!$B) as a function of composition. Once this curve is known the equal-distance/equal-area
criterion is used to determine the coexistence point. Both approaches give results that are
comparable to those of previous Monte Carlo !MC" simulations. By formulating this approach in a
molecular dynamics framework, it should be easier to compute the LLE of complex molecules
whose intramolecular degrees of freedom are often difficult to properly sample with MC techniques.
© 2005 American Institute of Physics. %DOI: 10.1063/1.1839172&

I. INTRODUCTION

The Gibbs ensemble Monte Carlo1 !GEMC" method re-
mains one of the most popular and effective means for the
simulation of phase equilibrium. The GEMC method has
been successfully applied to the simulation of vapor-liquid
equilibrium of pure fluids and mixtures as well as liquid-
liquid equilibrium !LLE" of a variety of mixtures.2–10 De-
spite these successes, the prediction of phase equilibrium
properties of complex fluids and fluid mixtures by molecular
simulation remains a challenging task; conseqeuently a vari-
ety of new simulation methods have been developed for this
purpose. These include multiple-histogram reweighting,11–13
Gibbs–Duhem integration !GDI",14–21 the N-P-T plus test
particle method,22,23 multiple-box GEMC,24 expanded-
ensemble simulation,25–27 series expansion methods,28–31 re-
action GEMC,32–34 the grand equilibrium method,35 osmotic
molecular dynamics,36,37 temperature-quench molecular
dynamics,38 and pressure-enthalpy driven molecular
dynamics,39,40 to name a few.

A disadvantage of many of the methods listed above is
their reliance upon trial particle insertion/deletion steps. It is
well known that particle insertions and deletions become
problematical when performed in fluids at high densities.
This problem can be overcome, to a certain extent, by per-
forming trial particle transformations instead of insertions
and deletions. Trial particle transformations are required for
Monte Carlo simulations in the isomolar semigrand !or

N-P-T-#) ensemble41 and have also been employed in
GEMC simulations.3 N-P-T-# ensemble simulation is espe-
cially well suited for tracing out coexistence curves of mix-
tures using GDI, but the particle transformation steps still
become problematical when the mixture components differ
significantly in size and molecular structure.

In this work we extend the grand canonical molecular
dynamics !MD" method42,43 to the N-P-T-# ensemble. In
this method the transformation of molecules occurs gradually
and dynamically. An extended system variable ' is added to
standard N-P-T equations of motion. The purpose of this
variable is to dynamically transform a molecule between two
identities, A and B . Unlike conventional Monte Carlo !MC"
transformation steps, the dynamical transformation is con-
tinuous and automatically adjusts to the difference between
the target and instantaneous fugacity fraction of the system.
In addition, the dynamic nature of the simulation makes it
easy to apply to the simulation of complex molecules with
intramolecular degrees of freedom. The potential of ' is a
function of the specified chemical potential difference be-
tween components in the mixture (($"$B!$A). The
equations of motion for the isomolar semigrand molecular
dynamics !iSGMD" simulation of a system of monatomic
particles is presented in Sec. II A. In Sec. II B we present the
algorithm for iSGMD simulation, and in Sec. II C we de-
scribe how to determine phase coexistence with iSGMD. We
use two binary mixtures of Lennard-Jones atoms as test cases
for this method.a"Electronic mail: ed@nd.edu
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Some applications of Alchemy

Benchmarking pKa Prediction Methods for Residues in
Proteins

Courtney L. Stanton and Kendall N. Houk*

Department of Chemistry and Biochemistry, UniVersity of California Los Angeles, 607
Charles E. Young DriVe East, Los Angeles, California 90095

Received January 2, 2008

Abstract: Methods for estimation of pKa values of residues in proteins were tested on a set of
benchmark proteins with experimentally known pKa values. The benchmark set includes 80
different residues (20 each for Asp, Glu, Lys, and His), half of which consists of significantly
variant cases (∆pKa g 1 pKa unit from the amino acid in solution). The method introduced by
Case and co-workers [J. Am. Chem. Soc. 2004, 126, 4167-4180], referred to as the molecular
dynamics/generalized-Born/thermodynamic integration (MD/GB/TI) technique, gives a root-mean-
square deviation (rmsd) of 1.4 pKa units on the benchmark set. The use of explicit waters in the
immediate region surrounding the residue was shown to generally reduce high errors for this
method. Longer simulation time was also shown to increase the accuracy of this method. The
empirical approach developed by Jensen and co-workers [Proteins 2005, 61, 704-721],
PROPKA, also gives an overall rmsd of 1.4 pKa units and is more or less accurate based on
residue typesthe method does very well for Lys and Glu, but less so for Asp and His. Likewise,
the absolute deviation is quite similar for the two methodss5.2 for PROPKA and 5.1 for MD/
GB/TI. A comparison of these results with several prediction methods from the literature is
presented. The error in pKa prediction is analyzed as a function of variation of the pKa from that
in water and the solvent accessible surface area (SASA) of the residue. A case study of the
catalytic lysine residue in 2-deoxyribose-5-phosphate aldolase (DERA) is also presented.

I. Introduction
Ionizable residues play a critical role in many of the
important physical and chemical properties of proteins
including folding and stability,1–3 protein-protein interac-
tions,4 substrate binding,5 and enzymatic reaction mecha-
nisms.6 Consequently, accurate pKa prediction methods are
of great interest for understanding pH-dependent properties
of proteins and in the fields of rational drug and protein
design.7

The pKa value of an ionizable group can vary significantly
from its value in solution due to the altered environment of
the interior of the protein. These variant cases are not only
the most difficult to predict, but are often the most interesting.
One example can be found in the enzyme 2-deoxyribose-5-
phosphate aldolase (DERA), which catalyzes the reaction
shown in Figure 1.8,9 The first step of the reaction involves

nucleophilic attack by unprotonated Lys167. Lysine in
solution is protonated at neutral pH, with a pKa of 10.5. This
value is perturbed to around 7 in the active site of the
enzyme, allowing the reaction to occur. The environment of
Lys167 is quite complicated, making it difficult to predict
the pKa.

The free energy profile of proton binding is dominated
by electrostatic contributions from intraprotein interactions
and protein-solvent interactions.10 Explicit treatment of
electrostatic interactions for every pair of charges in a fully
atomistic model of both protein and solvent is computation-
ally very expensive even with a classical force-field and was
indeed completely infeasible before recent advances in
computer power and electrostatic treatments such as the
particle mesh Ewald procedure.11 Therefore, most of the
current developments in pKa prediction have focused on
implicit electrostatic treatments, especially solutions to the* Corresponding author. E-mail: houk@chem.ucla.edu.

J. Chem. Theory Comput. 2008, 4, 951–966 951
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Free energy calculation of extended defects through simulated 
alchemy: application to Ni3AI antiphase boundaries 
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Abstract. Accurate calculation of the free energy of defects is important in understanding 
many mechmical processes and properties in materials. Here a method is proposed for directly 
calculating the free energy difference between bulk crystal and defect multi-component 310miC 
systems. Based on A-integration techniques it involves defining a nonphysical but reversible 
thermodynamic pathway that connecB the bulk reference crystal and defect structures. This 
pathway can be thought of as an alchemic route to the free energy as selected atoms are allowed 
to transform their atomic character. The method is demomated by using it to calculate the 
free energy of NisAl antiphase boundaries where atomic interactions are modeled through a 
FinnisSinclair type potential. 

1. Introduction 

Knowledge of the free energy in bulk crystal systems is important in locating thermodynamic 
phase transitions accurately. For defect systems, the free energy of interfaces such as 
antiphase boundaries (APB), superlattice intrinsic stacking faults (SISF) and complex stacking 
faults (CSF) govern the dissociation and movement of dislocations and thus control the 
ductility of a material. Nucleation rates are also determined by the value of interfacial free 
energy between competing phases. 

Given an atomic Hamiltonian, accurately calculating the free energy of materials is 
a hard problem. Except for a few model systems such as a collection of independent 
harmonic oscillators or king models for which closed analytic forms of the free energy are 
available, this typically is accomplished through Monte Carlo (MC) or molecular dynamic 
(MD) simulations. One method of calculating the free energy of a system, that has a long 
and rich history, is through A-integration (see Kirkwood 1935, Broughton and G i h e r  1983, 
Frenkel and Ladd 1984, Frenkel 1986). Here, a fictitious Hamiltonian R(A) is set up 
such that %(I)  is the Hamiltonian of the desired atomistic system, whereas R(0) describes 
a reference Hamiltonian of independent harmonic oscillators. By increasing the control 
parameter, A, from 0 to 1 the reference harmonic interactions are gradually switching off, 
whereas the atomic interactions are gradually introduced. For A = 0 the dynamics are 
purely harmonic for which the free energy has closed analytic form. The free energy of the 
desired system (with reference to the harmonic limit) can then be determined in principle 
from integration over A of the ensemble average of a%/ah. 

t On-site contractor working through SFA Inc.. Landover, MD, USA, 
t To whom correspondence should be addressed, 
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Binding Free Energy
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Abstract: The ability to reliably compute accurate protein-ligand binding affinities is crucial to understanding
protein-ligand recognition and to structure-based drug design. A ligand’s binding affinity is specified by its
absolute binding free energy, ∆Gbind, the free energy difference between the bound and unbound states. To
compute accurate free energy differences by free energy perturbation (FEP), “alchemical” rather than physical
processes are usually simulated by molecular dynamics simulations so as to minimize the perturbation to the
system. Here, we report a novel “alchemistic” application of the FEP methodology involving a large
perturbation. By mutating a ligand with 11 non-hydrogen atoms into six water molecules in the binding site
of a protein, we computed a ∆Gbind within 3 kJ/mol of the experimental value. This is the first successful
example of the computation of ∆Gbind for a protein:ligand pair with full treatment of the solvent degrees of
freedom.

Introduction

Fundamental to understanding how proteins recognize their
ligands and to the rational design of proteins and drugs is the
ability to compute protein-ligand binding affinities. While a
number of approaches are being pursued toward computing
ligand-protein binding affinities with use of empirical models,1-4
and models that treat parts of the system as a continuum,5,6
molecular dynamics simulations in full atomic detail employed
with the FEP methodology offer the prospect of a generally
applicable rigorous “first principles” solution to the “binding
problem”. In applications to protein-ligand binding, the FEP
methodology has usually been used to compute ∆∆Gs, i.e.,
differences between the binding free energies of two similar
ligands to one protein target, or of one ligand to a protein and
a mutant. The “alchemical” mutations involved in such
simulations are often restricted to mutation of a single non-
hydrogen atom although mutations of several non-hydrogen
atoms have been performed.7,8 In the few previous examples
of computing absolute ligand binding free energies, ∆Gbind, to
proteins, either no solvent was present in the binding site9 or
full relaxation of the solvent in the binding site at all stages of

the simulation was not permitted,10-13 possibly due to limitations
of computational resources. Although qualitative agreement
with experiment could be obtained in some of these calculations
(with differences between calculated and experimental values
of∼12 kJ/mol), a procedure with full treatment of the important
degrees of freedom of the solvent is necessary to reliably obtain
accurate results (within 4 kJ/mol of experimental values). To
develop and demonstrate such a procedure, we chose the binding
of the substrate, camphor, to cytochrome P450cam from
Pseudonomas putida as an especially well-suited model system
because camphor binds in a buried active site isolated from bulk
solvent. This facilitates the identification of those solvent
molecules that are expelled from the active site into bulk solvent
upon ligand binding, and thus contribute to the thermodynamics
of the binding process. In addition, cytochrome P450cam has
long served as a model for understanding the structure-function
relationships of the cytochrome P450 superfamily of enzymes
and has thus been very well-characterized in biophysical
experiments.14 Furthermore, cytochrome P450cam is, itself, an
important biotechnological target for bioremediation tasks,15 and
the ability to compute binding constants for ligands to it is of
clear value in design projects.
The active site of cytochrome P450cam as observed crystal-

lographically is shown with camphor bound16 in Figure 1a, and
in the unbound state17 in Figure 1b. In the absence of camphor,
one ordered water molecule was observed as a ligand to the
heme iron and a second region of electron density in the active
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Isomolar semigrand ensemble molecular dynamics: Development
and application to liquid-liquid equilibria
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An extended system molecular dynamics method for the isomolar semigrand ensemble !fixed
number of particles, pressure, temperature, and fugacity fraction" is developed and applied to the
calculation of liquid-liquid equilibria !LLE" for two Lennard-Jones mixtures. The method utilizes an
extended system variable to dynamically control the fugacity fraction # of the mixture by gradually
transforming the identity of particles in the system. Two approaches are used to compute
coexistence points. The first approach uses multiple-histogram reweighting techniques to determine
the coexistence # and compositions of each phase at temperatures near the upper critical solution
temperature. The second approach, useful for cases in which there is no critical solution
temperature, is based on principles of small system thermodynamics. In this case a coexistence point
is found by running N-P-T-# simulations at a common temperature and pressure and varying the
fugacity fraction to map out the difference in chemical potential between the two species A and B
($A!$B) as a function of composition. Once this curve is known the equal-distance/equal-area
criterion is used to determine the coexistence point. Both approaches give results that are
comparable to those of previous Monte Carlo !MC" simulations. By formulating this approach in a
molecular dynamics framework, it should be easier to compute the LLE of complex molecules
whose intramolecular degrees of freedom are often difficult to properly sample with MC techniques.
© 2005 American Institute of Physics. %DOI: 10.1063/1.1839172&

I. INTRODUCTION

The Gibbs ensemble Monte Carlo1 !GEMC" method re-
mains one of the most popular and effective means for the
simulation of phase equilibrium. The GEMC method has
been successfully applied to the simulation of vapor-liquid
equilibrium of pure fluids and mixtures as well as liquid-
liquid equilibrium !LLE" of a variety of mixtures.2–10 De-
spite these successes, the prediction of phase equilibrium
properties of complex fluids and fluid mixtures by molecular
simulation remains a challenging task; conseqeuently a vari-
ety of new simulation methods have been developed for this
purpose. These include multiple-histogram reweighting,11–13
Gibbs–Duhem integration !GDI",14–21 the N-P-T plus test
particle method,22,23 multiple-box GEMC,24 expanded-
ensemble simulation,25–27 series expansion methods,28–31 re-
action GEMC,32–34 the grand equilibrium method,35 osmotic
molecular dynamics,36,37 temperature-quench molecular
dynamics,38 and pressure-enthalpy driven molecular
dynamics,39,40 to name a few.

A disadvantage of many of the methods listed above is
their reliance upon trial particle insertion/deletion steps. It is
well known that particle insertions and deletions become
problematical when performed in fluids at high densities.
This problem can be overcome, to a certain extent, by per-
forming trial particle transformations instead of insertions
and deletions. Trial particle transformations are required for
Monte Carlo simulations in the isomolar semigrand !or

N-P-T-#) ensemble41 and have also been employed in
GEMC simulations.3 N-P-T-# ensemble simulation is espe-
cially well suited for tracing out coexistence curves of mix-
tures using GDI, but the particle transformation steps still
become problematical when the mixture components differ
significantly in size and molecular structure.

In this work we extend the grand canonical molecular
dynamics !MD" method42,43 to the N-P-T-# ensemble. In
this method the transformation of molecules occurs gradually
and dynamically. An extended system variable ' is added to
standard N-P-T equations of motion. The purpose of this
variable is to dynamically transform a molecule between two
identities, A and B . Unlike conventional Monte Carlo !MC"
transformation steps, the dynamical transformation is con-
tinuous and automatically adjusts to the difference between
the target and instantaneous fugacity fraction of the system.
In addition, the dynamic nature of the simulation makes it
easy to apply to the simulation of complex molecules with
intramolecular degrees of freedom. The potential of ' is a
function of the specified chemical potential difference be-
tween components in the mixture (($"$B!$A). The
equations of motion for the isomolar semigrand molecular
dynamics !iSGMD" simulation of a system of monatomic
particles is presented in Sec. II A. In Sec. II B we present the
algorithm for iSGMD simulation, and in Sec. II C we de-
scribe how to determine phase coexistence with iSGMD. We
use two binary mixtures of Lennard-Jones atoms as test cases
for this method.a"Electronic mail: ed@nd.edu
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Some applications of Alchemy
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Proteins
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Abstract: Methods for estimation of pKa values of residues in proteins were tested on a set of
benchmark proteins with experimentally known pKa values. The benchmark set includes 80
different residues (20 each for Asp, Glu, Lys, and His), half of which consists of significantly
variant cases (∆pKa g 1 pKa unit from the amino acid in solution). The method introduced by
Case and co-workers [J. Am. Chem. Soc. 2004, 126, 4167-4180], referred to as the molecular
dynamics/generalized-Born/thermodynamic integration (MD/GB/TI) technique, gives a root-mean-
square deviation (rmsd) of 1.4 pKa units on the benchmark set. The use of explicit waters in the
immediate region surrounding the residue was shown to generally reduce high errors for this
method. Longer simulation time was also shown to increase the accuracy of this method. The
empirical approach developed by Jensen and co-workers [Proteins 2005, 61, 704-721],
PROPKA, also gives an overall rmsd of 1.4 pKa units and is more or less accurate based on
residue typesthe method does very well for Lys and Glu, but less so for Asp and His. Likewise,
the absolute deviation is quite similar for the two methodss5.2 for PROPKA and 5.1 for MD/
GB/TI. A comparison of these results with several prediction methods from the literature is
presented. The error in pKa prediction is analyzed as a function of variation of the pKa from that
in water and the solvent accessible surface area (SASA) of the residue. A case study of the
catalytic lysine residue in 2-deoxyribose-5-phosphate aldolase (DERA) is also presented.

I. Introduction
Ionizable residues play a critical role in many of the
important physical and chemical properties of proteins
including folding and stability,1–3 protein-protein interac-
tions,4 substrate binding,5 and enzymatic reaction mecha-
nisms.6 Consequently, accurate pKa prediction methods are
of great interest for understanding pH-dependent properties
of proteins and in the fields of rational drug and protein
design.7

The pKa value of an ionizable group can vary significantly
from its value in solution due to the altered environment of
the interior of the protein. These variant cases are not only
the most difficult to predict, but are often the most interesting.
One example can be found in the enzyme 2-deoxyribose-5-
phosphate aldolase (DERA), which catalyzes the reaction
shown in Figure 1.8,9 The first step of the reaction involves

nucleophilic attack by unprotonated Lys167. Lysine in
solution is protonated at neutral pH, with a pKa of 10.5. This
value is perturbed to around 7 in the active site of the
enzyme, allowing the reaction to occur. The environment of
Lys167 is quite complicated, making it difficult to predict
the pKa.

The free energy profile of proton binding is dominated
by electrostatic contributions from intraprotein interactions
and protein-solvent interactions.10 Explicit treatment of
electrostatic interactions for every pair of charges in a fully
atomistic model of both protein and solvent is computation-
ally very expensive even with a classical force-field and was
indeed completely infeasible before recent advances in
computer power and electrostatic treatments such as the
particle mesh Ewald procedure.11 Therefore, most of the
current developments in pKa prediction have focused on
implicit electrostatic treatments, especially solutions to the* Corresponding author. E-mail: houk@chem.ucla.edu.

J. Chem. Theory Comput. 2008, 4, 951–966 951
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Abstract

Free energy calculations on three model processes with theoretically known free energy changes have been performed using short sim-
ulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been
made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often
observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral par-
ticles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps
is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall sim-
ulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete
thermodynamic integration where sufficient sampling needs to be obtained at every k-point, but only if the initial conformations do prop-
erly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolec-
ular free energy calculations.
! 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many important processes at the molecular level are
guided by the associated change in free energy. It is there-
fore often attempted to calculate free energies of, e.g., com-
plex formation (protein-ligand binding), protein folding
and unfolding, aggregation of biomolecules (membrane
formation) and transport through channels or across inter-
faces. The calculation of free energies from molecular
dynamics simulations has received considerable attention
over the last decades [1–5]. Even though the statistical
mechanical basis [6,7] of the methodology used was estab-
lished long before the first computer simulations of molec-
ular systems, the search for alternative and more efficient
approaches is still continuing [8–12]. The continuous in-
crease in computational power has led to increased preci-

sions and accuracies, but the calculation of free energies
and entropies from molecular dynamics simulations re-
mains a costly undertaking [13–15].

From statistical mechanics the Gibbs free energy of a
system is defined as !kBT times the logarithm of the iso-
baric–isothermal partition function,

G ¼ !kBT ln ZNpT ; ð1Þ

with kB the Boltzmann constant, T the temperature, and
the partition function ZNpT being the integral over the
Boltzmann factor of the enthalpy over the complete phase
space accessible to the system. It can easily be derived that
the free energy difference between two states, A and B, can
be written using the perturbation formula due to Zwanzig
[7]

DGBA ¼ GB ! GA ¼ !kBT lnhe!ðHB!HAÞ=kBT iA; ð2Þ

where HA and HB are the total Hamiltonians of the states
A and B and the angular brackets indicate an ensemble
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Free energy calculation of extended defects through simulated 
alchemy: application to Ni3AI antiphase boundaries 
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Abstract. Accurate calculation of the free energy of defects is important in understanding 
many mechmical processes and properties in materials. Here a method is proposed for directly 
calculating the free energy difference between bulk crystal and defect multi-component 310miC 
systems. Based on A-integration techniques it involves defining a nonphysical but reversible 
thermodynamic pathway that connecB the bulk reference crystal and defect structures. This 
pathway can be thought of as an alchemic route to the free energy as selected atoms are allowed 
to transform their atomic character. The method is demomated by using it to calculate the 
free energy of NisAl antiphase boundaries where atomic interactions are modeled through a 
FinnisSinclair type potential. 

1. Introduction 

Knowledge of the free energy in bulk crystal systems is important in locating thermodynamic 
phase transitions accurately. For defect systems, the free energy of interfaces such as 
antiphase boundaries (APB), superlattice intrinsic stacking faults (SISF) and complex stacking 
faults (CSF) govern the dissociation and movement of dislocations and thus control the 
ductility of a material. Nucleation rates are also determined by the value of interfacial free 
energy between competing phases. 

Given an atomic Hamiltonian, accurately calculating the free energy of materials is 
a hard problem. Except for a few model systems such as a collection of independent 
harmonic oscillators or king models for which closed analytic forms of the free energy are 
available, this typically is accomplished through Monte Carlo (MC) or molecular dynamic 
(MD) simulations. One method of calculating the free energy of a system, that has a long 
and rich history, is through A-integration (see Kirkwood 1935, Broughton and G i h e r  1983, 
Frenkel and Ladd 1984, Frenkel 1986). Here, a fictitious Hamiltonian R(A) is set up 
such that %(I)  is the Hamiltonian of the desired atomistic system, whereas R(0) describes 
a reference Hamiltonian of independent harmonic oscillators. By increasing the control 
parameter, A, from 0 to 1 the reference harmonic interactions are gradually switching off, 
whereas the atomic interactions are gradually introduced. For A = 0 the dynamics are 
purely harmonic for which the free energy has closed analytic form. The free energy of the 
desired system (with reference to the harmonic limit) can then be determined in principle 
from integration over A of the ensemble average of a%/ah. 

t On-site contractor working through SFA Inc.. Landover, MD, USA, 
t To whom correspondence should be addressed, 
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Abstract: The ability to reliably compute accurate protein-ligand binding affinities is crucial to understanding
protein-ligand recognition and to structure-based drug design. A ligand’s binding affinity is specified by its
absolute binding free energy, ∆Gbind, the free energy difference between the bound and unbound states. To
compute accurate free energy differences by free energy perturbation (FEP), “alchemical” rather than physical
processes are usually simulated by molecular dynamics simulations so as to minimize the perturbation to the
system. Here, we report a novel “alchemistic” application of the FEP methodology involving a large
perturbation. By mutating a ligand with 11 non-hydrogen atoms into six water molecules in the binding site
of a protein, we computed a ∆Gbind within 3 kJ/mol of the experimental value. This is the first successful
example of the computation of ∆Gbind for a protein:ligand pair with full treatment of the solvent degrees of
freedom.

Introduction

Fundamental to understanding how proteins recognize their
ligands and to the rational design of proteins and drugs is the
ability to compute protein-ligand binding affinities. While a
number of approaches are being pursued toward computing
ligand-protein binding affinities with use of empirical models,1-4
and models that treat parts of the system as a continuum,5,6
molecular dynamics simulations in full atomic detail employed
with the FEP methodology offer the prospect of a generally
applicable rigorous “first principles” solution to the “binding
problem”. In applications to protein-ligand binding, the FEP
methodology has usually been used to compute ∆∆Gs, i.e.,
differences between the binding free energies of two similar
ligands to one protein target, or of one ligand to a protein and
a mutant. The “alchemical” mutations involved in such
simulations are often restricted to mutation of a single non-
hydrogen atom although mutations of several non-hydrogen
atoms have been performed.7,8 In the few previous examples
of computing absolute ligand binding free energies, ∆Gbind, to
proteins, either no solvent was present in the binding site9 or
full relaxation of the solvent in the binding site at all stages of

the simulation was not permitted,10-13 possibly due to limitations
of computational resources. Although qualitative agreement
with experiment could be obtained in some of these calculations
(with differences between calculated and experimental values
of∼12 kJ/mol), a procedure with full treatment of the important
degrees of freedom of the solvent is necessary to reliably obtain
accurate results (within 4 kJ/mol of experimental values). To
develop and demonstrate such a procedure, we chose the binding
of the substrate, camphor, to cytochrome P450cam from
Pseudonomas putida as an especially well-suited model system
because camphor binds in a buried active site isolated from bulk
solvent. This facilitates the identification of those solvent
molecules that are expelled from the active site into bulk solvent
upon ligand binding, and thus contribute to the thermodynamics
of the binding process. In addition, cytochrome P450cam has
long served as a model for understanding the structure-function
relationships of the cytochrome P450 superfamily of enzymes
and has thus been very well-characterized in biophysical
experiments.14 Furthermore, cytochrome P450cam is, itself, an
important biotechnological target for bioremediation tasks,15 and
the ability to compute binding constants for ligands to it is of
clear value in design projects.
The active site of cytochrome P450cam as observed crystal-

lographically is shown with camphor bound16 in Figure 1a, and
in the unbound state17 in Figure 1b. In the absence of camphor,
one ordered water molecule was observed as a ligand to the
heme iron and a second region of electron density in the active
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Isomolar semigrand ensemble molecular dynamics: Development
and application to liquid-liquid equilibria
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An extended system molecular dynamics method for the isomolar semigrand ensemble !fixed
number of particles, pressure, temperature, and fugacity fraction" is developed and applied to the
calculation of liquid-liquid equilibria !LLE" for two Lennard-Jones mixtures. The method utilizes an
extended system variable to dynamically control the fugacity fraction # of the mixture by gradually
transforming the identity of particles in the system. Two approaches are used to compute
coexistence points. The first approach uses multiple-histogram reweighting techniques to determine
the coexistence # and compositions of each phase at temperatures near the upper critical solution
temperature. The second approach, useful for cases in which there is no critical solution
temperature, is based on principles of small system thermodynamics. In this case a coexistence point
is found by running N-P-T-# simulations at a common temperature and pressure and varying the
fugacity fraction to map out the difference in chemical potential between the two species A and B
($A!$B) as a function of composition. Once this curve is known the equal-distance/equal-area
criterion is used to determine the coexistence point. Both approaches give results that are
comparable to those of previous Monte Carlo !MC" simulations. By formulating this approach in a
molecular dynamics framework, it should be easier to compute the LLE of complex molecules
whose intramolecular degrees of freedom are often difficult to properly sample with MC techniques.
© 2005 American Institute of Physics. %DOI: 10.1063/1.1839172&

I. INTRODUCTION

The Gibbs ensemble Monte Carlo1 !GEMC" method re-
mains one of the most popular and effective means for the
simulation of phase equilibrium. The GEMC method has
been successfully applied to the simulation of vapor-liquid
equilibrium of pure fluids and mixtures as well as liquid-
liquid equilibrium !LLE" of a variety of mixtures.2–10 De-
spite these successes, the prediction of phase equilibrium
properties of complex fluids and fluid mixtures by molecular
simulation remains a challenging task; conseqeuently a vari-
ety of new simulation methods have been developed for this
purpose. These include multiple-histogram reweighting,11–13
Gibbs–Duhem integration !GDI",14–21 the N-P-T plus test
particle method,22,23 multiple-box GEMC,24 expanded-
ensemble simulation,25–27 series expansion methods,28–31 re-
action GEMC,32–34 the grand equilibrium method,35 osmotic
molecular dynamics,36,37 temperature-quench molecular
dynamics,38 and pressure-enthalpy driven molecular
dynamics,39,40 to name a few.

A disadvantage of many of the methods listed above is
their reliance upon trial particle insertion/deletion steps. It is
well known that particle insertions and deletions become
problematical when performed in fluids at high densities.
This problem can be overcome, to a certain extent, by per-
forming trial particle transformations instead of insertions
and deletions. Trial particle transformations are required for
Monte Carlo simulations in the isomolar semigrand !or

N-P-T-#) ensemble41 and have also been employed in
GEMC simulations.3 N-P-T-# ensemble simulation is espe-
cially well suited for tracing out coexistence curves of mix-
tures using GDI, but the particle transformation steps still
become problematical when the mixture components differ
significantly in size and molecular structure.

In this work we extend the grand canonical molecular
dynamics !MD" method42,43 to the N-P-T-# ensemble. In
this method the transformation of molecules occurs gradually
and dynamically. An extended system variable ' is added to
standard N-P-T equations of motion. The purpose of this
variable is to dynamically transform a molecule between two
identities, A and B . Unlike conventional Monte Carlo !MC"
transformation steps, the dynamical transformation is con-
tinuous and automatically adjusts to the difference between
the target and instantaneous fugacity fraction of the system.
In addition, the dynamic nature of the simulation makes it
easy to apply to the simulation of complex molecules with
intramolecular degrees of freedom. The potential of ' is a
function of the specified chemical potential difference be-
tween components in the mixture (($"$B!$A). The
equations of motion for the isomolar semigrand molecular
dynamics !iSGMD" simulation of a system of monatomic
particles is presented in Sec. II A. In Sec. II B we present the
algorithm for iSGMD simulation, and in Sec. II C we de-
scribe how to determine phase coexistence with iSGMD. We
use two binary mixtures of Lennard-Jones atoms as test cases
for this method.a"Electronic mail: ed@nd.edu
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Some applications of Alchemy
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Proteins

Courtney L. Stanton and Kendall N. Houk*

Department of Chemistry and Biochemistry, UniVersity of California Los Angeles, 607
Charles E. Young DriVe East, Los Angeles, California 90095

Received January 2, 2008

Abstract: Methods for estimation of pKa values of residues in proteins were tested on a set of
benchmark proteins with experimentally known pKa values. The benchmark set includes 80
different residues (20 each for Asp, Glu, Lys, and His), half of which consists of significantly
variant cases (∆pKa g 1 pKa unit from the amino acid in solution). The method introduced by
Case and co-workers [J. Am. Chem. Soc. 2004, 126, 4167-4180], referred to as the molecular
dynamics/generalized-Born/thermodynamic integration (MD/GB/TI) technique, gives a root-mean-
square deviation (rmsd) of 1.4 pKa units on the benchmark set. The use of explicit waters in the
immediate region surrounding the residue was shown to generally reduce high errors for this
method. Longer simulation time was also shown to increase the accuracy of this method. The
empirical approach developed by Jensen and co-workers [Proteins 2005, 61, 704-721],
PROPKA, also gives an overall rmsd of 1.4 pKa units and is more or less accurate based on
residue typesthe method does very well for Lys and Glu, but less so for Asp and His. Likewise,
the absolute deviation is quite similar for the two methodss5.2 for PROPKA and 5.1 for MD/
GB/TI. A comparison of these results with several prediction methods from the literature is
presented. The error in pKa prediction is analyzed as a function of variation of the pKa from that
in water and the solvent accessible surface area (SASA) of the residue. A case study of the
catalytic lysine residue in 2-deoxyribose-5-phosphate aldolase (DERA) is also presented.

I. Introduction
Ionizable residues play a critical role in many of the
important physical and chemical properties of proteins
including folding and stability,1–3 protein-protein interac-
tions,4 substrate binding,5 and enzymatic reaction mecha-
nisms.6 Consequently, accurate pKa prediction methods are
of great interest for understanding pH-dependent properties
of proteins and in the fields of rational drug and protein
design.7

The pKa value of an ionizable group can vary significantly
from its value in solution due to the altered environment of
the interior of the protein. These variant cases are not only
the most difficult to predict, but are often the most interesting.
One example can be found in the enzyme 2-deoxyribose-5-
phosphate aldolase (DERA), which catalyzes the reaction
shown in Figure 1.8,9 The first step of the reaction involves

nucleophilic attack by unprotonated Lys167. Lysine in
solution is protonated at neutral pH, with a pKa of 10.5. This
value is perturbed to around 7 in the active site of the
enzyme, allowing the reaction to occur. The environment of
Lys167 is quite complicated, making it difficult to predict
the pKa.

The free energy profile of proton binding is dominated
by electrostatic contributions from intraprotein interactions
and protein-solvent interactions.10 Explicit treatment of
electrostatic interactions for every pair of charges in a fully
atomistic model of both protein and solvent is computation-
ally very expensive even with a classical force-field and was
indeed completely infeasible before recent advances in
computer power and electrostatic treatments such as the
particle mesh Ewald procedure.11 Therefore, most of the
current developments in pKa prediction have focused on
implicit electrostatic treatments, especially solutions to the* Corresponding author. E-mail: houk@chem.ucla.edu.
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Abstract

Free energy calculations on three model processes with theoretically known free energy changes have been performed using short sim-
ulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been
made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often
observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral par-
ticles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps
is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall sim-
ulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete
thermodynamic integration where sufficient sampling needs to be obtained at every k-point, but only if the initial conformations do prop-
erly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolec-
ular free energy calculations.
! 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many important processes at the molecular level are
guided by the associated change in free energy. It is there-
fore often attempted to calculate free energies of, e.g., com-
plex formation (protein-ligand binding), protein folding
and unfolding, aggregation of biomolecules (membrane
formation) and transport through channels or across inter-
faces. The calculation of free energies from molecular
dynamics simulations has received considerable attention
over the last decades [1–5]. Even though the statistical
mechanical basis [6,7] of the methodology used was estab-
lished long before the first computer simulations of molec-
ular systems, the search for alternative and more efficient
approaches is still continuing [8–12]. The continuous in-
crease in computational power has led to increased preci-

sions and accuracies, but the calculation of free energies
and entropies from molecular dynamics simulations re-
mains a costly undertaking [13–15].

From statistical mechanics the Gibbs free energy of a
system is defined as !kBT times the logarithm of the iso-
baric–isothermal partition function,

G ¼ !kBT ln ZNpT ; ð1Þ

with kB the Boltzmann constant, T the temperature, and
the partition function ZNpT being the integral over the
Boltzmann factor of the enthalpy over the complete phase
space accessible to the system. It can easily be derived that
the free energy difference between two states, A and B, can
be written using the perturbation formula due to Zwanzig
[7]

DGBA ¼ GB ! GA ¼ !kBT lnhe!ðHB!HAÞ=kBT iA; ð2Þ

where HA and HB are the total Hamiltonians of the states
A and B and the angular brackets indicate an ensemble
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Protein Thermostability Calculations Using Alchemical Free Energy
Simulations

Daniel Seeliger and Bert L. de Groot*
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ABSTRACT Thermal stability of proteins is crucial for both biotechnological and therapeutic applications. Rational protein
engineering therefore frequently aims at increasing thermal stability by introducing stabilizing mutations. The accurate prediction
of the thermodynamic consequences caused by mutations, however, is highly challenging as thermal stability changes are
caused by alterations in the free energy of folding. Growing computational power, however, increasingly allows us to use alchem-
ical free energy simulations, such as free energy perturbation or thermodynamic integration, to calculate free energy differences
with relatively high accuracy. In this article, we present an automated protocol for setting up alchemical free energy calculations
for mutations of naturally occurring amino acids (except for proline) that allows an unprecedented, automated screening of large
mutant libraries. To validate the developed protocol, we calculated thermodynamic stability differences for 109 mutations in the
microbial Ribonuclease Barnase. The obtained quantitative agreement with experimental data illustrates the potential of the
approach in protein engineering and design.

INTRODUCTION

Rational engineering of proteins (1) to optimize a natural
protein for a specific task (e.g., to achieve higher thermal
stability, altered substrate specificity, or solubility) is one
of the most exciting tasks in biotechnology. This is particu-
larly true for enzymes. Two recently published pioneering
articles describe the design of novel enzymes which catalyze
chemical reactions that are not known to be catalyzed by any
naturally occurring enzyme (2,3). Additionally of great
industrial importance is the optimization of enzymes toward
higher efficiency and thermostability, to enable them to be
used as detergents or for the thermostabilization of thera-
peutic proteins (4–9). Most of the successful applications
of rational protein engineering, so far, have been built on
knowledge-based scoring functions (10,11), implicit solvent
models (12,13), or are SVM-based (14); however, molec-
ular-dynamics-based methods utilizing explicit solvent
have come of age and are developing into a high accuracy
alternative with great potential. Although the computational
demand of calculating the free energy difference of a single
point mutation is several orders-of-magnitude larger than
with a knowledge-based scoring function, physics-based
methods do have an advantage. They can be applied for
those cases where a large database is not available for the
derivation of statistical potentials.

Enzymes are interesting catalysts for enantioselective
synthesis in chemical industry (15–20). However, their
natural environment, water, is often a poor solvent for
organic molecules. Many enzymes retain both structure
and some functionality in organic solvents (21,22). Rational
optimization under these conditions, however, is limited,

with scoring functions based on statistical potentials. Here,
physics-based methods should work with the same accuracy
as in aqueous solution and open the possibility to rational
protein engineering in nonnatural environments.

In a recent review, Potapov et al. (23) compared six estab-
lished protocols and assessed their ability to predict the
thermodynamic consequences of point mutations. Their
work revealed that, although the assessed methods are, on
average, capable of predicting the correct trend, the accuracy
of the best protocol did not exceed a correlation coefficient of
0.6. These findings indicate that the development of more
accurate methods is highly desirable, particularly when
considering that free energy changes resulting from point
mutations are rather small in most cases.

Among the simulation protocols that aim at calculating
free energy differences, perturbation approaches (24–27)
have grown in popularity over the last years. Here, the
Hamiltonian H is coupled to a parameter l which is used
to drive a system from a state A (l ¼ 0), here corresponding
to the Hamiltonian of the wild-type protein, to a state B
(l ¼ 1), corresponding to the Hamiltonian of the mutant.
Free energies can either be computed by using so-called
equilibrium methods such as free energy perturbation (28)
or thermodynamic integration (TI) (29), or by using non-
equilibrium methods such as those based on the work of
Jarzynski (30,31) and Crooks (32). Although the simulation
protocols and analysis methods differ substantially, their
initial setup is identical. While l is switched from 0 to 1
the system must evolve from state A to state B, correspond-
ing, e.g., to an amino acid mutation, thereby changing intra-
molecular and intermolecular interactions. Depending on
the particular type of mutation, atoms must be annihilated
(decoupled from the system), or dummy atoms turned into
real atoms. Hence, a topology for such a simulation has to
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Abstract. Accurate calculation of the free energy of defects is important in understanding 
many mechmical processes and properties in materials. Here a method is proposed for directly 
calculating the free energy difference between bulk crystal and defect multi-component 310miC 
systems. Based on A-integration techniques it involves defining a nonphysical but reversible 
thermodynamic pathway that connecB the bulk reference crystal and defect structures. This 
pathway can be thought of as an alchemic route to the free energy as selected atoms are allowed 
to transform their atomic character. The method is demomated by using it to calculate the 
free energy of NisAl antiphase boundaries where atomic interactions are modeled through a 
FinnisSinclair type potential. 

1. Introduction 

Knowledge of the free energy in bulk crystal systems is important in locating thermodynamic 
phase transitions accurately. For defect systems, the free energy of interfaces such as 
antiphase boundaries (APB), superlattice intrinsic stacking faults (SISF) and complex stacking 
faults (CSF) govern the dissociation and movement of dislocations and thus control the 
ductility of a material. Nucleation rates are also determined by the value of interfacial free 
energy between competing phases. 

Given an atomic Hamiltonian, accurately calculating the free energy of materials is 
a hard problem. Except for a few model systems such as a collection of independent 
harmonic oscillators or king models for which closed analytic forms of the free energy are 
available, this typically is accomplished through Monte Carlo (MC) or molecular dynamic 
(MD) simulations. One method of calculating the free energy of a system, that has a long 
and rich history, is through A-integration (see Kirkwood 1935, Broughton and G i h e r  1983, 
Frenkel and Ladd 1984, Frenkel 1986). Here, a fictitious Hamiltonian R(A) is set up 
such that %(I)  is the Hamiltonian of the desired atomistic system, whereas R(0) describes 
a reference Hamiltonian of independent harmonic oscillators. By increasing the control 
parameter, A, from 0 to 1 the reference harmonic interactions are gradually switching off, 
whereas the atomic interactions are gradually introduced. For A = 0 the dynamics are 
purely harmonic for which the free energy has closed analytic form. The free energy of the 
desired system (with reference to the harmonic limit) can then be determined in principle 
from integration over A of the ensemble average of a%/ah. 
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Abstract. Accurate calculation of the free energy of defects is important in understanding 
many mechmical processes and properties in materials. Here a method is proposed for directly 
calculating the free energy difference between bulk crystal and defect multi-component 310miC 
systems. Based on A-integration techniques it involves defining a nonphysical but reversible 
thermodynamic pathway that connecB the bulk reference crystal and defect structures. This 
pathway can be thought of as an alchemic route to the free energy as selected atoms are allowed 
to transform their atomic character. The method is demomated by using it to calculate the 
free energy of NisAl antiphase boundaries where atomic interactions are modeled through a 
FinnisSinclair type potential. 

1. Introduction 

Knowledge of the free energy in bulk crystal systems is important in locating thermodynamic 
phase transitions accurately. For defect systems, the free energy of interfaces such as 
antiphase boundaries (APB), superlattice intrinsic stacking faults (SISF) and complex stacking 
faults (CSF) govern the dissociation and movement of dislocations and thus control the 
ductility of a material. Nucleation rates are also determined by the value of interfacial free 
energy between competing phases. 

Given an atomic Hamiltonian, accurately calculating the free energy of materials is 
a hard problem. Except for a few model systems such as a collection of independent 
harmonic oscillators or king models for which closed analytic forms of the free energy are 
available, this typically is accomplished through Monte Carlo (MC) or molecular dynamic 
(MD) simulations. One method of calculating the free energy of a system, that has a long 
and rich history, is through A-integration (see Kirkwood 1935, Broughton and G i h e r  1983, 
Frenkel and Ladd 1984, Frenkel 1986). Here, a fictitious Hamiltonian R(A) is set up 
such that %(I)  is the Hamiltonian of the desired atomistic system, whereas R(0) describes 
a reference Hamiltonian of independent harmonic oscillators. By increasing the control 
parameter, A, from 0 to 1 the reference harmonic interactions are gradually switching off, 
whereas the atomic interactions are gradually introduced. For A = 0 the dynamics are 
purely harmonic for which the free energy has closed analytic form. The free energy of the 
desired system (with reference to the harmonic limit) can then be determined in principle 
from integration over A of the ensemble average of a%/ah. 
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Abstract: The ability to reliably compute accurate protein-ligand binding affinities is crucial to understanding
protein-ligand recognition and to structure-based drug design. A ligand’s binding affinity is specified by its
absolute binding free energy, ∆Gbind, the free energy difference between the bound and unbound states. To
compute accurate free energy differences by free energy perturbation (FEP), “alchemical” rather than physical
processes are usually simulated by molecular dynamics simulations so as to minimize the perturbation to the
system. Here, we report a novel “alchemistic” application of the FEP methodology involving a large
perturbation. By mutating a ligand with 11 non-hydrogen atoms into six water molecules in the binding site
of a protein, we computed a ∆Gbind within 3 kJ/mol of the experimental value. This is the first successful
example of the computation of ∆Gbind for a protein:ligand pair with full treatment of the solvent degrees of
freedom.

Introduction

Fundamental to understanding how proteins recognize their
ligands and to the rational design of proteins and drugs is the
ability to compute protein-ligand binding affinities. While a
number of approaches are being pursued toward computing
ligand-protein binding affinities with use of empirical models,1-4
and models that treat parts of the system as a continuum,5,6
molecular dynamics simulations in full atomic detail employed
with the FEP methodology offer the prospect of a generally
applicable rigorous “first principles” solution to the “binding
problem”. In applications to protein-ligand binding, the FEP
methodology has usually been used to compute ∆∆Gs, i.e.,
differences between the binding free energies of two similar
ligands to one protein target, or of one ligand to a protein and
a mutant. The “alchemical” mutations involved in such
simulations are often restricted to mutation of a single non-
hydrogen atom although mutations of several non-hydrogen
atoms have been performed.7,8 In the few previous examples
of computing absolute ligand binding free energies, ∆Gbind, to
proteins, either no solvent was present in the binding site9 or
full relaxation of the solvent in the binding site at all stages of

the simulation was not permitted,10-13 possibly due to limitations
of computational resources. Although qualitative agreement
with experiment could be obtained in some of these calculations
(with differences between calculated and experimental values
of∼12 kJ/mol), a procedure with full treatment of the important
degrees of freedom of the solvent is necessary to reliably obtain
accurate results (within 4 kJ/mol of experimental values). To
develop and demonstrate such a procedure, we chose the binding
of the substrate, camphor, to cytochrome P450cam from
Pseudonomas putida as an especially well-suited model system
because camphor binds in a buried active site isolated from bulk
solvent. This facilitates the identification of those solvent
molecules that are expelled from the active site into bulk solvent
upon ligand binding, and thus contribute to the thermodynamics
of the binding process. In addition, cytochrome P450cam has
long served as a model for understanding the structure-function
relationships of the cytochrome P450 superfamily of enzymes
and has thus been very well-characterized in biophysical
experiments.14 Furthermore, cytochrome P450cam is, itself, an
important biotechnological target for bioremediation tasks,15 and
the ability to compute binding constants for ligands to it is of
clear value in design projects.
The active site of cytochrome P450cam as observed crystal-

lographically is shown with camphor bound16 in Figure 1a, and
in the unbound state17 in Figure 1b. In the absence of camphor,
one ordered water molecule was observed as a ligand to the
heme iron and a second region of electron density in the active
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Isomolar semigrand ensemble molecular dynamics: Development
and application to liquid-liquid equilibria
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An extended system molecular dynamics method for the isomolar semigrand ensemble !fixed
number of particles, pressure, temperature, and fugacity fraction" is developed and applied to the
calculation of liquid-liquid equilibria !LLE" for two Lennard-Jones mixtures. The method utilizes an
extended system variable to dynamically control the fugacity fraction # of the mixture by gradually
transforming the identity of particles in the system. Two approaches are used to compute
coexistence points. The first approach uses multiple-histogram reweighting techniques to determine
the coexistence # and compositions of each phase at temperatures near the upper critical solution
temperature. The second approach, useful for cases in which there is no critical solution
temperature, is based on principles of small system thermodynamics. In this case a coexistence point
is found by running N-P-T-# simulations at a common temperature and pressure and varying the
fugacity fraction to map out the difference in chemical potential between the two species A and B
($A!$B) as a function of composition. Once this curve is known the equal-distance/equal-area
criterion is used to determine the coexistence point. Both approaches give results that are
comparable to those of previous Monte Carlo !MC" simulations. By formulating this approach in a
molecular dynamics framework, it should be easier to compute the LLE of complex molecules
whose intramolecular degrees of freedom are often difficult to properly sample with MC techniques.
© 2005 American Institute of Physics. %DOI: 10.1063/1.1839172&

I. INTRODUCTION

The Gibbs ensemble Monte Carlo1 !GEMC" method re-
mains one of the most popular and effective means for the
simulation of phase equilibrium. The GEMC method has
been successfully applied to the simulation of vapor-liquid
equilibrium of pure fluids and mixtures as well as liquid-
liquid equilibrium !LLE" of a variety of mixtures.2–10 De-
spite these successes, the prediction of phase equilibrium
properties of complex fluids and fluid mixtures by molecular
simulation remains a challenging task; conseqeuently a vari-
ety of new simulation methods have been developed for this
purpose. These include multiple-histogram reweighting,11–13
Gibbs–Duhem integration !GDI",14–21 the N-P-T plus test
particle method,22,23 multiple-box GEMC,24 expanded-
ensemble simulation,25–27 series expansion methods,28–31 re-
action GEMC,32–34 the grand equilibrium method,35 osmotic
molecular dynamics,36,37 temperature-quench molecular
dynamics,38 and pressure-enthalpy driven molecular
dynamics,39,40 to name a few.

A disadvantage of many of the methods listed above is
their reliance upon trial particle insertion/deletion steps. It is
well known that particle insertions and deletions become
problematical when performed in fluids at high densities.
This problem can be overcome, to a certain extent, by per-
forming trial particle transformations instead of insertions
and deletions. Trial particle transformations are required for
Monte Carlo simulations in the isomolar semigrand !or

N-P-T-#) ensemble41 and have also been employed in
GEMC simulations.3 N-P-T-# ensemble simulation is espe-
cially well suited for tracing out coexistence curves of mix-
tures using GDI, but the particle transformation steps still
become problematical when the mixture components differ
significantly in size and molecular structure.

In this work we extend the grand canonical molecular
dynamics !MD" method42,43 to the N-P-T-# ensemble. In
this method the transformation of molecules occurs gradually
and dynamically. An extended system variable ' is added to
standard N-P-T equations of motion. The purpose of this
variable is to dynamically transform a molecule between two
identities, A and B . Unlike conventional Monte Carlo !MC"
transformation steps, the dynamical transformation is con-
tinuous and automatically adjusts to the difference between
the target and instantaneous fugacity fraction of the system.
In addition, the dynamic nature of the simulation makes it
easy to apply to the simulation of complex molecules with
intramolecular degrees of freedom. The potential of ' is a
function of the specified chemical potential difference be-
tween components in the mixture (($"$B!$A). The
equations of motion for the isomolar semigrand molecular
dynamics !iSGMD" simulation of a system of monatomic
particles is presented in Sec. II A. In Sec. II B we present the
algorithm for iSGMD simulation, and in Sec. II C we de-
scribe how to determine phase coexistence with iSGMD. We
use two binary mixtures of Lennard-Jones atoms as test cases
for this method.a"Electronic mail: ed@nd.edu
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Abstract: Methods for estimation of pKa values of residues in proteins were tested on a set of
benchmark proteins with experimentally known pKa values. The benchmark set includes 80
different residues (20 each for Asp, Glu, Lys, and His), half of which consists of significantly
variant cases (∆pKa g 1 pKa unit from the amino acid in solution). The method introduced by
Case and co-workers [J. Am. Chem. Soc. 2004, 126, 4167-4180], referred to as the molecular
dynamics/generalized-Born/thermodynamic integration (MD/GB/TI) technique, gives a root-mean-
square deviation (rmsd) of 1.4 pKa units on the benchmark set. The use of explicit waters in the
immediate region surrounding the residue was shown to generally reduce high errors for this
method. Longer simulation time was also shown to increase the accuracy of this method. The
empirical approach developed by Jensen and co-workers [Proteins 2005, 61, 704-721],
PROPKA, also gives an overall rmsd of 1.4 pKa units and is more or less accurate based on
residue typesthe method does very well for Lys and Glu, but less so for Asp and His. Likewise,
the absolute deviation is quite similar for the two methodss5.2 for PROPKA and 5.1 for MD/
GB/TI. A comparison of these results with several prediction methods from the literature is
presented. The error in pKa prediction is analyzed as a function of variation of the pKa from that
in water and the solvent accessible surface area (SASA) of the residue. A case study of the
catalytic lysine residue in 2-deoxyribose-5-phosphate aldolase (DERA) is also presented.

I. Introduction
Ionizable residues play a critical role in many of the
important physical and chemical properties of proteins
including folding and stability,1–3 protein-protein interac-
tions,4 substrate binding,5 and enzymatic reaction mecha-
nisms.6 Consequently, accurate pKa prediction methods are
of great interest for understanding pH-dependent properties
of proteins and in the fields of rational drug and protein
design.7

The pKa value of an ionizable group can vary significantly
from its value in solution due to the altered environment of
the interior of the protein. These variant cases are not only
the most difficult to predict, but are often the most interesting.
One example can be found in the enzyme 2-deoxyribose-5-
phosphate aldolase (DERA), which catalyzes the reaction
shown in Figure 1.8,9 The first step of the reaction involves

nucleophilic attack by unprotonated Lys167. Lysine in
solution is protonated at neutral pH, with a pKa of 10.5. This
value is perturbed to around 7 in the active site of the
enzyme, allowing the reaction to occur. The environment of
Lys167 is quite complicated, making it difficult to predict
the pKa.

The free energy profile of proton binding is dominated
by electrostatic contributions from intraprotein interactions
and protein-solvent interactions.10 Explicit treatment of
electrostatic interactions for every pair of charges in a fully
atomistic model of both protein and solvent is computation-
ally very expensive even with a classical force-field and was
indeed completely infeasible before recent advances in
computer power and electrostatic treatments such as the
particle mesh Ewald procedure.11 Therefore, most of the
current developments in pKa prediction have focused on
implicit electrostatic treatments, especially solutions to the* Corresponding author. E-mail: houk@chem.ucla.edu.

J. Chem. Theory Comput. 2008, 4, 951–966 951
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Abstract

Free energy calculations on three model processes with theoretically known free energy changes have been performed using short sim-
ulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been
made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often
observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral par-
ticles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps
is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall sim-
ulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete
thermodynamic integration where sufficient sampling needs to be obtained at every k-point, but only if the initial conformations do prop-
erly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolec-
ular free energy calculations.
! 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many important processes at the molecular level are
guided by the associated change in free energy. It is there-
fore often attempted to calculate free energies of, e.g., com-
plex formation (protein-ligand binding), protein folding
and unfolding, aggregation of biomolecules (membrane
formation) and transport through channels or across inter-
faces. The calculation of free energies from molecular
dynamics simulations has received considerable attention
over the last decades [1–5]. Even though the statistical
mechanical basis [6,7] of the methodology used was estab-
lished long before the first computer simulations of molec-
ular systems, the search for alternative and more efficient
approaches is still continuing [8–12]. The continuous in-
crease in computational power has led to increased preci-

sions and accuracies, but the calculation of free energies
and entropies from molecular dynamics simulations re-
mains a costly undertaking [13–15].

From statistical mechanics the Gibbs free energy of a
system is defined as !kBT times the logarithm of the iso-
baric–isothermal partition function,

G ¼ !kBT ln ZNpT ; ð1Þ

with kB the Boltzmann constant, T the temperature, and
the partition function ZNpT being the integral over the
Boltzmann factor of the enthalpy over the complete phase
space accessible to the system. It can easily be derived that
the free energy difference between two states, A and B, can
be written using the perturbation formula due to Zwanzig
[7]

DGBA ¼ GB ! GA ¼ !kBT lnhe!ðHB!HAÞ=kBT iA; ð2Þ

where HA and HB are the total Hamiltonians of the states
A and B and the angular brackets indicate an ensemble
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Protein Thermostability Calculations Using Alchemical Free Energy
Simulations
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ABSTRACT Thermal stability of proteins is crucial for both biotechnological and therapeutic applications. Rational protein
engineering therefore frequently aims at increasing thermal stability by introducing stabilizing mutations. The accurate prediction
of the thermodynamic consequences caused by mutations, however, is highly challenging as thermal stability changes are
caused by alterations in the free energy of folding. Growing computational power, however, increasingly allows us to use alchem-
ical free energy simulations, such as free energy perturbation or thermodynamic integration, to calculate free energy differences
with relatively high accuracy. In this article, we present an automated protocol for setting up alchemical free energy calculations
for mutations of naturally occurring amino acids (except for proline) that allows an unprecedented, automated screening of large
mutant libraries. To validate the developed protocol, we calculated thermodynamic stability differences for 109 mutations in the
microbial Ribonuclease Barnase. The obtained quantitative agreement with experimental data illustrates the potential of the
approach in protein engineering and design.

INTRODUCTION

Rational engineering of proteins (1) to optimize a natural
protein for a specific task (e.g., to achieve higher thermal
stability, altered substrate specificity, or solubility) is one
of the most exciting tasks in biotechnology. This is particu-
larly true for enzymes. Two recently published pioneering
articles describe the design of novel enzymes which catalyze
chemical reactions that are not known to be catalyzed by any
naturally occurring enzyme (2,3). Additionally of great
industrial importance is the optimization of enzymes toward
higher efficiency and thermostability, to enable them to be
used as detergents or for the thermostabilization of thera-
peutic proteins (4–9). Most of the successful applications
of rational protein engineering, so far, have been built on
knowledge-based scoring functions (10,11), implicit solvent
models (12,13), or are SVM-based (14); however, molec-
ular-dynamics-based methods utilizing explicit solvent
have come of age and are developing into a high accuracy
alternative with great potential. Although the computational
demand of calculating the free energy difference of a single
point mutation is several orders-of-magnitude larger than
with a knowledge-based scoring function, physics-based
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with scoring functions based on statistical potentials. Here,
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Introduction
R&D spending in the pharmaceutical industry has risen
sharply in the last decade, with real expenditures by
members of the U.S. pharmaceutical trade industry
PhRMA doubling to $65.3 billion in 2009 from $32.4
billion in 2000 (in 2009 dollars) [1]. Despite this, the
number of new molecular entities (NMEs) approved by
the U.S. Food and Drug Administration (FDA) from 2004
to 2009 was only half that of the previous five years [2], and
the number of truly innovativeNMEs has remained stable
at 5–6 per year [3!!]. This situation is especially grim if
one considers the continual emergence of drug-resistant
strains of viruses and bacteria, a process which actively
depletes the limited repertoire of useful therapeutics,
sometimes leaving few, if any, alternatives in treatment.

Drug discovery has begun to integrate rational design
techniques, in which a drug is engineered with the help
of structural biology, alongside traditional screening
approaches — a shift reflected in FDA approval require-
ments that make it difficult to move therapeutics of
unknown mechanism forward. Although virtual screening
methods have wide deployment within the industry and
play a large role in modern drug discovery efforts, there is
concern that these methods may have reached a limit in
effectiveness [4!!]. Although undoubtedly useful in elim-
inating some inactive compounds, current virtual screen-
ing methods are insufficiently effective in selecting
molecules that are actually bioactive against the desired
target; lead optimization efforts alone still consume, on
average, two years and $146 million [3!!].

Given that bridges, buildings, and aircraft are now reg-
ularly designed entirely using computers [5], why is it that
we cannot design small molecules of a few dozen atoms?
Admittedly, design goals are often complex — potential
therapeutics must not only possess high affinity to the
target, but meet multiple additional criteria, such as high
selectivity, low off-target activity, good solubility, and a
host of bioavailability and toxicity properties collectively
known as ADME-Tox — absorption, distribution, metab-
olism, excretion, and toxicity. But it is precisely complex,
multi-objective design problems where a computational
approach should be superior to human-guided efforts. If
computational approaches are currently ineffective, it is
likely because we lack good predictive models for each of
the individual objectives.

How can we move beyond the limitations of current
virtual screening methods? Existing approaches rely upon
a variety of approximations to allow large numbers of
compounds to be screened quickly, often neglecting, or
considering in an ad hoc fashion, statistical mechanical
effects (such as conformational entropy, averaging over
multiple conformations or binding modes, and the dis-
crete nature of solvent) and chemical effects (such as
protonation state and tautomer distributions, and their
shifts upon binding) for computational efficiency. Unfor-
tunately, it is precisely the neglect of these effects that is
likely to be responsible for the gross inaccuracies of
current scoring functions when making quantitative esti-
mates of binding interactions [4!!].

Free energy calculations, at least in principle, offer a way
to incorporate these effects to compute quantitatively
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Estimating uncertainties

• How do you propagate uncertainties? 

Eg: TI - uncertainties in dU/dλ. A curve/spline interpolation is 
applied to data before integration. What is the uncertainty in 
computed free energy? 

ΔAi

y1i

y2i

y3i

∆A = ∆Ai
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Computation of melting points 
and crystal polymorph stabilities

Focus Application- 1
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Ionic liquids

" They are not ionic solutions
" They are not ionic crystals
" They are molten salts that 

happen to be “molten” around 
ambient temperature

" Many useful properties
" Excellent solvation strength
" Low flammability"

" High thermal stability
" Wide liquidus range
" Several commercial applications 

alreadyExamples of commercially 
available ionic liquids

Friday, March 18, 2011



Melting points of Ionic Liquids

What is this link between chemical composition/
structure and melting point? 

Melting point phase diagram for [Rmim][PF6] as a function of n1

1J. D. Holbrey and K. R. Seddon, Clean Prod. Processes, 1, 223(1999)
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Melting point calculation using 
atomistic simulations

• Heating a crystal until it melts

• defect induced melting

• first IL melting point prediction1

• Direct simulation of a solid-liquid interface

• Free energy barrier for heterogeneous nucleation < 
homogeneous nucleation

1S. Alavi and D. L. Thompson, J. Chem.Phys. 119, 9617 (2003)

16

Friday, March 18, 2011



Density vs Temperature for direct heating of orthorhombic [bmim][Cl] crystal

Experimental melting point:  
339 K

17
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Melting point calculation using 
atomistic simulations

• Heating a crystal until it melts

• defect induced melting

• first IL melting point prediction1

• Direct simulation of a solid-liquid interface

• Free energy barrier for heterogeneous nucleation is 
lower than homogeneous nucleation

1S. Alavi and D. L. Thompson, J. Chem.Phys. 119, 9617 (2003)

18
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Melting point calculation using 
atomistic simulations

• Free energy based methods

1. Reference crystal based methods  

• Frenkel’s Einstein Crystal

2. Pseudosupercritical path sampling

• TI: solid-liquid

• LJ1, NaCl1, benzene2 and triazole2

• extended to ILs3

∆Gs−l = 0 T = Tm

1D. M. Eike, J. F. Brennecke, and E. J. Maginn, J. Chem. Phys. 122, 014115 (2005)
2D. M. Eike and E. J. Maginn, J. Chem. Phys. 124, 164503 (2006)
3S. Jayaraman and E. J. Maginn, J. Chem. Phys. 127, 214504 (2007)19
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• NPT simulations of solid and liquid phases 
conducted at multiple temperatures

• Relative free energy curves constructed using: 

•           known to a constant of integration

Method Details

G
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Melting point calculation 

∆A2→3 =
� V S

V �

−�P � dV∆Ai→j =
� 1

0

�
∂U

∂λ

�

λ

dλ ∆Gs−� =
�

i,j

∆Ai→j

Coupling parameter from stateλi→j i→ j

21
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Melting point calculation 

U1→2(λ) = [1 + λ(η − 1)]mUVDW + [1 + λ(η − 1)]nUELEC + UNS

∆A2→3 =
� V S

V �

−�P � dV∆Ai→j =
� 1

0

�
∂U

∂λ

�

λ

dλ ∆Gs−� =
�

i,j

∆Ai→j

Coupling parameter from stateλi→j i→ j

21
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Melting point calculation 

U3→4(λ) = ηmUVDW + ηnUELEC + UNS − λ
�
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ij)
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Melting point calculation 

U4→5(λ) = [η + λ(1− η)]mUVDW + [η + λ(1− η)]nUELEC + UNS − (1− λ)
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Melting point calculation 
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Thermodynamic Integration

liquid → weak liquid weak liquid → dense weak liquid

dense weak liquid → ordered weak phase

ordered weak phase → solid

22
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Comparison of melting points

polymorph T expt
m (K) TCLP

m (K) TCMJJ
m (K)

orthorhombic 337-339 365 ±6 369 ±7
monoclinic 318-340 NA 373 ±4

Comparison of computed and experimental 
melting points

• Monoclinic thermodynamically 
stable relative to orthorhombic 
form at all temperatures below 
melting points of either 
polymorph.

• Free energy differences within 
accuracy of simulations

Computed Gibbs free energy difference between 
monoclinic and orthorhombic polymorphs of [C4mim]

[Cl] using the CMJJ potential

23

Orthorhombic Monoclinic
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• Melting point can be computed rigorously from atomistic 
simulations

• a stringent test of a force field

• Pseudo-supercritical path method can be used to compute free 
energy differences between crystal polymorphs, and for solid 
solubility calculations

• pure alkali nitrate salts, ionic liquids.

25

Conclusions - melting points
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Computing the melting point and thermodynamic stability
of the orthorhombic and monoclinic crystalline polymorphs
of the ionic liquid 1-n-butyl-3-methylimidazolium chloride

Saivenkataraman Jayaraman and Edward J. Maginna!

Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame,
Indiana 46556, USA

!Received 10 September 2007; accepted 2 October 2007; published online 5 December 2007"

The melting point, enthalpy of fusion, and thermodynamic stability of two crystal polymorphs of the
ionic liquid 1-n-butyl-3-methylimidazolium chloride are calculated using a thermodynamic
integration-based atomistic simulation method. The computed melting point of the orthorhombic
phase ranges from 365 to 369 K, depending on the classical force field used. This compares
reasonably well with the experimental values, which range from 337 to 339 K. The computed
enthalpy of fusion ranges from 19 to 29 kJ /mol, compared to the experimental values of 18.5
−21.5 kJ /mol. Only one of the two force fields evaluated in this work yielded a stable monoclinic
phase, despite the fact that both give accurate liquid state densities. The computed melting point of
the monoclinic polymorph was found to be 373 K, which is somewhat higher than the experimental
range of 318–340 K. The computed enthalpy of fusion was 23 kJ /mol, which is also higher than the
experimental value of 9.3−14.5 kJ /mol. The simulations predict that the monoclinic form is more
stable than the orthorhombic form at low temperature, in agreement with one set of experiments but
in conflict with another. The difference in free energy between the two polymorphs is very small,
due to the fact that a single trans-gauche conformational difference in an alkyl sidechain
distinguishes the two structures. As a result, it is very difficult to construct simple classical force
fields that are accurate enough to definitively predict which polymorph is most stable. A liquid phase
analysis of the probability distribution of the dihedral angles in the alkyl chain indicates that less
than half of the dihedral angles are in the gauche-trans configuration that is adopted in the
orthorhombic crystal. The low melting point and glass forming tendency of this ionic liquid is likely
due to the energy barrier for conversion of the remaining dihedral angles into the gauche-trans state.
The simulation procedure used to perform the melting point calculations is an extension of the
so-called pseudosupercritical path sampling procedure. This study demonstrates that the method can
be effectively applied to quite complex systems such as ionic liquids and that the appropriate choice
of tethering potentials for a key step in the thermodynamic path can enable first order phase
transitions to be avoided. © 2007 American Institute of Physics. #DOI: 10.1063/1.2801539$

I. INTRODUCTION

Most inorganic molten salts have extremely high melting
points, which limits their practical use. By careful choice of
cation and anion, however, it is possible to prepare salts that
have melting points that are below 100 °C; in some cases,
melting points significantly lower than ambient temperatures
are possible. These materials have been dubbed “ionic liq-
uids” and have attracted a great deal of interest in recent
years.1 Ionic liquids can be made which have extremely low
volatility, high thermal stability, and favorable solvation
properties. This makes them interesting for a number of po-
tential applications, including use as solvents, electrolytes,
separation agents, and lubricants. Interestingly, low melting
salts have been known for some time. One of the earliest
reported ionic liquids is ethylammonium nitrate, which has a
melting point of 12 °C.2,3 Only in the last 15 years or so,
however, has the potential of this class of material caught the
attention of industry and the research community.4

Given that an ionic liquid is differentiated from a con-
ventional molten salt by its melting point, it is apparent that
understanding the link between chemical structure and melt-
ing point of ionic liquids is crucial. Generally speaking, it is
desirable to have as low a melting point as possible, which
maximizes the range over which the material may be used as
a liquid. For some applications, however, it may be prefer-
able to have melting points at intermediate temperatures.
There are no completely reliable methods available for pre-
dicting how melting points will depend on the chemical
structure or composition of an ionic liquid, which is unfor-
tunate because it is known that small changes in the structure
of an ionic liquid can have dramatic effects on the melting
point. For alkylimidazolium cations, it has been observed
that melting points drop rapidly as the alkyl chain attached to
the 1-position on the ring increases in length from one up to
about six to eight carbons. As the alkyl chain length in-
creases further, melting temperatures increase, although the
actual trend depends on the nature of the associated anion.5 It
has also been observed that the more asymmetric the cationa"Electronic mail: ed@nd.edu
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of tethering potentials for a key step in the thermodynamic path can enable first order phase
transitions to be avoided. © 2007 American Institute of Physics. #DOI: 10.1063/1.2801539$

I. INTRODUCTION

Most inorganic molten salts have extremely high melting
points, which limits their practical use. By careful choice of
cation and anion, however, it is possible to prepare salts that
have melting points that are below 100 °C; in some cases,
melting points significantly lower than ambient temperatures
are possible. These materials have been dubbed “ionic liq-
uids” and have attracted a great deal of interest in recent
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volatility, high thermal stability, and favorable solvation
properties. This makes them interesting for a number of po-
tential applications, including use as solvents, electrolytes,
separation agents, and lubricants. Interestingly, low melting
salts have been known for some time. One of the earliest
reported ionic liquids is ethylammonium nitrate, which has a
melting point of 12 °C.2,3 Only in the last 15 years or so,
however, has the potential of this class of material caught the
attention of industry and the research community.4

Given that an ionic liquid is differentiated from a con-
ventional molten salt by its melting point, it is apparent that
understanding the link between chemical structure and melt-
ing point of ionic liquids is crucial. Generally speaking, it is
desirable to have as low a melting point as possible, which
maximizes the range over which the material may be used as
a liquid. For some applications, however, it may be prefer-
able to have melting points at intermediate temperatures.
There are no completely reliable methods available for pre-
dicting how melting points will depend on the chemical
structure or composition of an ionic liquid, which is unfor-
tunate because it is known that small changes in the structure
of an ionic liquid can have dramatic effects on the melting
point. For alkylimidazolium cations, it has been observed
that melting points drop rapidly as the alkyl chain attached to
the 1-position on the ring increases in length from one up to
about six to eight carbons. As the alkyl chain length in-
creases further, melting temperatures increase, although the
actual trend depends on the nature of the associated anion.5 It
has also been observed that the more asymmetric the cationa"Electronic mail: ed@nd.edu
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Thermodynamic and transport properties for nitrate salts containing lithium, sodium, and potassium cations
were computed from molecular simulations. Densities for the liquid and crystal phases calculated from
simulations were within 4% of the experimental values. A nonequilibrium molecular dynamics method was
used to compute viscosities and thermal conductivities. The results for the three salts were comparable to the
experimental values for both viscosity and thermal conductivity. Computed heat capacities were also in
reasonable agreement with experimental values. The computed melting point for NaNO3 was within 15 K of
its experimental value, while for LiNO3 and KNO3, computed melting points were within 100 K of the
experimental values. The results show that very small free-energy differences between the crystal and liquid
phases can result in large differences in computed melting point. To estimate melting points with an accuracy
of around 10 K, simulation methods and force fields must yield free energies with an accuracy of around
0.25 kcal/mol. Tests conducted on a well-studied sodium chloride model indicated negligible dependence of
the computed melting point on system size or choice of integration temperature.

1. Introduction and Background

Molten nitrate salts are being investigated actively as heat
storage systems1 and heat transfer fluids2 for solar power plants.
These fluids enable thermal energy to be stored for extended
periods of time, thereby allowing intermittent solar energy to
be converted to electricity in a continuous manner. A typical
solar salt consists of a mixture containing 60% NaNO3 and 40%
KNO3 (by weight). These materials have many favorable
properties, including a volumetric thermal capacity nearly three
times greater than liquid metals, very high thermal stabilities,
low cost, and negligible toxicity. One concern with these
mixtures is the melting point: the 60/40 mixture noted above
has a solidus temperature of about 220 °C. It is desirable to
achieve even lower melting points to extend the range of
operating temperatures and to protect against solidification
during excursions from normal operation. One way to achieve
lower melting points is by the addition of a third salt. For
example, the LiNO3-NaNO3-KNO3 mixture has a reported
eutectic of 120 °C,3 which places it very close to the 100 °C
melting point criterion of ionic liquids. If other eutectics with
comparable or lower melting points could be found, they might
be useful in solar thermal applications or other heat transfer
processes such as geothermal energy conversion.

To utilize salt mixtures in such processes, several properties
must be determined including heat capacity, thermal conductiv-
ity, viscosity, and melting point. The first three of these must
be determined over the entire operating temperature range, which
can be a difficult experimental task given the extreme conditions.
It is desirable to have ways of accurately predicting these
properties without recourse to extensive experimental data. One
way of doing this is via molecular simulation.

Alkali halides have been studied extensively via molecular
simulations. Tosi and Fumi developed intermolecular parameters

for alkali halides long ago.4,5 Later, Woodcock and co-workers6

used these potentials to simulate properties of molten alkali
halide salts. Woodcock has also proposed an intermolecular pair
potential for alkali halides which he parametrized from gaseous
alkali-metal halide ion pairs. The Tosi-Fumi potentials are
still used widely. Anwar and co-workers,7 and Eike and co-
workers8 computed the melting point of sodium chloride using
the Tosi-Fumi potential. Recently, Galamba and co-workers
computed the viscosity and thermal conductivity of molten alkali
halides.9,10

Alkali nitrates, which have a wide range of applications, have
not been studied with molecular simulations to the extent that
alkali halides have. Yamaguchi et al.11 examined the liquid
phase properties of molten lithium and rubidium nitrates with
molecular dynamics simulations using a rigid nitrate model and
compared their results against X-ray and neutron diffraction
experiments. Kato et al.12-16 conducted extensive studies on
the ionic mobilities in molten alkali nitrate salts. They introduced
a flexible model for the nitrate anion. Vohringer and Richter17

modified the intermolecular parameters for the alkali nitrate salts
and were able to get better results for self-diffusivities using
this modified model. Ribeiro studied the composition depen-
dence of ionic mobilities in mixtures of two cations with a
common anion.18 In this study, a polarizable potential model
was developed for these alkali nitrate salts. Later, Urahata and
Ribeiro19 used a flexible nitrate model on molten lithium nitrate.

As a first step toward being able to simulate mixtures of
nitrate salts, methods and force fields must be developed and
validated for their ability to capture pure salt properties. Hence,
the objective of the present work is to compute the thermal and
transport properties of three pure alkali nitrate salts: LiNO3,
NaNO3, and KNO3. Melting points, heat capacities, crystal and
liquid densities, viscosities, and thermal conductivities are
computed using a consistent force field and compared against
experimental data. The quality of the force field and simulation
methods are quantified and shown to be sufficiently accurate
for subsequent use in computing mixture properties relevant for
solar thermal applications. It must be pointed out, however, that
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We present an adaptable method to compute the solubility limit of solids by molecular simulation,
which avoids the difficulty of reference state calculations. In this way, the method is highly
adaptable to molecules of complex topology. Results are shown for solubility calculations of sodium
chloride in water and light alcohols at atmospheric conditions. The pseudosupercritical path
integration method is used to calculate the free energy of the solid and gives results that are in good
agreement with previous studies that reference the Einstein crystal. For the solution phase
calculations, the self-adaptive Wang–Landau transition-matrix Monte Carlo method is used within
the context of an expanded isothermal-isobaric ensemble. The method shows rapid convergence
properties and the uncertainty in the calculated chemical potential was 1% or less for all cases. The
present study underpredicts the solubility limit of sodium chloride in water, suggesting a
shortcoming of the molecular models. Importantly, the proper trend for the chemical potential in
various solvents was captured, suggesting that relative solubilities can be computed by the
method. © 2010 American Institute of Physics. #doi:10.1063/1.3478539$

I. INTRODUCTION AND MOTIVATION

Understanding the solubility behavior of crystalline sol-
ids in different solvents is of immense practical interest. For
instance, in the formulation of pharmaceuticals, a molecule
that has a promising activity but is poorly soluble in water
may end up being abandoned or may require substantial
modification. Different crystalline polymorphs of a particular
molecule can have vastly different solubilities !and hence
different pharmacological activities".1 Failure to understand
how the solubility is related to the crystalline structure can
have dire health and economic consequences.2 Determining
suitable solvents for the production of a given material poses
another challenge for chemists and process engineers. Ad-
vances in high throughput synthesis and testing, combined
with the desire to have drugs be more selective in their bind-
ing affinity, have resulted in an increase in the molecular
weight and lipophilicity of drug molecule candidates, with a
resulting decrease in aqueous solubility.3 Many of the non-
aqueous solvents used in chemical and pharmaceutical pro-
duction are volatile organics or hazardous substances, so
there is a great motivation to develop more environmentally
benign solvents. Thus, there are two practical questions one
would like to be able to answer. First, for a given solvent
such as water, what will the solubility be of a particular
crystalline compound, and how is this solubility related to
the composition and structure of the compound and its crys-
tal structure? Second, for a particular crystalline solute,
which solvents will be effective in dissolving the solute?

Given the huge composition space involved and the time

and expense associated with experimental solubility mea-
surements, it is desirable to have predictive methods that can
be used to answer these questions. Because solvation is a
complex phenomenon in which many different competing
forces interact to determine the behavior of a given solute-
solvent system, the development of such methods is ex-
tremely challenging. A tremendous amount of research has
been done in this area, but it is still generally the case that
prediction of solvation behavior relies upon empirical corre-
lations or group contribution methods,4 both of which require
a substantial amount of experimental data. Unfortunately, it
is often the case that experimental data are lacking at the
conditions of interest or, early on in the molecule discovery
process, no data exist at all for the compounds under inves-
tigation. Carrying out the necessary experiments for such
systems is time consuming and expensive. Given this situa-
tion, it is desirable to have atomistic-based molecular dy-
namics and Monte Carlo models that can predict solubility
without recourse to experimental data. Not only would such
methods provide guidance in formulation and solvent selec-
tion, but atomistic models give insight into the molecular-
level details governing solubility behavior.

A number of molecular modeling approaches have been
used to study solubility.5–10 In some cases, atomistic simula-
tions have been performed to compute parameters for em-
pirical correlations,6 while in other cases, simulations have
been conducted to directly compute the infinite dilution7 and
solubility limit8 of solutes in solvents. In the latter case, the
phase equilibrium condition requires equality of temperature,
pressure, and chemical potential !free energy" of each spe-
cies between the phases in equilibrium. Computing the free
energy in such systems is not a trivial task. Unlike mechani-a"Electronic mail: ed@nd.edu. URL: http://www.nd.edu/ed.
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Computing the free energy of a 
liquid mixture
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ABSTRACT 

Haile, J.M., 1986. On the use of computer simulation to determine the excess free energy in 
fluid mixtures. Fluid Phase Equilibria, 26: 103-127 

This paper first reviews the use of Kirkwood’s coupling parameter for determining 
residual chemical potentials, activity coefficients, and Henry’s constants from Monte Carlo 
and molecular dynamics computer simulations. A new version of the method is then 
developed for obtaining the excess Gibbs free energy from isothermal-isobaric simulations. 
New expressions are also given for the excess volume and excess entropy. 

The revised method is demonstrated by computing excess free energies for 14 mixtures of 
repulsive soft spheres. Isothermal-isobaric molecular dynamics was used to generate the 
necessary simulation data. Although the excess free energies for these particular mixtures are 
small in magnitude ( 1 GE/NkT 1 < O.l), the simulation method generally gives GE within 5% 
of the values calculated by thermodynamic perturbation theory. 

INTRODUCTION 

The determination of the free energy by Monte Carlo or molecular 
dynamics simulation is a vexing problem because the free energy is funda- 
mentally related to the accessible volume in phase space, unlike the internal 
energy or pressure which are averages over functions of the phase space 
trajectory (Ben-Naim, 1974, pp. 91-94). In the thermodynamics of fluid 
mixtures the problem is exacerbated because the quantities of interest are 
portions of the total free energy, namely measures of the free energy 
increment over that of a well-defined ideal solution. The excess Gibbs free 
energy GE and activity’coefficient yi are typical of such measures. 

Numerous schemes have been proposed for determining free energies 
from computer simulation; most have recently been reviewed by Shing and 
Gubbins (1983) and by Frenkel (1985). One of the oldest methods is based 
upon the coupling parameter formalism of Kirkwood (1935, 1936). In this 
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trajectory (Ben-Naim, 1974, pp. 91-94). In the thermodynamics of fluid 
mixtures the problem is exacerbated because the quantities of interest are 
portions of the total free energy, namely measures of the free energy 
increment over that of a well-defined ideal solution. The excess Gibbs free 
energy GE and activity’coefficient yi are typical of such measures. 

Numerous schemes have been proposed for determining free energies 
from computer simulation; most have recently been reviewed by Shing and 
Gubbins (1983) and by Frenkel (1985). One of the oldest methods is based 
upon the coupling parameter formalism of Kirkwood (1935, 1936). In this 

0378-3812/86,‘$03.50 0 1986 Elsevier Science Publishers B.V. 

gex = xA(gres
mix − gres

pureA) + xB(gres
mix − gres

pureB)
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LiNO3-NaNO3-KNO3 ternary
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LiNO3-NaNO3-KNO3 ternary

Computed from thermodynamic 
models, using experimental data as input 
(J. Ambrosek, Ph.D. Thesis, U. Wisconsin-

Madison (2010))
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Conclusions

• Thermodynamic integration based method 
developed to compute free energies of mixing 
from MD simulations

• Tangent method extended to compute 
approximations of eutectic compositions assuming 
a “simple eutectic” 

• Future extension to higher dimensional mixtures

• Extension to mixtures of Ca++ and monovalents - How do we 
handle the change in valency? 

• Handling high-dimensionality of search space for 
multicomponent mixtures
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