
Permanent and Determinant
non-identical twins

Avi Wigderson
IAS, Princeton

Meet the twins

F field, char(F)≠2.
X∈Mn(F) matrix of variables Xij

 Detn(X) = ∑σ∈Sn sgn(σ) ∏i∈[n] Xiσ(i)

 Pern(X) = ∑σ∈Sn ∏i∈[n] Xiσ(i)

Homogeneous, multi-linear, degree n polynomials
on n2 variables, with 0,±1 coefficients.

Meet the twins
 Detn(X) Pern(X)
 ∑σ∈Sn sgn(σ) ∏i∈[n] Xiσ(i) ∑σ∈Sn ∏i∈[n] Xiσ(i)

Physics: Fermions Bosons
Knots: Alexander polynomial Jones polynomial
 Linear Algebra Enumeration /Counting
Uses: Geometry / Volume Statistical Mechanics
 Everywhere Comput. Complexity
Counting: Spanning trees Matchings
 Planar matchings Everything
Complexity: Easy Hard (?)
Boolean: NC-complete #P-complete
Arithmetic: VP-complete VNP-complete

Complexity classes

 NP Efficient proof/verification
 P Efficient computation

Permanent

Determinant

Hard
Easy

Completeness [Valiant]

 EXP Exponential time

 PSPACE Polynomial space

 #P Counting
 PH Bounded alternation
 NP Efficient proof/verification
 P Efficient computation

 NC Fast parallel computation

 L Logarithmic space

Permenent

Determinant

Hard
Easy

 BQP efficient quantum computation [Toda] |
[Feynman]

Boolean Arithmetic

VP

VNP

Arithmetic Computation

Computing formal polynomials

Arithmetic complexity – basics

F field

Formula
L(f) – formula size

n variables,
deg f <nc × ×

+ + ×
Xi Xj Xi c

+
f

+ ×
+

×
Xi Xj Xi c’

+
f

c X5

Circuit
S(f) – Circuit size

Thm[VSBR]: S(f) ≤ L(f) ≤ S(f)logn

Complexity of Det
Thm[Strassen]: S(Detn) ≤n3 (no division!)
Thm[Csansky]: L(Detn) ≤nlogn (OPEN: poly?)
Thm[Valiant]: If L(f)=s, then there is a
2s×2s matrix Mf of vars and constants, f=det
Mf

Proof: Induction
 f=g+h f=g×h

 1
 0 1

 0 0 1

 1
 0 1

1

Mg

Mh

0

0

Mf 1
 0 1

 0 0 1

 1
 0 1

1

Mg

Mh

0

0

Mf

1

1

1 1

 1 0
 1 x

MX

|Mf|=|Mg|+|Mh| |Mf|=|Mg|×|Mh|

Determinantal
representations
of polynomials

VNP completeness of Per

Def[Valiant]:
An integer polynomial f∈ Z[X1,…Xn] is in VNP if
each coefficient is efficiently computable.

Intuitively, VNP captures all explicit polynomials!

Thm[Valiant]: If f∈ VNP, then there is a poly
size matrix Mf with f = Per Mf

Proof – much more sophisticated

Algebraic analog of “P≠NP”

Affine map L: Mn(F) → Mk(F) is good if Pern = Detk° L
k(n): the smallest k for which there is a good map?

[Polya] k(2) =2 Per2 = Det2

[Valiant] k(n) < exp(n)
[Mignon-Ressayre] k(n) > n2

[Valiant] k(n) ≠ poly(n) ⇔ VP≠VNP
[Mulmuley-Sohoni] Geometric Complexity Theory (GCT):
Per & Det are defined by their symmetries. Find, for k
small, representation theoretic obstacles for good maps.

 a b
-c d

a b
c d

Arithmetic lower bounds for
Detn & Pern

Thm[Nisan] Both require non-commutative size 2n

arithmetic formulae. Open: l.b. for Circuits?

Thm[Raz] Both require multi-linear arithmetic
formulae of size nlogn. Open: Exponential l.b.?

Thm[Gupta-Kamath-Kayal-Saptharishi]:
size4(Detn) > n√n Tight!!
size4(Pern) > n√n Improvement  VP ≠ VNP

Nice properties of Per
&

Complexity theoretic consequences

Nice properties of Per (and Det)
(1) Downwards self-reducible

Permanent of n×n matrices efficiently
computed from (several) permanents of
smaller matrices.

Row expansion
Pern(X) = ∑i∈[n] X1i Pern-1(X1i)

Nice properties of Per (and Det)
(2) Random self-reducible/correctible

[Beaver-Feigenbaum, Lipton]

Mn(F)

C errs

x+3y x+2y

x
x+y

The permanent of nxn matrices can be computed
from the permanent of several random
matrices.

Assume C(Z)=Pern(Z) on ≤1/(8n) of Z∈Mn(F)
Interpolate Pern(X) on a random line: Y random,
let g(t)=C(X+tY) – a poly of degree n in t.
Eval on t=1,2,…,n+1.
WHP g(t)=Per(X+tY),
so g(0)=Per(X)

x

Hardness amplification
If the Permanent can be efficiently computed
 for most inputs, then it can for all inputs !

If the Permanent is hard in the worst-case,
 then it is also hard on average

Worst-case  Average case reduction
Works for any low degree polynomial.
Arithmetization: Boolean functionspolynomials

Lower bounds, derandomization, prob. proofs

Avalanche of consequences
to probabilistic proof systems

Using both RSR and DSR of Permanent!

[Nisan] Per ∈ 2IP
[Lund-Fortnow-Karloff-Nisan] Per ∈ IP
[Shamir] IP = PSPACE
[Babai-Fortnow-Lund] 2IP = NEXP
[Arora-Safra,
Arora-Lund-Motwani-Sudan-Szegedy] PCP = NP

(skeptical, efficient) verifier
 vs.
(untrusted, all powerful) Prover

NP – theorems with short written proofs
 sound & complete

IP – theorems with fast interactive proofs
 sound & complete WHP

Efficient Verification

Per ∈ IP [LFKN]
 How to check a theorem that has no short proof?

(untrusted) Prover
An: Per(Zn)= an
An-1: Per(Zn-1)=an-1
An-2: Per(Zn-2)=an-2

……
A2: Per(Z2)=a2
A1: Per(Z1)=a1

 Verifier
Qn: what is Per(Zn)?
Qn-1: what is Per(Zn-1)?
Qn-2: what is Per(Zn-2)?

……
Q2: what is Per(Z2)?
Q1: what is Per(Z1)?

Zi ∈ Mi(F) ai∈ F

Claim: If Ai is correct, than Ai+1 is correct whp!
 Verifier can check Per(Z1)=a1 without help.

Mn(F)

A twist on Random-self-reducibility
saw: compute one from many random inputs
now: verify many from one random input

X1

X2 Xi

Xk Xk+1

Claims: Per(X1)=a1,…,Per(Xk)=ak, X1,…,Xk ∈ Mn(F)
Pick random Xk+1, ask for g(t)=Per(Xt), the unique
deg k curve through X1,…,Xk+1. Check for [1,k]
Pick random r ∈ F, verify claim Per(Xr)=g(r)

Xr

Boolean Computation

Evaluating functions

 All “natural” counting problems.
- # of sat assignments of a Boolean formula
-# of cliques in a graph
-# Hamilton cycles in a graph
-# perfect matchings in a graph (Per)
-# of linear extensions of a poset
-# of spanning trees of a graph
#P – # of accepting paths of an NP-machine.
#P-complete problems

The class #P (and P#P)

Decision
Problem

NP-complete

 in P

✔

✔
✔
✔
✔

✔ Evaluating Tutte, Jones, Chromatic,…polynomials
- # perfect matchings in planar gphs (≤Det [Kasteleyn])

[Valiant]

(≤Det [Kirchoff])

Knot Graph Statistical
Theory Theory Physics

 BPP: Efficient probabilistic computation
 BQP: Efficient quantum computation
Thm[Feynman, Bernstein-Vazirani] BQP ⊂ P#P
Thm[Shor] Factoring ∈ BQP (assumed not in BPP)
-Can quantum computers be built? What can they do?
Particles: Fermions (matter) Bosons (light, force)
Wave function: Determinant Permanent
[Valiant, Terhal-DiVincenzo, Knill]
Fermionic computers = holographic algs ≤ Determinant

[Aaronson-Arkhipov]
Bosonic computers can “sample” the Permanent

Quantum Computation
∩

Approximating
Permanents

of non-negative matrices

Approximating Pern

[Valiant] Permanent of 0/1 matrices is #P-hard

[Jerrum-Sinclair-Vigoda] Efficient probabilistic
algorithm for (1+ε)-approximation for the
permanent of any non-negative real matrix.

Monte-Carlo Markov Chain
(Glauber Dynamics, Metropolis algs,…)
Such algs exist now for many #P-hard problems.

Important interaction area for CS, Math, Physics

Approx Pern deterministically
A: n×n non-negative real matrix.
[Linial-Samorodnitsky-Wigderson]
Deterministic, efficient en -factor approximation.
Two ingredients:
(1) [Falikman,Egorichev] If B Doubly Stochastic
 then e-n ≈ n!/nn ≤ Per(B) ≤ 1
(the lower bound solved van der Vaerden’s conj)
(2) Strongly polynomial algorithm for the following
reduction to DS matrices:
Matrix scaling: Find diagonal X,Y s.t. XAY is DS
[Gurvits-Samorodnitsky’14] 2n -factor approx.
OPEN: Find a deterministic subexp approx.

Thanks!

	Slide Number 1
	Meet the twins
	Meet the twins
	Complexity classes
	Completeness [Valiant]
	Slide Number 6
	Arithmetic complexity – basics
	Complexity of Det
	VNP completeness of Per
	Algebraic analog of “PNP”
	Arithmetic lower bounds for Detn & Pern
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Hardness amplification
	Avalanche of consequences�to probabilistic proof systems
	Slide Number 17
	Per  IP [LFKN]�
	A twist on Random-self-reducibility�saw: compute one from many random inputs�now: verify many from one random input�
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Approximating Pern
	Approx Pern deterministically
	Slide Number 26

