Permanent and Determinant non-identical twins

Avi Wigderson IAS, Princeton

Meet the twins

- F field, char(F)≠2. X∈M_n(F) matrix of variables X_{ij}
 - $Det_n(X) = \sum_{\sigma \in Sn} sgn(\sigma) \prod_{i \in [n]} X_{i\sigma(i)}$
 - $\mathsf{Per}_{\mathsf{n}}(\mathsf{X}) = \sum_{\sigma \in \mathsf{Sn}} \prod_{i \in [\mathsf{n}]} \mathsf{X}_{i\sigma(i)}$

Homogeneous, multi-linear, degree n polynomials on n^2 variables, with 0, ± 1 coefficients.

Meet the twins

 $\frac{\mathsf{Det}_n(\mathsf{X})}{\sum_{\sigma \in Sn} \mathsf{sgn}(\sigma) \prod_{i \in [n]} \mathsf{X}_{i\sigma(i)}}$

Physics: Fermions Knots: Alexander polynomial Linear Algebra

Uses: Geometry / Volume Everywhere

Counting: Spanning trees Planar matchings

Complexity: Easy

Boolean: NC-complete

Arithmetic: VP-complete

Bosons Jones polynomial **Enumeration** /Counting **Statistical Mechanics** Comput. Complexity Matchings Everything Hard (?) **#P-complete VNP-complete**

 $Per_n(X)$

 $\sum_{\sigma \in Sn} \prod_{i \in [n]} X_{i\sigma(i)}$

Complexity classes

Permanent

Hard	NP	Efficient proof/verification
Easy	Ρ	Efficient computation

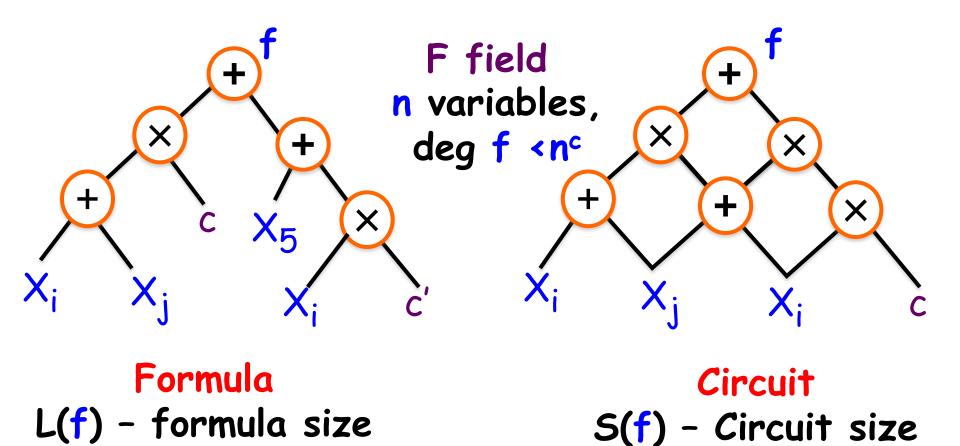
Determinant

Completeness [Valiant]				
Arithmetic	Boolean			
	EXP	Exponential time		
	PSPACE	Polynomial space		
VNP Permenent [Toda]	#P[Feynman] BQP PH	Counting efficient quantum computation Bounded alternation		
Hard	NP	Efficient proof/verification		
Easy	Ρ	Efficient computation		
VP Determinant	NC	Fast parallel computation		
	L	Logarithmic space		

Arithmetic Computation

Computing formal polynomials

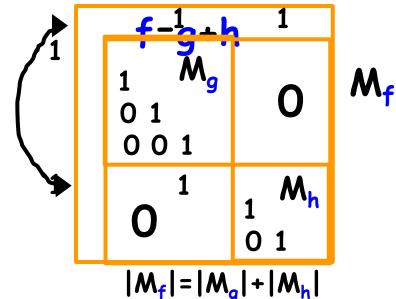
Arithmetic complexity - basics



Thm[VSBR]: $S(f) \leq L(f) \leq S(f)^{\log n}$

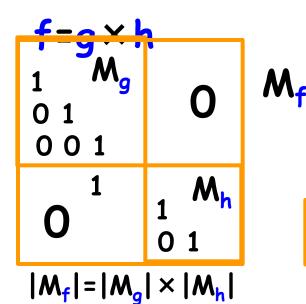
Complexity of Det

Thm[Strassen]: $S(Det_n) \le n^3$ (no division!) Thm[Csansky]: $L(Det_n) \le n^{\log n}$ (OPEN: poly?) Thm[Valiant]: If L(f)=s, then there is a $2s \times 2s$ matrix M_f of vars and constants, f=det M_f



Determinantal representations of polynomials

X



VNP completeness of Per

Def[Valiant]: An integer polynomial $f \in Z[X_1, ..., X_n]$ is in VNP if each coefficient is efficiently computable.

Intuitively, VNP captures all explicit polynomials!

Thm[Valiant]: If $f \in VNP$, then there is a poly size matrix M_f with $f = Per M_f$ Proof – much more sophisticated

Algebraic analog of "P≠NP"

Affine map L: $M_n(F) \rightarrow M_k(F)$ is good if $Per_n = Det_k^{\circ} L$ k(n): the smallest k for which there is a good map?

[Polya] k(2) =2 Per₂
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = Det_2 \begin{bmatrix} a & b \\ -c & d \end{bmatrix}$$

[Valiant] k(n) < exp(n)

- [Mignon-Ressayre] k(n) > n²
- [Valiant] $k(n) \neq poly(n) \Leftrightarrow VP \neq VNP$

[Mulmuley-Sohoni] Geometric Complexity Theory (GCT): Per & Det are defined by their symmetries. Find, for k small, representation theoretic obstacles for good maps.

Arithmetic lower bounds for Det_n & Per_n

- Thm[Nisan] Both require non-commutative size 2ⁿ arithmetic formulae. Open: I.b. for Circuits?
- Thm[Raz] Both require multi-linear arithmetic formulae of size n^{logn}. Open: Exponential 1.b.?
- Thm[Gupta-Kamath-Kayal-Saptharishi]:
- size₄(Det_n) > n^{√n} Tight‼
- size₄(Per_n) > $n^{\sqrt{n}}$ Improvement \rightarrow VP \neq VNP

Nice properties of Per & Complexity theoretic consequences

Nice properties of Per (and Det) (1) Downwards self-reducible

Permanent of n×n matrices efficiently computed from (several) permanents of *smaller* matrices.

Row expansion $Per_n(X) = \sum_{i \in [n]} X_{1i} Per_{n-1}(X^{1i})$ Nice properties of Per (and Det) (2) Random self-reducible/correctible [Beaver-Feigenbaum, Lipton]

The permanent of nxn matrices can be computed from the permanent of several *random* matrices.

Assume $C(Z)=Per_n(Z)$ on $\leq 1/(8n)$ of $Z \in M_n(F)$ Interpolate $Per_n(X)$ on a random line: Y random, let g(t)=C(X+tY) - a poly of degree n in t. $M_n(F)$ Eval on t=1,2,...,n+1. WHP g(t)=Per(X+tY), so g(0)=Per(X)

Hardness amplification

If the Permanent can be efficiently computed for most inputs, then it can for all inputs !

If the Permanent is hard in the worst-case, then it is also hard on average

Worst-case → Average case reduction Works for any low degree polynomial. Arithmetization: Boolean functions→polynomials

Lower bounds, derandomization, prob. proofs

Avalanche of consequences to probabilistic proof systems

Using both RSR and DSR of Permanent!

[Nisan]	$Per \in 2IP$
[Lund-Fortnow-Karloff-Nisan]	$Per \in IP$
[Shamir] I	P = PSPACE
[Babai-Fortnow-Lund]	2IP = NEXP
[Arora-Safra,	
Arora-Lund-Motwani-Sudan-Szegedy	PCP = NP

Efficient Verification

(skeptical, efficient) verifier vs. (untrusted, all powerful) Prover

NP - theorems with short *written* proofs sound & complete

IP – theorems with fast *interactive* proofs sound & complete WHP

$Per \in IP [LFKN]$

How to check a theorem that has no short proof? $Z_i \in M_i(F)$ $a_i \in F$ Verifier (untrusted) Prover

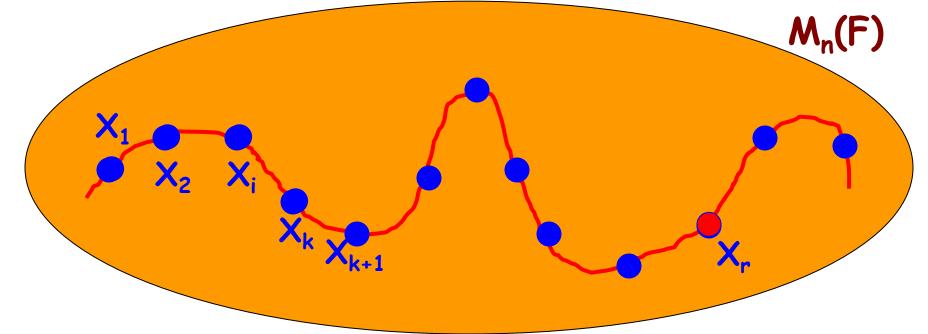
- Q_n: what is Per(Z_n)?
- Q_{n-1}: what is Per(Z_{n-1})?
- Q_{n-2} : what is $Per(Z_{n-2})$?

(untrusted) Prover $A_n: Per(Z_n) = a_n$ $A_{n-1}: Per(Z_{n-1}) = a_{n-1}$ $A_{n-2}: Per(Z_{n-2}) = a_{n-2}$

Q2: what is $Per(Z_2)$?A2: $Per(Z_2)=a_2$ Q1: what is $Per(Z_1)$?A1: $Per(Z_1)=a_1$

Claim: If A_i is correct, than A_{i+1} is correct whp! Verifier can check $Per(Z_1)=a_1$ without help. A twist on Random-self-reducibility saw: compute one from many random inputs now: verify many from one random input Claims: $Per(X_1)=a_1,...,Per(X_k)=a_k, X_1,...,X_k \in M_n(F)$ Pick random X_{k+1} , ask for $g(t)=Per(X_t)$, the unique deg k curve through $X_1,...,X_{k+1}$. Check for [1,k]

Pick random $r \in F$, verify claim $Per(X_r)=g(r)$



Boolean Computation

Evaluating functions

The class #P (and P^{#P})

All "natural" counting problems.

- ✓ # of sat assignments of a Boolean formula Decision
- # of cliques in a graph
- # Hamilton cycles in a graph
- # perfect matchings in a graph (Per) [Valiant] in P

Problem

NP-complete

- # of linear extensions of a poset
- (≤Det [Kirchoff]) -# of spanning trees of a graph

#P - **#** of accepting paths of an NP-machine.

- Knot Graph Statistical **#P-complete problems** Theory Theory Physics
- Evaluating Tutte, Jones, Chromatic, ...polynomials
- # perfect matchings in *planar* gphs (<Det [Kasteleyn])

Quantum Computation

- BPP: Efficient probabilistic computation BQP: Efficient quantum computation
- Thm[Feynman, Bernstein-Vazirani] $BQP \subset P^{\#P}$
- Thm[Shor] Factoring $\in BQP$ (assumed not in BPP)
- -Can quantum computers be built? What can they do?
- Particles: Fermions (matter) Bosons (light, force)
- Wave function: Determinant Permanent
- [Valiant, Terhal-DiVincenzo, Knill]
- Fermionic computers = holographic algs < Determinant
- [Aaronson-Arkhipov]
- Bosonic computers can "sample" the Permanent

Approximating Permanents of non-negative matrices

Approximating Pern

[Valiant] Permanent of 0/1 matrices is #P-hard

[Jerrum-Sinclair-Vigoda] Efficient probabilistic algorithm for $(1+\epsilon)$ -approximation for the permanent of any non-negative real matrix.

Monte-Carlo Markov Chain (Glauber Dynamics, Metropolis algs,...) Such algs exist now for many #P-hard problems.

Important interaction area for CS, Math, Physics

Approx Per_n deterministically

- A: n×n non-negative real matrix.
- [Linial-Samorodnitsky-Wigderson]
- Deterministic, efficient eⁿ -factor approximation. Two ingredients:
- (1) [Falikman, Egorichev] If B Doubly Stochastic
 - then $e^{-n} \approx n!/n^n \leq Per(B) \leq 1$
- (the lower bound solved van der Vaerden's conj)
- (2) Strongly polynomial algorithm for the following reduction to DS matrices:
- Matrix scaling: Find diagonal X,Y s.t. XAY is DS [Gurvits-Samorodnitsky'14] 2ⁿ -factor approx. OPEN: Find a deterministic subexp approx.

Thanks!