Restricted families of projections

Tuomas Orponen, joint work with Katrin Fässler

School of Mathematics University of Edinburgh

IPAM, 5/5/2014

- Review of the classical results, in so much as they are relevant for the...
- ...review of the more recent results.

- What is the relation between the size of a set, and the size of its projections (e.g. onto hyperplanes)?
- One can think of many ways to ask more specific questions. Here's a purely incidence geometric formulation:

Question

Suppose $P \subset \mathbb{R}^2$ consists of *n* points. How many 1-dim subspaces *L* can there be, at most, such that

 $\operatorname{card} \pi_L(P) \leq n^s, \quad s < 1?$

- Szemerédi-Trotter is very efficient here. Assume that there are k subspaces L such that card π_L(P) ≤ n^s for L ∈ L.
- Consider the line family

$$\mathcal{L}^{\perp} := \{\pi_L^{-1}\{t\} : L \in \mathcal{L} \text{ and } t \in \pi_L(P)\}.$$

Then card $\mathcal{L}^{\perp} \leq kn^s$, and there are exactly *kn* point-line incidences between *P* and \mathcal{L}^{\perp} .

• Szemerédi-Trotter¹ gives $k \leq \max\{1, n^{2s-1}\}$.

$$||I(P, \mathcal{L}^{\perp})| \lesssim |P|^{2/3} |\mathcal{L}^{\perp}|^{2/3} + |P| + |\mathcal{L}^{\perp}|^{2/3}$$

• Here's the "geometric measure theory formulation":

Question

Let $K \subset \mathbb{R}^d$ be compact with dim K = s. How many *m*-dimensional subspaces *V* can there be such that

$$\dim \pi_V(K) < \dim K? \tag{*}$$

Here $\pi_V \colon \mathbb{R}^d \to V$ is the orthogonal projection.

 If dim K > m, (*) holds for all V, so assume that dim K ≤ m.

The classical answer

 Even though Szemerédi-Trotter is no longer available, we still have quite satisfactory answers:

Theorem (Marstrand-Mattila)

If $K \subset \mathbb{R}^d$ and dim $K \leq m$, then dim $\pi_V(K) = \dim K$ for almost all m-dim subspaces V.^a

^{*a*}Here "almost all" refers to the natural Haar measure $\gamma_{d,m}$ living on the manifold G(d,m) of *m*-dim subspaces

- Marstrand proved the case d = 2, m = 1 in 1954. General case by Mattila in 1975.
- Between 1954 and 1975, Kaufman re-proved the case d = 2, m = 1 using a technique now known as the "potential theoretic method". Marstrand's argument was more geometric.

- Let's recall Kaufman's argument quickly: understanding the proof is useful in understanding (the issues in) the "restricted families" framework a bit later.
- In the discrete case, a projection is smaller than the set, if and only if the projection is non-injective. Analogously, the enemy here is the event that

$$|\pi_V(\mathbf{x}) - \pi_V(\mathbf{y})| \ll |\mathbf{x} - \mathbf{y}|.$$

• The enemy is overcome by simply noting that this cannot happen for too many *V*'s.

More precisely, fix δ ≥ 0 and z := x − y ∈ ℝ^d \ {0}, and consider the "sub-level set"

$$\{V \in G(d,m) : |\pi_V(z)| \le \delta |z|\}.$$

• The volume of this set decays uniformly in z as $\delta \rightarrow 0$:

$$\gamma_{d,m}(\{V \in G(d,m) : |\pi_V(z)| \le \delta |z|\}) \lesssim \delta^m.$$

 Note that the decay exponent is the same as in the assumption "dim K ≤ m" in Marstrand-Mattila's theorem.

- Now, we could prove the Marstrand-Mattila projection theorem. For simplicity, I'll stick to a discretised version.
- We say that a union of δ-balls is *s*-dimensional, if there are
 ~ δ^{-s} balls, the set *C* of their centres is δ-separated, and
 C also satisfies

$$ext{card} [oldsymbol{C} \cap oldsymbol{B}(x,r)] \lesssim \left(rac{r}{\delta}
ight)^{oldsymbol{s}}, \qquad x \in \mathbb{R}^{oldsymbol{d}}, \ r \geq \delta.^2$$

²If $\mathcal{H}^{s}(K) > 0$, one can find an *s*-dimensional collection of δ -balls with centres in *K*, for any $\delta > 0$.

Theorem

Assume that $K \subset B(0,1)$ is an s-dimensional union of δ -balls. Then, for t < s, the set of V's such that $\pi_V(K)$ can be covered by $\leq \delta^{-t} \delta$ -balls has $\gamma_{d,m}$ -measure $\leq \delta^{s-t}$.

- The proof is just double-counting.
- Whenever $\pi_V(K)$ can be covered by $\leq \delta^{-t} \delta$ -balls, then there are $\gtrsim \delta^{t-2s}$ pairs $(c_i, c_j), c_i \neq c_j$ such that $|\pi_V(c_i - c_j)| < \delta$.

So, if

 $\gamma_{d,m}(\{V : \pi_V(K) \text{ can be covered by } \leq \delta^{-t} \text{ balls}\}) =: \Gamma,$ we find

$$\gamma_{d,m} imes \sharp imes \sharp (\{(V, c_i, c_j) : |\pi_V(c_i - c_j)| \le \delta\}) \gtrsim \Gamma \cdot \delta^{t-2s}.$$

• On the other hand, by the sub-level set estimate,

$$egin{aligned} &\gamma_{d,m} imes \sharp imes \sharp(\{(V, m{c}_i, m{c}_j) : |\pi_V(m{c}_i - m{c}_j)| \leq \delta\}) \ &= \sum_{m{c}_i
eq m{c}_j} \gamma_{d,m}(\{V : |\pi_V(m{c}_i - m{c}_j)| \leq \delta\}) \ &\lesssim \sum_{m{c}_i
eq m{c}_j} \left(rac{\delta}{|m{c}_i - m{c}_j|}
ight)^m \leq \sum_{m{c}_i
eq m{c}_j} \left(rac{\delta}{|m{c}_i - m{c}_j|}
ight)^s \lessapprox \delta^{-s}. \end{aligned}$$

- For later use, I record a more general form of the result, which follows by the same proof.
- Let (Λ, γ) be probability space, and let (π_λ)_λ: ℝ^d → ℝ^m be a collection of 1-Lipschitz linear mappings satisfying

 $\gamma(\{\lambda: |\pi_{\lambda}(\mathbf{X})| \leq \delta |\mathbf{X}|\}) \lesssim \delta^{r}.$

Theorem (Abstract projection theorem (APT))

Assume that $K \subset \mathbb{R}^d$ is a compact set with dim $K \leq r$. Then dim $\pi_{\lambda}(K) = \dim K$ for γ -a.e. λ .

- What are restricted families of projections? A vague formulation of the problem could be the following:
- You have a family of projections, and you'd like to prove a.s. dimension conservation, but it doesn't follow from the APT. Then it's likely that you're dealing with a *restricted family of projections*.
- At the moment, I don't know any examples of "restricted families" in the strict sense; only conjectures and partial results.

- For (almost) the rest of the talk, I'll concentrate on families of projections onto lines and planes in ℝ³.
- First, consider the subfamily G ⊂ G(3, 1) of all lines contained in the xy-plane. If x = (0, 0, 1), one has

$$\{L\in \mathcal{G}: \pi_L(x)=0\}=\mathcal{G}.$$

So, there's no possibility of decay like

$$\gamma(\{L \in \mathcal{G} : |\pi_L(\mathbf{x})| \le \delta |\mathbf{x}|\}) \lesssim \delta^r, \quad r > \mathbf{0},$$

and the APT gives nothing useful. There's also nothing to be had: the 1-dimensional set K = z-axis π_L -projects to {0} for all $L \in \mathcal{G}$.

- Now something a bit more complicated: let *G* ⊂ *G*(3,2) be the "vertical" planes containing the *z*-axis.
- This is a 1-dimensional submanifold, and the best possible decay for any probability measure γ_G on G is

 $\gamma_{\mathcal{G}}(\{\boldsymbol{V}\in\mathcal{G}:|\pi_{\boldsymbol{V}}(\boldsymbol{x})|\leq\delta|\boldsymbol{x}|\})\lesssim\delta.$

The uniformly distributed measure achieves that.

 Hence, the APT promises dimension conservation for up to 1-dimensional sets. Again, that's the best you can get, because any subset K of the xy-plane projects inside the line V ∩ {xy − plane} for all V ∈ G.

Restricted families of projections

- These examples are simple and rather uninteresting because they lack curvature.
- Let's add some curvature. Consider a smooth curve $\eta: (0, 1) \rightarrow S^2$, satisfying

$$\operatorname{span}\{\eta(t),\dot{\eta}(t),\ddot{\eta}(t)\}=\mathbb{R}^3, \quad t\in(0,1).$$

Something like this:

Restricted families of projections

Then, we get a family of lines and planes by setting

$$\mathcal{G}_1(\eta) := \{\operatorname{span}\{\eta(t)\} : t \in (0,1)\}$$

and

$$\mathcal{G}_{2}(\eta) := \{ \operatorname{span}\{\eta(t)\}^{\perp} : t \in (0, 1) \}.$$

 The examples above were G₁(η) and G₂(η), corresponding to the curve η parametrising the unit circle on the *xy*-plane. But of course

$$span{\eta(t), \dot{\eta}(t), \ddot{\eta}(t)} = xy - plane$$

for $t \in (0, 1)$, so the curvature requirement excludes these examples.

• Assuming the curvature condition, counterexamples become very evasive, so I may as well conjecture:

Conjecture

The projections π_L , $L \in \mathcal{G}_1(\eta)$, should conserve dimension for up to 1-dimensional sets, and the projections π_V , $V \in \mathcal{G}_2(\eta)$ should conserve dimension for up to 2-dimensional sets.

- Sanity check: does it follows from the APT?
- The projection families G₁(η) and G₂(η) are parametrised by (0, 1), so the most natural choice for γ_G on both manifolds is essentially L¹|_(0,1). These bounds are easy and sharp:

$$\mathcal{L}^1(\{L\in \mathcal{G}_1(\eta): |\pi_L(x)|\leq \delta\})\lesssim \delta^{1/2},$$

and

$$\mathcal{L}^{1}(\{V \in \mathcal{G}_{2}(\eta) : |\pi_{V}(x)| \leq \delta\}) \lesssim \delta.$$

• The bounds have the following corollary:

Corollary (to the APT)

The projections π_L , $L \in \mathcal{G}_1(\eta)$, conserve dimension for up to 1/2-dimensional sets, and the projections π_V , $V \in \mathcal{G}_2(\eta)$, conserve dimension for up to 1-dimensional sets.

 It's worth observing that the "1/2" already improves on the non-curved case (where no positive result was to be had), but the "1" doesn't. • Nevertheless, the "1" is not the end of the story here:

Theorem (Fässler, O. (2013))

For every s > 1, there is $\sigma(s) > 1$ such that the following holds. If dim K = s, then dim $\pi_V(K) \ge \sigma(s)$ for almost every $V \in \mathcal{G}_2(\eta)$.

 For G₁, we obtained the same result for the *packing dimension* of projections, but the Hausdorff dimension narrowly escaped. Except for this special curve:

 $\eta(t) = (\cos(t), \sin(t), 1).$

Theorem (O. (2013))

For this special curve η , the previous theorem holds with \mathcal{G}_2 replaced by \mathcal{G}_1 and "1" replaced by "1/2".

The proof in four slides (1)

 Recall: we're interested in the one-dimensional family of 2-dim subspaces given by

$$V_t := \operatorname{span}\{\eta(t)\}^{\perp}, \quad t \in (0, 1).$$

 In order for the proof of the APT to work directly, we should get a good upper bound for

$$\sum_{\boldsymbol{c}_i \neq \boldsymbol{c}_j} |\{t : |\pi_{V_t}(\boldsymbol{c}_i - \boldsymbol{c}_j)| \le \delta\}|$$

for a well-distributed finite set $\{c_1, \ldots, c_N\}$ inside *K*.

• But for general $c_i - c_j$, the best we can get is

$$|\{t: |\pi_{V_t}(\pmb{c}_i - \pmb{c}_j)| \leq \delta\}| \lesssim rac{\delta}{|\pmb{c}_i - \pmb{c}_j|}.$$

The proof in four slides (2)

- The key words are "general $c_i c_j$ ".
- It's often the case that c_i c_j is not even close to perpendicular to **any** of the planes V_t, and then in fact

$$\{t: |\pi_{V_t}(c_i - c_j)| \leq \delta\} = \emptyset$$

for small $\delta > 0$.

 This leads us to consider a "counter-assumption": suppose that the sum

$$\sum_{c_i \neq c_j} |\{t : |\pi_{V_t}(c_i - c_j)| \le \delta\}|$$

is roughly as large as the "general $c_i - c_j$ " estimate allows. Can we describe the structure of $\{c_1, \ldots, c_N\}$?

- Quite easily, in fact, and here's the answer:
- If the sum is almost as large as it can be (in view of the bound for general c_i c_j), then there's a δ^κ-proportion of the points c_i such that a δ^κ-proportion of the set {c₁,..., c_N} is contained in a δ^κ-neighbourhood of

$$c_i + C := c_i + \bigcup_{t \in (0,1)} \operatorname{span}\{\eta(t)\}.$$

- Here $\kappa \searrow 0$, as the counter-assumption gets stronger.
- C is a conical surface of some sort, and C(δ^κ) will stand for its δ^κ-neighbourhood.

The proof in four slides (4)

- Almost done: since a large part of {c₁,..., c_N} is contained in many (c_i + C(δ^κ))'s...
- ...a large part of $\{c_1, \ldots, c_N\}$ is actually contained in $(c_i + C(\delta^{\kappa})) \cap (c_j + C_j(\delta^{\kappa}))$ for some $i \neq j!$
- We can also choose *i*, *j* so that the cone vertices *c*_{*i*}, *c*_{*j*} are pretty far apart.
- How does $(c_i + C(\delta^{\kappa})) \cap (c_j + C(\delta^{\kappa}))$ look like? Since $(c_i + C) \cap (c_j + C)$ is the intersection of two conical surfaces, it's something essentially one-dimensional.
- This is a bit tedious to prove, but the upshot is that we've managed to cram a large part of a > 1-dimensional discrete set {c₁,..., c_N} inside an essentially one-dimensional set. But that's just not possible.

- The "restricted families of projections" problem in ℝ³ is closely related to Fourier restriction questions.
- D. and R. Oberlin wrote a paper about this last year:

Theorem (D. and R. Oberlin, 2013)

Assuming the curvature condition,

$$\dim \pi_{V_t}(K) \geq \frac{3\dim K}{4}$$

for almost all $t \in (0, 1)$. If dim $K \ge 2$, the lower bound can be improved to min{dim K - 1/2, 2}.

Something I know nothing about

- It would be nice to improve on these results in ℝ³...
- ...but similar questions in \mathbb{R}^2 are even more baffling.
- Vaguely speaking:

Question

Are there/what are the restricted families of projections in \mathbb{R}^2 ?

• While, for those who prefer more precise questions:

Question

Does there exist a zero-dimensional family \mathcal{L} of 1-dim subspaces in \mathbb{R}^2 with the following property: given any compact set K with dim $K \leq 1$, there's $L \in \mathcal{L}$ with

 $\dim \pi_L(K) = \dim K?$

A discrete version

 A good starting point would be to understand the following question about point-line incidences.

Question

A set of 1-dim subspaces \mathcal{L} is called *n-good*, if for any set $P \subset \mathbb{R}^2$ with card P = n there exists $L \in \mathcal{L}$ such that

card $\pi_L(P) \ge n^{3/4}$.

How small *n*-good sets are there?

Proposition

All sets \mathcal{L} with card $\mathcal{L} \gg n^{1/2}$ are n-good. No \mathcal{L} with card $\mathcal{L} = C$ is n-good for $n \ge n_C$.

Conjecture

A random choice of $\sim \log n$ lines should be n-good.

Proof of the proposition

- To see that no C-element set can be n-good, there's a direct construction available, but here I present a slicker one that András Máthé noticed.
- Given any finite set K = {k₁,..., k_C} ⊂ ℝ, a construction of Elekes-Erdős says that there exists an *n*-point set A ⊂ ℝ (for some large *n*) containing ≥ n² nomothetic copies of K.
- In other words, there are $\gtrsim n^2$ pairs $(x, y) \in \mathbb{R}^2$ such that $x + yK \subset A$.
- Now, let *P* be the set of these pairs, and note that $\pi_{L_j}(P) \subset A$ for all $L_j := \text{span}\{(1, k_j)\}, 1 \leq j \leq C$. In particular,

$$\operatorname{card} \pi_{L_j}(P) \leq n = (n^2)^{1/2} \lessapprox (\operatorname{card} P)^{1/2}, \quad 1 \leq j \leq C.$$

- G. ELEKES AND P. ERDŐS: *Similar Configurations and Pseudo Grids*, Colloq. Math. Soc. János Bolyai **63** (1994)
- K. FÄSSLER AND T.O.: On restricted families of projections in ℝ³, Proc. LMS (to appear), arXiv:1302.6550
- R. KAUFMAN: On Hausdorff dimension of projections, Mathematika 15 (1968), pp. 153–155
- J.M. MARSTRAND: Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. LMS (3) **4** (1954), pp. 257-302
- P. MATTILA: Hausdorff dimension, orthogonal projections, and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math 1 (1975), pp. 227–244
- T.O.: Hausdorff dimension estimates for restricted families of projections in \mathbb{R}^3 , arXiv:1304.4955