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Outline of the talk

@ Review of the classical results, in so much as they are
relevant for the...

@ ...review of the more recent results.



The questions

@ What is the relation between the size of a set, and the size
of its projections (e.g. onto hyperplanes)?
@ One can think of many ways to ask more specific

questions. Here’s a purely incidence geometric
formulation:

Suppose P c R? consists of n points. How many 1-dim
subspaces L can there be, at most, such that

cardm (P) < n®, s<17?




The questions

@ Szemerédi-Trotter is very efficient here. Assume that there
are k subspaces £ such that card 7, (P) < nSfor L € L.

@ Consider the line family
£t = {n"{ty:Le Land t € 7 (P)}.

Then card £+ < kn®, and there are exactly kn point-line
incidences between P and £+.

@ Szemerédi-Trotter! gives k < max{1, n?s~1}.
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The Questions

@ Here’s the "geometric measure theory formulation™:

Question

Let K ¢ RY be compact with dim K = s. How many
m-dimensional subspaces V can there be such that

dim7y(K) < dimK? (%)

Here my: RY — V is the orthogonal projection.

@ Ifdim K > m, (x) holds for all V, so assume that
dmK < m.



The classical answer

@ Even though Szemerédi-Trotter is no longer available, we
still have quite satisfactory answers:

Theorem (Marstrand-Mattila)

If K ¢ R? and dim K < m, then dim mv(K) = dim K for almost
all m-dim subspaces V.2

@Here "almost all" refers to the natural Haar measure ~q,m living on the
manifold G(d, m) of m-dim subspaces

@ Marstrand proved the case d =2, m =1 in 1954. General
case by Mattila in 1975.

@ Between 1954 and 1975, Kaufman re-proved the case
d =2, m =1 using a technique now known as the
"potential theoretic method". Marstrand’s argument was
more geometric.



The potential theoretic method

@ Let’s recall Kaufman’s argument quickly: understanding the
proof is useful in understanding (the issues in) the
"restricted families" framework a bit later.

@ In the discrete case, a projection is smaller than the set, if
and only if the projection is non-injective. Analogously, the
enemy here is the event that

Ty (X) = mv(y)] < X —yl.

@ The enemy is overcome by simply noting that this cannot
happen for too many V’s.



The potential theoretic method

@ More precisely, fix § >0and z:= x — y ¢ R?\ {0}, and
consider the "sub-level set"

{VeG(d.m): |rv(2)| < d]z}.
@ The volume of this set decays uniformly in zas § — 0:
vam({V € G(d, m) : |7y (2)| < d]z[}) < ™.

@ Note that the decay exponent is the same as in the
assumption "dim K < m" in Marstrand-Mattila’s theorem.



The potential-theoretic method

@ Now, we could prove the Marstrand-Mattila projection
theorem. For simplicity, I'll stick to a discretised version.
@ We say that a union of §-balls is s-dimensional, if there are

~ 6% balls, the set C of their centres is §-separated, and
C also satisfies

S d 2
card[CN B(x,r)] < <—> , xeRY r>4.

2f #°(K) > 0, one can find an s-dimensional collection of §-balls with
centres in K, forany 6 > 0.



Discrete Marstrand-Mattila

Assume that K ¢ B(0,1) is an s-dimensional union of 5-balls.
Then, for t < s, the set of V'’s such that wy(K) can be covered
by < 6t §-balls has v4 m-measure < 65~°.

@ The proof is just double-counting.

@ Whenever 7y (K) can be covered by < §~! 5-balls, then
there are > 6'=2S pairs (c;, Cj), Ci # ¢j such that
‘7T\/(C,' — Cj)‘ < 6.



The details

@ So, if
Ya.m({V : my(K) can be covered by < ¢ !balls}) =: T,
we find
Yam ¥ 8 x 4({(V, ¢, ) : Imv(ci — g)| < 6}) 2 T- 62
@ On the other hand, by the sub-level set estimate,

Ya,m % & < B({(V, ¢, ¢) s Imv(ci — ¢)| < 0})
= vam{V: Inv(c - ¢) < 6})
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An abstraction

@ For later use, | record a more general form of the result,
which follows by the same proof.

@ Let (A,~) be probability space, and let (m),: R? — R™ be
a collection of 1-Lipschitz linear mappings satisfying

YN ma(x)| < 0)x[}) S o

Theorem (Abstract projection theorem (APT))

Assume that K c R is a compact set with dim K < r. Then
dimmy\(K) =dimK fory-a.e. \.




Restricted families of projections

@ What are restricted families of projections? A vague
formulation of the problem could be the following:

@ You have a family of projections, and you’d like to prove
a.s. dimension conservation, but it doesn’t follow from the
APT. Then it’s likely that you're dealing with a restricted
family of projections.

@ At the moment, | don’t know any examples of "restricted
families" in the strict sense; only conjectures and partial
results.



Restricted families of projections: non-examples

@ For (almost) the rest of the talk, I'll concentrate on families
of projections onto lines and planes in R3.

@ First, consider the subfamily G ¢ G(3,1) of all lines
contained in the xy-plane. If x = (0,0, 1), one has

{LeG:m(x)=0}=G.
@ So, there’s no possibility of decay like
Y{LeG: |m(x) <d|xI}) o7, r>0,

and the APT gives nothing useful. There’s also nothing to
be had: the 1-dimensional set K = z-axis 7, -projects to
{0} forall L€ G.



Restricted families: non-examples

@ Now something a bit more complicated: let G € G(3,2) be
the "vertical" planes containing the z-axis.

@ This is a 1-dimensional submanifold, and the best possible
decay for any probability measure g on G is

({V e G |my(x) <d|x|}) <6

The uniformly distributed measure achieves that.

@ Hence, the APT promises dimension conservation for up to
1-dimensional sets. Again, that’s the best you can get,
because any subset K of the xy-plane projects inside the
line VN {xy —plane} for all V € G.



Restricted families of projections

@ These examples are simple — and rather uninteresting —
because they lack curvature.

@ Let’'s add some curvature. Consider a smooth curve
n: (0,1) — S2?, satisfying

span{n(t),i(t),ii()} =R, te(0,1).

@ Something like this:
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Restricted families of projections

@ Then, we get a family of lines and planes by setting

G1(n) == {span{n(t)} : t € (0,1)}
and
Ga(n) := {span{n(t)}* : t € (0,1)}.

@ The examples above were G1(n) and G»(n), corresponding
to the curve n parametrising the unit circle on the xy-plane.
But of course

span{n(t),7(t),7i(t)} = xy — plane

for t € (0,1), so the curvature requirement excludes these
examples.




Restricted families of projections

@ Assuming the curvature condition, counterexamples
become very evasive, so | may as well conjecture:

The projections 7y, L € G1(n), should conserve dimension for
up to 1-dimensional sets, and the projections my, V € Ga(n)
should conserve dimension for up to 2-dimensional sets.




Kaufman’s method

@ Sanity check: does it follows from the APT?

@ The projection families G1(n) and Go(n) are parametrised
by (0, 1), so the most natural choice for g on both
manifolds is essentially £ l0,1)- These bounds are easy
and sharp:

L'{L e Gi(n) : |m(x)| < 6}) S 8'/2,

and
L1{V € Ga(n) : |my(x)] < 6}) S 6.



Kaufman’s method

@ The bounds have the following corollary:

Corollary (to the APT)

The projections ;, L € G1(n), conserve dimension for up to
1/2-dimensional sets, and the projections wy, V € Ga2(n),
conserve dimension for up to 1-dimensional sets.

@ It's worth observing that the "1 /2" already improves on the
non-curved case (where no positive result was to be had),
but the "1" doesn’t.



Small improvements

@ Nevertheless, the "1" is not the end of the story here:

Theorem (Fassler, O. (2013))

For every s > 1, there is o(s) > 1 such that the following holds.
IfdimK = s, thendimmy(K) > o(s) for almost every V € Ga(n).

@ For G4, we obtained the same result for the packing
dimension of projections, but the Hausdorff dimension
narrowly escaped. Except for this special curve:

n(t) = (cos(t),sin(t),1).

Theorem (O. (2013))

For this special curve n, the previous theorem holds with Go
replaced by G; and " " replaced by " /2".




The proof in four slides (1)

@ Recall: we're interested in the one-dimensional family of
2-dim subspaces given by

Vi = span{n(t)}+, t € (0,1).

@ In order for the proof of the APT to work directly, we should
get a good upper bound for

>t lmv(ci— ¢l < 8}

Ci# Cj

for a well-distributed finite set {cy, ..., cy} inside K.
@ But for general ¢; — ¢;, the best we can get is

)
: i— )| <oH < ——.
|{t |7TVt(CI Cj)| = }| ~ |Ci — C/|



The proof in four slides (2)

@ The key words are "general ¢; — ¢;".

@ It's often the case that ¢; — ¢; is not even close to
perpendicular to any of the planes V;, and then in fact

{t: |7rV,(C,- — Cj)| <é}=0

for small 6 > 0.

@ This leads us to consider a "counter-assumption": suppose
that the sum

>t lmv(ci— ¢l < 8}

Ci# Cj

is roughly as large as the "general ¢; — ¢;" estimate allows.
Can we describe the structure of {cq,...,cn}?



The proof in four slides (3)

@ Quite easily, in fact, and here’s the answer:

@ If the sum is almost as large as it can be (in view of the
bound for general ¢; — ¢;), then there’s a 6"-proportion of
the points ¢; such that a 6-proportion of the set
{cy,...,cn} is contained in a 6%-neighbourhood of

ci+C:=c+ U span{n(t)}.
te(0,1)
@ Here k 0, as the counter-assumption gets stronger.

@ Cis a conical surface of some sort, and C(6*) will stand for
its §"-neighbourhood.



The proof in four slides (4)

@ Almost done: since a large part of {cy,...,cn} is
contained in many (c; + C(6"))’s...
@ ...alarge part of {cy,...,cn} is actually contained in

(ci+ C(6")) N (¢ + Cj(d")) for some i # j!

@ We can also choose /, j so that the cone vertices ¢;, ¢; are
pretty far apart.

@ How does (¢; + C(6")) N (¢; + C(6")) look like? Since
(¢i+ C) N (¢; + C) is the intersection of two conical
surfaces, it's something essentially one-dimensional.

@ This is a bit tedious to prove, but the upshot is that we’ve
managed to cram a large part of a > 1-dimensional
discrete set {cy, ..., cy} inside an essentially
one-dimensional set. But that’s just not possible.



Further results

@ The "restricted families of projections" problem in R3 is
closely related to Fourier restriction questions.

@ D. and R. Oberlin wrote a paper about this last year:

Theorem (D. and R. Oberlin, 2013)
Assuming the curvature condition,

3dimK
4

dimmy,(K) >

for almost all t € (0,1). Ifdim K > 2, the lower bound can be
improved to min{dimK — 1/2,2}.




Something | know nothing about

@ It would be nice to improve on these results in R3...
@ ...but similar questions in R? are even more baffling.
@ Vaguely speaking:

Are there/what are the restricted families of projections in R2?

@ While, for those who prefer more precise questions:

Does there exist a zero-dimensional family £ of 1-dim
subspaces in R? with the following property: given any compact
set K with dim K < 1, there’s L € £ with

dim . (K) = dim K?




A discrete version

@ A good starting point would be to understand the following
question about point-line incidences.

Question

A set of 1-dim subspaces L is called n-good, if for any set
P c R? with card P = n there exists L € £ such that

card 7, (P) > n*/4.

How small n-good sets are there?

| \

Proposition

All sets £ with card £ > n'/2 are n-good. No £ withcard £ = C
is n-good for n > ng.

A random choice of ~ log n lines should be n-good.




Proof of the proposition

@ To see that no C-element set can be n-good, there’s a
direct construction available, but here | present a slicker
one that Andras Mathé noticed.

@ Given any finite set K = {ky,...,kc} C R, a construction of
Elekes-Erdds says that there exists an n-point set A C R
(for some large n) containing % n? nomothetic copies of K.

@ In other words, there are 2, n? pairs (x, y) € R? such that
x+yK C A

@ Now, let P be the set of these pairs, and note that
m1,(P) C Aforall L; := span{(1,kj)},1 <j<C. In
particular,

cardm (P) < n= ()2 g (cardP)/2, 1<j<C.
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