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Outline of the talk

Review of the classical results, in so much as they are
relevant for the...
...review of the more recent results.



The questions

What is the relation between the size of a set, and the size
of its projections (e.g. onto hyperplanes)?
One can think of many ways to ask more specific
questions. Here’s a purely incidence geometric
formulation:

Question

Suppose P ⊂ R2 consists of n points. How many 1-dim
subspaces L can there be, at most, such that

cardπL(P) ≤ ns, s < 1?



The questions

Szemerédi-Trotter is very efficient here. Assume that there
are k subspaces L such that cardπL(P) ≤ ns for L ∈ L.
Consider the line family

L⊥ := {π−1
L {t} : L ∈ L and t ∈ πL(P)}.

Then cardL⊥ ≤ kns, and there are exactly kn point-line
incidences between P and L⊥.
Szemerédi-Trotter1 gives k . max{1,n2s−1}.

1|I(P,L⊥)| . |P|2/3|L⊥|2/3 + |P|+ |L⊥|



The Questions

Here’s the "geometric measure theory formulation":

Question

Let K ⊂ Rd be compact with dim K = s. How many
m-dimensional subspaces V can there be such that

dimπV (K ) < dim K ? (∗)

Here πV : Rd → V is the orthogonal projection.

If dim K > m, (∗) holds for all V , so assume that
dim K ≤ m.



The classical answer

Even though Szemerédi-Trotter is no longer available, we
still have quite satisfactory answers:

Theorem (Marstrand-Mattila)

If K ⊂ Rd and dim K ≤ m, then dimπV (K ) = dim K for almost
all m-dim subspaces V .a

aHere "almost all" refers to the natural Haar measure γd,m living on the
manifold G(d ,m) of m-dim subspaces

Marstrand proved the case d = 2, m = 1 in 1954. General
case by Mattila in 1975.
Between 1954 and 1975, Kaufman re-proved the case
d = 2, m = 1 using a technique now known as the
"potential theoretic method". Marstrand’s argument was
more geometric.



The potential theoretic method

Let’s recall Kaufman’s argument quickly: understanding the
proof is useful in understanding (the issues in) the
"restricted families" framework a bit later.
In the discrete case, a projection is smaller than the set, if
and only if the projection is non-injective. Analogously, the
enemy here is the event that

|πV (x)− πV (y)| � |x − y |.

The enemy is overcome by simply noting that this cannot
happen for too many V ’s.



The potential theoretic method

More precisely, fix δ ≥ 0 and z := x − y ∈ Rd \ {0}, and
consider the "sub-level set"

{V ∈ G(d ,m) : |πV (z)| ≤ δ|z|}.

The volume of this set decays uniformly in z as δ → 0:

γd ,m({V ∈ G(d ,m) : |πV (z)| ≤ δ|z|}) . δm.

Note that the decay exponent is the same as in the
assumption "dim K ≤ m" in Marstrand-Mattila’s theorem.



The potential-theoretic method

Now, we could prove the Marstrand-Mattila projection
theorem. For simplicity, I’ll stick to a discretised version.
We say that a union of δ-balls is s-dimensional, if there are
∼ δ−s balls, the set C of their centres is δ-separated, and
C also satisfies

card[C ∩ B(x , r)] .
( r
δ

)s
, x ∈ Rd , r ≥ δ.2

2If Hs(K ) > 0, one can find an s-dimensional collection of δ-balls with
centres in K , for any δ > 0.



Discrete Marstrand-Mattila

Theorem
Assume that K ⊂ B(0,1) is an s-dimensional union of δ-balls.
Then, for t < s, the set of V ’s such that πV (K ) can be covered
by ≤ δ−t δ-balls has γd ,m-measure / δs−t .

The proof is just double-counting.
Whenever πV (K ) can be covered by ≤ δ−t δ-balls, then
there are & δt−2s pairs (ci , cj), ci 6= cj such that
|πV (ci − cj)| < δ.



The details

So, if

γd ,m({V : πV (K ) can be covered by ≤ δ−t balls}) =: Γ,

we find

γd ,m × ]× ]({(V , ci , cj) : |πV (ci − cj)| ≤ δ}) & Γ · δt−2s.

On the other hand, by the sub-level set estimate,

γd ,m × ]× ]({(V , ci , cj) : |πV (ci − cj)| ≤ δ})

=
∑
ci 6=cj

γd ,m({V : |πV (ci − cj)| ≤ δ})

.
∑
ci 6=cj

(
δ

|ci − cj |

)m

≤
∑
ci 6=cj

(
δ

|ci − cj |

)s

/ δ−s.



An abstraction

For later use, I record a more general form of the result,
which follows by the same proof.
Let (Λ, γ) be probability space, and let (πλ)λ : Rd → Rm be
a collection of 1-Lipschitz linear mappings satisfying

γ({λ : |πλ(x)| ≤ δ|x |}) . δr .

Theorem (Abstract projection theorem (APT))

Assume that K ⊂ Rd is a compact set with dim K ≤ r . Then
dimπλ(K ) = dim K for γ-a.e. λ.



Restricted families of projections

What are restricted families of projections? A vague
formulation of the problem could be the following:
You have a family of projections, and you’d like to prove
a.s. dimension conservation, but it doesn’t follow from the
APT. Then it’s likely that you’re dealing with a restricted
family of projections.
At the moment, I don’t know any examples of "restricted
families" in the strict sense; only conjectures and partial
results.



Restricted families of projections: non-examples

For (almost) the rest of the talk, I’ll concentrate on families
of projections onto lines and planes in R3.
First, consider the subfamily G ⊂ G(3,1) of all lines
contained in the xy -plane. If x = (0,0,1), one has

{L ∈ G : πL(x) = 0} = G.

So, there’s no possibility of decay like

γ({L ∈ G : |πL(x)| ≤ δ|x |}) . δr , r > 0,

and the APT gives nothing useful. There’s also nothing to
be had: the 1-dimensional set K = z-axis πL-projects to
{0} for all L ∈ G.



Restricted families: non-examples

Now something a bit more complicated: let G ⊂ G(3,2) be
the "vertical" planes containing the z-axis.
This is a 1-dimensional submanifold, and the best possible
decay for any probability measure γG on G is

γG({V ∈ G : |πV (x)| ≤ δ|x |}) . δ.

The uniformly distributed measure achieves that.
Hence, the APT promises dimension conservation for up to
1-dimensional sets. Again, that’s the best you can get,
because any subset K of the xy -plane projects inside the
line V ∩ {xy − plane} for all V ∈ G.



Restricted families of projections

These examples are simple – and rather uninteresting –
because they lack curvature.
Let’s add some curvature. Consider a smooth curve
η : (0,1)→ S2, satisfying

span{η(t), η̇(t), η̈(t)} = R3, t ∈ (0,1).

Something like this:



Restricted families of projections

Then, we get a family of lines and planes by setting

G1(η) := {span{η(t)} : t ∈ (0,1)}

and
G2(η) := {span{η(t)}⊥ : t ∈ (0,1)}.

The examples above were G1(η) and G2(η), corresponding
to the curve η parametrising the unit circle on the xy -plane.
But of course

span{η(t), η̇(t), η̈(t)} = xy − plane

for t ∈ (0,1), so the curvature requirement excludes these
examples.



Restricted families of projections

Assuming the curvature condition, counterexamples
become very evasive, so I may as well conjecture:

Conjecture

The projections πL, L ∈ G1(η), should conserve dimension for
up to 1-dimensional sets, and the projections πV , V ∈ G2(η)
should conserve dimension for up to 2-dimensional sets.



Kaufman’s method

Sanity check: does it follows from the APT?
The projection families G1(η) and G2(η) are parametrised
by (0,1), so the most natural choice for γG on both
manifolds is essentially L1|(0,1). These bounds are easy
and sharp:

L1({L ∈ G1(η) : |πL(x)| ≤ δ}) . δ1/2,

and
L1({V ∈ G2(η) : |πV (x)| ≤ δ}) . δ.



Kaufman’s method

The bounds have the following corollary:

Corollary (to the APT)

The projections πL, L ∈ G1(η), conserve dimension for up to
1/2-dimensional sets, and the projections πV , V ∈ G2(η),
conserve dimension for up to 1-dimensional sets.

It’s worth observing that the "1/2" already improves on the
non-curved case (where no positive result was to be had),
but the "1" doesn’t.



Small improvements

Nevertheless, the "1" is not the end of the story here:

Theorem (Fässler, O. (2013))

For every s > 1, there is σ(s) > 1 such that the following holds.
If dim K = s, then dimπV (K ) ≥ σ(s) for almost every V ∈ G2(η).

For G1, we obtained the same result for the packing
dimension of projections, but the Hausdorff dimension
narrowly escaped. Except for this special curve:

η(t) = (cos(t), sin(t),1).

Theorem (O. (2013))
For this special curve η, the previous theorem holds with G2
replaced by G1 and "1" replaced by "1/2".



The proof in four slides (1)

Recall: we’re interested in the one-dimensional family of
2-dim subspaces given by

Vt := span{η(t)}⊥, t ∈ (0,1).

In order for the proof of the APT to work directly, we should
get a good upper bound for∑

ci 6=cj

|{t : |πVt (ci − cj)| ≤ δ}|

for a well-distributed finite set {c1, . . . , cN} inside K .
But for general ci − cj , the best we can get is

|{t : |πVt (ci − cj)| ≤ δ}| .
δ

|ci − cj |
.



The proof in four slides (2)

The key words are "general ci − cj ".
It’s often the case that ci − cj is not even close to
perpendicular to any of the planes Vt , and then in fact

{t : |πVt (ci − cj)| ≤ δ} = ∅

for small δ > 0.
This leads us to consider a "counter-assumption": suppose
that the sum ∑

ci 6=cj

|{t : |πVt (ci − cj)| ≤ δ}|

is roughly as large as the "general ci − cj " estimate allows.
Can we describe the structure of {c1, . . . , cN}?



The proof in four slides (3)

Quite easily, in fact, and here’s the answer:
If the sum is almost as large as it can be (in view of the
bound for general ci − cj ), then there’s a δκ-proportion of
the points ci such that a δκ-proportion of the set
{c1, . . . , cN} is contained in a δκ-neighbourhood of

ci + C := ci +
⋃

t∈(0,1)

span{η(t)}.

Here κ↘ 0, as the counter-assumption gets stronger.
C is a conical surface of some sort, and C(δκ) will stand for
its δκ-neighbourhood.



The proof in four slides (4)

Almost done: since a large part of {c1, . . . , cN} is
contained in many (ci + C(δκ))’s...
...a large part of {c1, . . . , cN} is actually contained in
(ci + C(δκ)) ∩ (cj + Cj(δ

κ)) for some i 6= j !
We can also choose i , j so that the cone vertices ci , cj are
pretty far apart.
How does (ci + C(δκ)) ∩ (cj + C(δκ)) look like? Since
(ci + C) ∩ (cj + C) is the intersection of two conical
surfaces, it’s something essentially one-dimensional.
This is a bit tedious to prove, but the upshot is that we’ve
managed to cram a large part of a > 1-dimensional
discrete set {c1, . . . , cN} inside an essentially
one-dimensional set. But that’s just not possible.



Further results

The "restricted families of projections" problem in R3 is
closely related to Fourier restriction questions.
D. and R. Oberlin wrote a paper about this last year:

Theorem (D. and R. Oberlin, 2013)
Assuming the curvature condition,

dimπVt (K ) ≥ 3 dim K
4

for almost all t ∈ (0,1). If dim K ≥ 2, the lower bound can be
improved to min{dim K − 1/2,2}.



Something I know nothing about

It would be nice to improve on these results in R3...
...but similar questions in R2 are even more baffling.
Vaguely speaking:

Question

Are there/what are the restricted families of projections in R2?

While, for those who prefer more precise questions:

Question
Does there exist a zero-dimensional family L of 1-dim
subspaces in R2 with the following property: given any compact
set K with dim K ≤ 1, there’s L ∈ L with

dimπL(K ) = dim K ?



A discrete version

A good starting point would be to understand the following
question about point-line incidences.

Question
A set of 1-dim subspaces L is called n-good, if for any set
P ⊂ R2 with card P = n there exists L ∈ L such that

cardπL(P) ≥ n3/4.

How small n-good sets are there?

Proposition

All sets L with cardL � n1/2 are n-good. No L with cardL = C
is n-good for n ≥ nC .

Conjecture
A random choice of ∼ log n lines should be n-good.



Proof of the proposition

To see that no C-element set can be n-good, there’s a
direct construction available, but here I present a slicker
one that András Máthé noticed.
Given any finite set K = {k1, . . . , kC} ⊂ R, a construction of
Elekes-Erdős says that there exists an n-point set A ⊂ R
(for some large n) containing ' n2 nomothetic copies of K .
In other words, there are ' n2 pairs (x , y) ∈ R2 such that
x + yK ⊂ A.
Now, let P be the set of these pairs, and note that
πLj (P) ⊂ A for all Lj := span{(1, kj)}, 1 ≤ j ≤ C. In
particular,

cardπLj (P) ≤ n = (n2)1/2 / (card P)1/2, 1 ≤ j ≤ C.
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