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Multijoints and colourings

Overview

We’re going to discuss some developments related to the discrete
multilinear Kakeya probem (DMK).

In contrast to “linear” Kakeya, some of the problems in the discrete
setting seem harder than their continuous counterparts – at least in the
sense that the continuous results are known and the discrete variants
remain unknown at present.



Multijoints and colourings

Multijoints

Throughout this talk we will have n families of lines L1, . . . ,Ln in an
n-dimensional vector space Fn over some field F.

We’ll assume that the families are transversal in the sense that if
l1 ∈ L1, . . . , ln ∈ Ln meet at some point x ∈ Fn, then the directions of
the lines span Fn.

We call such a point x a multijoint of {L1, . . . ,Ln} and let J denote
the set of multijoints.

Theorem (AC & S.I.Valdimarsson)

There exists an n-colouring κ : J → {1,2, . . . ,n} such that for each j,
for each l ∈ Lj ,

|{x ∈ J ∩ l : κ(x) = j}| .n |J|1/n.



Multijoints and colourings

Joints

The setting of multijoints is a multiparameter version of the more
familiar joints setting of Sharir et al where we have a single family of
lines L in Rn and we define a joint to be a point of intersection of n of
the lines of L whose directions span Rn. Let J be the set of joints.

Theorem (Guth–Katz, Kaplan–Sharir–Shustin, Quilodrán)

Let L denote |L|. Then
|J| .n Ln/(n−1).

Folklore: Result continues to hold when R is replaced by any field F.

Basic multijoints problem: Count the number of multijoints in terms of
the cardinalities L1, . . . ,Ln of L1, . . . ,Ln respectively.



Multijoints and colourings

Linear vs. multilinear Kakeya

The multijoints problem bears the same relation to the joints problem
as multilinear Kakeya bears to linear Kakeya.

So it is natural to ask whether, in the multijoints setting, we have∑
x∈J

N1(x)1/(n−1) . . .Nn(x)1/(n−1) .n L1/(n−1)
1 . . . L1/(n−1)

n (DMK)

where J is the set of multijoints and where

Nj(x) = |{lj ∈ Lj : x ∈ lj}|.

In particular, do we have

|J| .n L1/(n−1)
1 . . . L1/(n−1)

n ? (Multijoints Problem)

If Lj ∼ L for all j this follows directly from the joints theorem.



Context

Our result and the joints theorem

What does our result

Theorem
There exists an n-colouring κ : J → {1,2, . . . ,n} such that for each j,
for each l ∈ Lj ,

|{x ∈ J ∩ l : κ(x) = j}| .n |J|1/n

have to do with the joints theorem?

Firstly, it implies a (weak) version of the joints theorem:

|J| =
∑
x∈J

1 =
∑

j

∑
{x∈J :κ(x)=j}

1 ≤
∑

j

∑
l∈Lj

∑
{x∈J∩l :κ(x)=j}

1 .n (
∑

j

Lj)|J|1/n

so that
|J| .n Ln/(n−1)

where L =
∑

j Lj .



Context

Our result and the joints theorem, cont’d

Secondly, unsurprisingly, it uses the technology of the proof of the
joints theorem, in particular Quilodrán’s lemma:

Lemma (Quilodrán)

Let L be a set of lines in Rn and J some set of joints of L such that
|J ∩ l | ≥ m for all l ∈ L. Then |J| &n mn.

Folklore: Continues to hold in any field.

Underlying Quilodrán’s lemma is the polynomial method. So there is a
polynomial lurking behind our colouring.

Remark. If we apply Quilodrán’s argument directly, we obtain, for each
x ∈ J, a choice of line such that for all j , for all lj ∈ Lj ,

|{x ∈ J ∩ l : x chooses l}| .n |J|1/n;

however there are potentially many more multijoints which have the
same colour as l than those which simply choose l .



Context

Our result and multilinear Kakeya

The analogous statement in the context of tubes is:

Let T1, . . . , Tn be families of 1-tubes in Rn with the directions of the
tubes in Tj close to the standard basis vector ej (transversality). Let

Q = {Q unit cubes : ∀j ∃T ∈ Tj with Q ∩ T 6= ∅.}

Then there is an n-colouring κ of Q such that for all j , all T ∈ Tj ,

|{Q ∈ Q : Q∩ T 6= ∅ and κ(Q) = j}| .n |Q|1/n.

Guth: this follows from Borsuk–Ulam: take a polynomial p of degree
.n |Q|1/n bisecting each Q ∈ Q. Then Hn−1(Zp ∩Q) &n 1 for each
Q ∈ Q, so we can choose the colour of Q to be j where j is such that
surfej(Zp ∩ Q) &n 1. [ Hn−1(Zp ∩Q) ∼

∑
j surfej(Zp ∩ Q).]

It is not so clear how to create quantities analogous to surfej(Zp ∩ Q) in
the discrete setting.



Context

Remarks

What we have is that there exist Sj : J → R (1 ≤ j ≤ n) such that∑
j

Sj(x) & 1 for all x ∈ J

and, for all j , for all l ∈ Lj ,∑
x∈l

Sj(x) .n |J|1/n.

Our proof is constructive – we actually build the Sj (unlike in some
approaches) – but not really geometric.

This is perhaps the first time that such quantities Sj have been
exhibited in a discrete context (??)

The precise relationship between the quantities Sj and zero sets of
appropriate polynomials is at this stage still unclear.

There is no topology available to us in this context.



Context

Relation to results in discrete geometry

??????



Context

Isn’t it obvious?

Theorem
There exists an n-colouring κ : J → {1,2, . . . ,n} such that for each j,
for each l ∈ Lj ,

|{x ∈ J ∩ l : κ(x) = j}| .n |J|1/n.

Take a polynomial p of degree .n |J|1/n whose zero set Zp contains J.
For those points x where ∇p(x) 6= 0 we shall have that for some j , all
lines l in Lj , l * Zp. (Otherwise, if for all j there is an l ∈ Lj with l ⊆ Zp,
we’ll have ∇p(x) = 0.) Give x colour j and note that for any j and
l ∈ Lj we have {x ∈ J ∩ l : κ(x) = j} ⊆ Zp ∩ l which has cardinality at
most deg p as l * Zp.

But this doesn’t deal with the singular points at which ∇p(x) = 0...

When n = 2 this argument can be modified to work; in any case there
is a simple ad hoc argument covering that case.



Recent history for DMK and counting multijoints

DMK – partial results

When all the lines in Lj are parallel, then DMK holds. This is
Loomis–Whitney.

When we are in Rn and the lines in Lj have directions close to ej ,
then DMK holds. This follows from Guth’s endpoint multilinear
Kakeya theorem.



Recent history for DMK and counting multijoints

More recent history

M. Iliopoulou has made recent progress on the multijoints problem

|J| .n L1/(n−1)
1 . . . L1/(n−1)

n .

In her PhD thesis she proved this in R3 (without the transversality
hypothesis) using the partitioning technique of Guth and Katz and an
analysis of the critical lines (which limited the to euclidean space and
n = 3).

She also proved the stronger result∑
x∈J

N1(x)1/2N2(x)1/2N3(x)1/2 . L1/2
1 L1/2

2 L1/2
3

subject to a mild but annoying technical hypothesis.



Recent history for DMK and counting multijoints

Constants and extremals

In the continuous case, Bennett, Tao and I had shown via a
monotonicity argument that multibushes are quasi-extremals for
Multilinear Kakeya in the regime q > 1/(n − 1). It’s natural to ask
about best constants and extremal configurations in the DMK problem.

In dimension n = 2 of course the best constant is 1 and the DMK
inequality is an identity if we assume that no line in L1 is parallel to any
line in L2.

In higher dimensions, the natural “extremals” for the DMK problem –
multibushes – are not in fact extremals (AC & SIV).

More precisely, in F3
3 we can find 3 families of lines, each of cardinality

5, for which the constant in DMK is 6+4
√

2√
125
∼ 11.66

11.18 .

There are computer-generated examples which are slightly worse.



Proof of result

Overview of proof

The argument is rather combinatorial and formal, with geometry
entering in only one key place.

Let L1, . . . ,Ln be transversal families of lines in Fn and let J be a
subset of their multijoints. Let m ∈ N.

Definition. A colouring κ : J → {1, . . . ,n} is m-bounded if for all j , all
lj ∈ Lj , |{x ∈ J ∩ lj : κ(x) = j}| ≤ m. A subset K ⊆ J is m-good if it is
colourable with an m-bounded colouring.

Theorem. There exists an m .n |J|1/n such that J is m-good.

Main claim. Fix m. Suppose that K ⊆ J is m-good, and suppose
x0 ∈ K \ J. If m & |K |1/n, then K ∪ {x0} is also m-good.

The claim establishes the theorem: singletons are m-good; we add
points one at a time via the claim, the process continuing unhindered
until we’ve added ∼ mn points and exhausted J.



Proof of result

Coloured trees

Main claim. Fix m. Suppose that J is m-good, and suppose x0 /∈ J is a
multijoint. If m & |J|1/n, then J ∪ {x0} is also m-good.

We give J an arbitrary ordering J = {x1, . . . , xν}.
We let K( 6= ∅) be the collection of m-bounded colourings of J.

We will define a strict partial order on K by constructing some coloured
trees. Indeed, for each κ ∈ K we’ll define a coloured tree T (κ) which is
rooted at x0 and whose other vertices will be members of J.

T (κ) will itself be constructed iteratively from an sequence of coloured
trees Ti(κ). We begin with T0(κ) = {x0}.
The following set plays a key role in the construction of Ti(κ): for the
i ’th element [if it exists] yi of Ti−1(κ) and j 6= κ(yi) let

Li
j = {lj ∈ Lj : yi ∈ lj and (∗) holds}

where

(∗) |{x ∈ lj ∩ J : κ(x) = j}|+ |{x ∈ lj ∩ Ti−1 ∩ J : κ(x) 6= j}| ≥ m.



Proof of result

Strict partial order and a dichotomy

Let κ1, κ2 ∈ K. We say that κ1 is more advanced than κ2 if there is
some i0 such that Ti(κ1) = Ti(κ2) for i < i0 but Ti0(κ1) $ Ti0(κ2) as
coloured trees.

Then for all κ ∈ K, either κ is advanceable or it is non-advanceable.

If κ is advanceable, the construction ultimately leads to a more
advanced colouring κ̃ of J ∪ {x0} which is m-bounded. The process
comes to an end as everything is finite. (This part of the argument is
combinatorial and formal.)

If κ is non-advanceable, then we will conlude that |T (κ) ∩ J| &n mn.
But the hypothesis of the main claim is that m & |J|1/n, contradiction.

The colouring κ is non-advanceable if for all i , the collection Li
j is

nonmepty for all j 6= κ(yi).



Proof of result

The heart of the argument

Assume: for all i , for all j 6= κ(yi)

Li
j = {lj ∈ Lj : yi ∈ lj and (∗) holds} 6= ∅, where

(∗) |{x ∈ lj ∩ J : κ(x) = j}|+ |{x ∈ lj ∩ Ti−1 ∩ J : κ(x) 6= j}| ≥ m.

Want to conclude:
|T (κ) ∩ J| &n mn.

The construction ensures that the members of T (κ) ∩ J have the
property that for each j there exists an l ∈ ∪{i :κ(yi )6=j}Li

j which passes
through it.

Thus each member of T (κ) ∩ J is a joint for L := ∪j ∪{i :κ(yi ) 6=j} Li
j .

Furthermore the two sets appearing in (∗) are disjoint subsets of
lj ∩ T (κ) ∩ J. So for any line l ∈ L, say lj ∈ Li

j , we have
|lj ∩ T (κ) ∩ J| ≥ m. Quilodrán’s lemma therefore tells us that
|T (κ) ∩ J| &n mn, as needed.



Speculation

Geometric means?

What we have is that there exist Sj : J → R (1 ≤ j ≤ n) such that∑
j

Sj(x) & 1 for all x ∈ J (1)

and, for all j , for all l ∈ Lj ,∑
x∈l

Sj(x) .n |J|1/n.

What we would really like is that instead of (1) we’d have∏
j

Sj(x)1/n & 1 for all x ∈ J. (2)

or even ∑
j

βjSj(x) & 1 for all x ∈ J (3)

where βj are suitable positive weights.



Speculation

So?

So we’re led to entertain the possibility that the colouring theorem

Theorem
There exists an n-colouring κ : J → {1,2, . . . ,n} such that for each j,
for each l ∈ Lj ,

|{x ∈ J ∩ l : κ(x) = j}| .n |J|1/n

might be just one of a family of such results.

A glance at the proof presented indicates that a suitable
multiparameter Quilodrán lemma would be useful in such an approach.

An alternative approach might be to try to associate a vector of colours
to a multijoint. This leads to a similar questions concerning Quilodrán’s
lemma.



Speculation

Very recent news

Theorem (M.Iliopoulou)

Suppose we are in Rn. Then the multijoints estimate

|J| .n L1/(n−1)
1 . . . L1/(n−1)

n

holds for all n (without the transversality hypothesis), and moreover,
for λj ≥ 1,

|{x ∈ J : Nj(x) > λj for all j}| .n
(L1 . . . Ln)

1/(n−1)

(λ1 . . . λn)1/(n−1) .

This extends the case n = 3 she had previously established. It still
uses the Guth–Katz polynomial partitioning technique plus the idea the
as the multijoints are arranged on lines one can hope to find a
polynomial of smaller-than-expected degree which vanishes on them.



Speculation

Even more recent news

Theorem (M.Iliopoulou)

Suppose we are in F3. Then the multijoints estimate

|J| . L1/2
1 L1/2

2 L1/2
3

holds, and moreover, for λj ≥ 1,

|{x ∈ J : Nj(x) > λj , j = 1,2,3}| . (L1L2L3)
1/2

(λ1λ2λ3)1/2 .

No transversality hypothesis is needed here for estimate on |J|.
The proof uses a probabilistic construction and again the idea that
multijoints are arranged on lines with special structures, so one can
hope to find a polynomial of smaller-than-expected degree which
vanishes on them.

It is not yet clear what the Sj ’s are in these contexts.
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