
Using infinitesimals for algorithms in real

algebraic geometry

by Marie-Françoise Roy
IRMAR (UMR CNRS 6625), Université de Rennes

IPAM,April 12, 2014

talk based on several papers written with S. Basu and/or R. Pollack
see Algorithms in Real Algebraic Geometry S. Basu, R. Pollack, M.-F. R.

1



1 Motivation

critical point method : basis for many quantitative results in real algebraic
geometry (starting with Oleinik-Petrovskii-Thom-Milnor)

wish : use critical point method in algorithms in real algebraic geometry
with singly exponential complexity in problems such as existential theory of
the reals, deciding connectivity (and more)

also in the quadratic and symmetric case (see talk by Cordian Riener)

requires general position, reached through various deformation tricks

in these algorithms, "small enough" is through the use of infinitesimals
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Cylindrical Decomposition is doubly exponential (unavoidable if use
repeated projections, see preceeding lectures)

Critical point method
based on Morse theory
nonsingular bounded compact hypersurface

V = {M ∈Rk , H(M)= 0},
i.e. such that

GradM(H)=

[

∂H

∂X1
(M), ...,

∂H

∂Xk
(M)

]

does not vanish on the zeros of H in Ck

critical points of the projection on the X1 − axis meet all the connected
components of V

Motivation 3



when the X1 direction is a Morse function, there are d(d− 1)k−1 such critical
points (Bezout),

H(M)=
∂H

∂X2
(M)= ...,

∂H

∂Xk
(M)= 0, (1)

(project directly on one line rather than repeated projections)
so : want to find a point in every connected components in time polynomial

in (1/2)d(d− 1)k−1 i.e. dO(k)

BUT
an hypersurface is not always smooth and bounded
choosing a Morse function is difficult
basic problem : take a point outside an hypersurface (the set of directions

which are NOT Morse functions) of degree d k: costs dO(k 2) ... too much ...

Idea : perform a deformation so that (1) has automatically a finite number
of solutions, which are going to be easy to compute...
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2 Definitions

R is a real closed field : ordered field + every positive number is a square+
satisfying the intermediate value theorem for polynomials

Elementary analysis for polynomials : Rolle’s theorem, real root counting
Logical properties : quantifier elimination, transfer
Geometrical properties : finiteness properties of various kinds
C =R[i] is algebraically closed

Examples

Real closed fields can be archimedean (every positive number is smaller
than a natural number) : subfields of R, such as Ralg, the real algebraic
numbers, which is the real closure of Q.

They can also have infinitesimals elements.

Definitions 5



Puiseux series

R〈〈ε〉〉field of real Puiseux series in ε with coefficients in R

ε is positive and smaller than any positive element of R
rational exponents are needed such as : ε

√

series of the form

∑

i>i0

ai ε
i/q

where i0∈Z, q ∈N, ai∈R

positive is ai0 is positive
contains the field R(ε)

Exercise: Prove that any positive element has a square root
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R〈ε〉real closure of R(ε) smallest real closed field containing R(ǫ)
two possible descriptions
1 algebraic real Puiseux series in ε with coefficients in R

2 germs of semi-algebraic continuous functions

f ∽ g iff ∃t0, t0> 0, ∀t, 0< t< t0, f(t)= g(t)
f < g iff ∃t0, t0> 0, ∀t, 0<t< t0, f(t)< g(t)
An algebraic real Puiseux series defines a germ of semi-algebraic function

Example : ε1/3 is a solution of the equation y 3= ε and defines the germ

of semi-algebraic function associated to y= x1/3

Exercise : Prove that the germ of x is infinitesimal

Definitions 7



gives a rigorous interpretation of “for a positive and small enough number”
in the context of real algebraic geometry (functions are only polynomials, semi-
algebraic functions, this is NOT non standard analysis ...)

∑

i>i0

ai ε
i/q

where i0∈Z, q ∈N, ai∈R

limit ? no analysis: constant term of a bounded Puiseux series !
If i0 < 0, the Puiseux series is infinite (absolute value bigger than any

element of R)
If i0> 0, the Puiseux series is bounded and the limit is ai0 (“obtained by

making ε=0”)

very particular case of the method of ideal points (cf. Michel Coste’s talk)
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geometry on a general real closed field

semi-algebraic sets

compact ? [0, 1]⊂Ralg is not compact replace by closed and bounded

connected components ? Ralg is not connected (think of π) need to be
replaced by “semi-algebraically connected components” (only covers to con-
sider are the semi-algebraic ones)

important to take into account the defining equations, [0, π]∩Ralg is NOT
a semi-algebraic subset of Ralg (not a finite union of points and intervals with
end points algebraic numbers: be aware of the syntax !
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R⊂R′, two real closed fields
extension of a semi-algebraic set S ⊂ R k (defined by polynomials with

coefficients in R) to R′

description of S

S= {x∈R k|Φ(x)}
Φ can be a quantifier free formula, or a general first order formula (with
parameters in the field R)

definition of the extension of S to R′ Ext(S,R′)

Ext(S,R′)=
{

x∈R′ k|Φ(x)
}
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This extension is well defined : if

S= {x∈R k|Φ(x)}= {x∈R k|Ψ(x)}

Ext(S,R′)=
{

x∈R′ k|Φ(x)
}

=
{

x∈R′ k|Ψ(x)
}

uses quantifier elimination, completeness of the theory of real closed fields
Exercizes

S is non empty if and only if Ext(S,R′) is non empty (hint: formula)
S is finite if and only if Ext(S,R′) is finite (hint: formula)
dim (S)= dim (Ext(S,R′)) (hint : CAD+formula)

also topology: same Betti numbers, same Euler-Poincaré characteristic
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3 Sampling on an algebraic set

find (at least) a point in every semi-algebraically connected component of an
algebraic set

several equations reduce to one equation by sum of squares (reals !)

bounded : intersect with big sphere (adds one infinitesimal)

deformation so : smooth and X1 is a good Morse projection
(this is crucial for us since determining a good Morse projection would spoil

the dO(k) complexity, and not determining a good Morse projection leads to
a “probabilistic algorithm”)
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Deformation explained by an example

Let Q∈R[X1, X2, X3] be defined by

Q=X2
2−X1

2+X1
4+X2

4+X3
4.

Figure 1.
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Def(Q, ε)=Q2− ε (X1
10+X2

10+X3
10+1).

Figure 2.

special deformation such that X1 is good : modify using an object which
does what you want
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geometric aspect

Def(Q, ε) defines a smoth hypersurface inside R〈ε〉k: By Sard’s theorem

the values of t ∈ R such that Zer(Def(Q, t)) ⊂ Rk is singular are in finite

number, so for 0 < t < t0 small enough Zer(Def(Q, t)) ⊂ Rk is smooth, so
Zer(Def(Q, ε))⊂R〈ε〉 k smooth

various algebraic tools

polynomials in D[X1, ..., Xk], D an ordered domain, computations take
place there (example: subresultants used for real root counting are determi-
nants of matrices with entries the coefficients ...)

after deformation D[ε][X1, ..., Xk]
polynomial system solving: uses Groebner basis, the fact that the defor-

mation involves high degree terms gives “automatic” Groebner basis

number of solutions O(d) k, complexity in D[ε] : dO(k), degree in ε: O(d)k,

so complexity in D dO(k)
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project to a line by a separating linear form: univariate polynomial

depending on T , ε of degree O(d) k

representation of points (which are necessarily algebraic Puiseux series,
and not in the field of fractions of D[ε]) : rational functions of the root of a
univariate polynomial

take the limit of these points: replace ε by 0 (details to take care of to avoid
0/0)

• complexity

Grigori’ev/Vorobjov, Canny, Renegar, Heintz/R./Solerno, Basu/Pol-
lack/R.

Sampling points of connected components of algebraic sets

dO(k)

quasi-optimal since polynomial in the size of the output
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4 Finding all realizable sign conditions

Existential theory of the reals

a point (at least) in every semi-algebraically connected component of all
realizable sign conditions on a family of polynomials P

not too many intersections: general position

more than k polynomials have no common zeroes (needs a new deforma-
tion)
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Hk(d, i)= 1+
∑

1≤j≤k

ijXj
d,

these particular polynomials are in general position, otherwise a non zero
polynomial of degree k has more than k solutions

replace each Pi∈P by four polynomials depending on two infinitesimals

Pi
⋆ = {(1− δ)Pi+ δHk(d

′, i), (1− δ)Pi− δHk(d
′, i),

(1− δ)Pi+ δ γHk(d
′, i), (1− δ)Pi− δ γHk(d

′, i)}

with d′>d (degree of polynomials in P)
P⋆=∪i=1

s Pi
⋆ also in general position (in R〈δ, γ 〉 k)
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Proposition 1. Let C ⊂Rk be a semi-algebraically connected component of

the realization of the sign condition

Pi = 0, i∈ I ⊂{1, ..., s},
Pi > 0, i∈{1, ..., s} \ I.

Then there exists a semi-algebraically connected component C ′ of the

subset C̃ ⊂R〈ε, δ, γ 〉k defined by the weak sign condition

−γ δHk(d
′, i)≤ (1− δ)Pi≤ γ δHk(d

′, i), i∈ I ,

(1− δ)Pi≥ δHk(d
′, i), i∈{1, ..., s} \ I

ε(X1
2+ ···+Xk

2)≤ 1

such that limγ (C ′) is contained in the extension of C to R〈ε, δ, γ 〉.
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algebraic sampling in each of the algebraic sets defined by less that k polyno-
mials in P⋆: s-a connected components of all realizable sign conditions on P⋆

sk cases to consider, in each case algebraic sampling+sign determination
after deformation D[ε, δ, γ][X1, ..., Xk]

for each case sampling dO(k)in D[ε, δ, γ]
needed to find the sign of the polynomials at these points s dO(k)

degree of the algebraic points O(d) k (no s)

degree in the infinitesimals O(d) k

fixed number of infinitesimals ...
Complexity sk+1dO(k), quasi optimal
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also Euler-Poincaré characteristic of sign conditions

NB we replaced inequalities by weak inequalities, using two infinitesimals.
If we are interested in one single sign condition, one infinitesimal is enough.

But the complexity, for one single sign condition remains sk+1dO(k)

Two infinitesimals are enough to have a point in every connected compo-
nent of every realizable sign condition, but to control more fully the topology
more infinitesimals are needed: two infinitesimals for each homology group (cf
talk by Nikolai Vorobjov)
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quantitative “curve selection lemma” for free

x∈ S̄ , ∃t0, ∃ϕ: [0, t0)→R, ϕ(0)= x, ϕ((0, t0))⊂S

not true in analysis but true in real algebraic geometry: semi-algebraic sets
are “tame”

result of Jelonek-Kurdyka Reaching generalized critical values of a polyno-
mial (arxiv, august 2013): curve selection lemma “at infinity”, based on affine

curve selection lemma; obtain a path of degree dO(k2)
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another approach (Basu/R., to be written)

using infinitesimals+sampling
x∈ S̄ , ∀t > 0, B(x, t)∩S=∅ so B(x, ε)∩Ext(S,R〈ε〉)=∅
using sampling find a point γ in B(x, ε)∩Ext(S,R〈ε〉), lim (γ)= x

γ is an algebraic Puiseux series, so defines a germ of semi-algebraic function
i.e. a “little path”

quantitative analysis: degree in ε : O(d) k

not totally immediate: needs to inspect the nature of computations made
inside sampling: determinant of matrices of size O(d) k ...
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5 Deciding connectivity

• Deciding connectivity : roadmap
• roadmap definition

semi-algebraic set M of dimension at most one contained in S

− RM1 For every connected component D of S, D ∩ M is semi-
algebraically connected.

− RM2 For every x∈R and for every connected component D ′ of
Sx, D

′∩M =/ ∅.
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• the torus

X1

X2

X3

Figure 3. A torus in R
3
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perform sampling points parametrically : for every value of X1 find a
point in every semi-algebraically connected component of the fiber

Figure 4. Parametrized sampling points on a torus in R3
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then make a recursion, again hypersurface, in an hyperplane

X1

X2

X3

Figure 5. The roadmap of the torus

single exponential complexity : dO(k 2)

(number of recursive calls)

So, complexity of classical roadmaps dO(k2)....
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Divide and conquer roadmaps

S (very particular) basic closed semi-algebraic set of dimension p (a power
of 2 for simplicity) inside R k

divide consider a p/2-dimensional subset S0 of S (think of a finite number
of critical points, above each y ∈Rp/2) and make recursive calls

- at S0 itself

- at S1, union of special fibers: k − p/2-dimensional linear spaces inter-
sected with S (corresponding to places where the connectedness has to be
controlled)

both of dimension p/2 !

topological lemma : prove that (S,S0,S1) have good connectivity property

two points in S0 ∪ S1 which are in the same s-a connected component of
S are in the same s-a connected component of S0∪S1

then recurse : conquer
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main difficulty to overcome: in recursive calls, no more an hypersurface in
a smaller ambiant space but algebraic sets of various codimensions (even if
the starting point is an hypersurface of dimension k− 1)

genericity properties are difficult to maintain throughout the algorithm ...

Two approaches

-work of Safey and Schost in the case of a smooth hypersurface (proba-
bilistic) using polar varieties

(probabilistic because not possible to find good Morse functions within the
complexity aimed at)

-work of Basu and R. in the case of a general real algebraic set, using
deformations and semi-algebraic techniques

paper under revision to appear in Discrete and Computational Geometry,
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Our statement

Theorem 2.

Let V be the zero set of a polynomials of degree d in k variables and with

coefficients in an ordered domain D. We describe

1. algorithm for constructing a roadmap for V using
(

klog(k) d
)

O(klog2(k))

arithmetic operations in D

2. algorithm for counting the number of connected components of V using
(

klog(k) d
)

O(klog2(k)) arithmetic operations in D.

3. algorithm for deciding whether two given points belong to the same con-

nected component of V using
(

klog(k) d
)

O(klog2(k)) arithmetic operations

in D.
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number of infinitesimals 4 log (k− 1): four new infinitesimals per recursion
level

first three infinitesimals ζ , ε, δ used to modify S into S̃ so that a function
G (chosen in advance) has a finite number of critical points when we consider

a fiber where p/2 variables are fixed : this defines S̃
0 of dimension p/2 (in

same ambiant space): critical point parametrized by R〈ζ , ε, δ〉p/2
then define special fibers in R〈ζ , ε, δ〉k−p/2 : S̃ 1 ensuring connectivity

for the deformation defining S̃ : use the rows of a matrix with “good rank
property” (all its square minors are non zero) for coefficients: technique coming
from Jeronimo/Perrucci ’s work on optimization (see Daniel Perrucci’s talk)

lim
(

S̃
)

=S

fourth infinitesimal : S̃ 0 is covered by open charts and is the limit of closed
(semi-algebraic) sets (shrinking a little these charts)

degree in the remaining variables and infinitesimals O
(

klog(k) d
)

klog(k)
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There is so much we do not know

local conical structure (also at infinity) see Nikolai Vorobjov’s problem
in the session problem

x∈S, ∀t,0<t< t0, B(x, t)∩S is homeomorphic to the cone centered at x
and based on S(x, t)∩S

Looks like (and is very similar to) the “curve selection lemma”
Property true for t small enough (i.e. 0<t< t0), i.e. is true in R〈ε〉
But we do not have a good bound (i.e. singly exponential in k) on the

degree of the polynomials defining t0. Related to the structure of singularities.
For smooth situation, critical points are good, but the deformation “loses”
information on singularities.

Emptyness, Euler-Poincaré characteristic, connectedness are well con-
trolled using critical point method, topology in general is not.
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