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• 1 Some basic algorithmic problems

• effectivity : existence of an algorithm,

(1)Real root counting: count the number of real roots of a univariate
polynomial, Sturm 1836

(2) Existential theory of the reals decide whether a semi-algebraic
set is empty Tarski 1939 (undecidable on integers Matiyasevich 1973)

(3) Algebraic certificates find an algebraic certificate for the fact
that a polynomial is non negative (Hilbert 17th problem) Kreisel 1953,
emptyness of basic semi-algebraic sets (positivstellensatz) Lombardi
1993
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(4) Decide connectivity decide whether a semi-algebraic set is
connected : cylindrical decomposition: Lojasiewicz, Collins (1960-
70), Schwartz-Sharir, describe connected components, also cylindrical
decomposition

(5) Stratification: decompose a semi-algebraic set in smooth mani-
folds of various dimensions by cylindrical decomposition

(6) Betti numbers compute the topological invariants (Betti num-
bers) of semi algebraic sets using this stratification

also more general problems : deciding first order formulae, eliminating
quantifiers and non-effectivity phenomena (see lecture by Michel Coste)

Some basic algorithmic problems 3



• complexity : function of size of the input (s number of polynomials, k
number of variables, d degrees, τ bitsize)

(1) Real root counting complexity quasi linear in degree (Schonhage,
Lickteig/R)

(2) Existential theory of the reals and (4)Deciding connectivity

polynomial in s, d and τ , doubly exponential in k by cylindrical decom-
position, singly exponential in k by critical points method (various
contributions see Basu/Pollack/R book)

(3) Algebraic certificates : elementary complexity (tower of expo-
nents of height 5, Lombardi/Perrucci/R) while single exponential com-
plexity for Hilbert nullstellensatz (Kollar, Jelonek))
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(5) Stratification and (6)Computing Betti numbers : polynomial
in d, and τ , doubly exponential k by cylindrical decomposition. Singly
exponential ? partial results for Betti one (Basu/Pollack/R 2004), for
a few first Betti numbers (Basu 2004)

(2’) Existential theory of the reals in the quadratic case: polyno-
mial in k (Grigor’ev Pasechnik), also optimization

(6’)Betti numbers in the quadratic case: for the top ones, polynomial
in k (Basu 2004)

(2”) Existential theory of the reals in the symmetric case: polyno-
mial in k (Basu, Riener), also optimization
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• 2 Real root counting : subresultants
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j-th subresultant srj(P , Q): determinant of p+ q− 2j first columns
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• important for complex root counting

Proposition 1. deg (gcd (P , Q))>ℓ if and only if

sr0(P , Q)= ···= srℓ(P , Q)= 0.

proof easy: linear algebra
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• important for real root counting

Cauchy index of Q/P , Ind(Q/P ) : number of jumps from −∞ to
+∞ minus number of jumps from +∞ to −∞

Number of real roots = Ind(P ′/P ), also: number of roots with
polynomial constraints

PmV(s) = difference between the number of sign permanences and
the number of sign variations in s = sp, ..., s0, if all elements of s are
=0 (more technical if there are zeroes)

Theorem 2. PmV(sr(P , Q))= Ind(Q/P ).

proof: relate the subresultants of P , Q to those of Q, −R where
R=Rem(P , Q) and make an induction
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• important for complexity

d degree, τ bitsize
- computations in Q, answers in R

- computed by a variant of remainder sequence O(d) arithmetic oper-
ations O(d3 τ ) bit operations
- using that gcd and quotient suffice: Õ(d ) arithmetic operations and

Õ(d 2 τ ) bit operations (Schonhage, Lickteig/R ....)
- bitsize of intermediate computations controlled (determinants)
- good specialization properties when there are parameters (determi-
nants, so no denominators)
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• 3 Cylindrical decomposition

• cylindrical decomposition of Rk

sequence S1, ...,Sk, where Si decomposes Ri in cells , such that

a) S ∈S1 is either a point or an open interval

b) for every S ∈S j , j < k there exist semi algebraic functions ξS,j

ξS,1< ... < ξS,ℓS:S−→R ,

such that the cylinder S×R⊂Ri+1 is the disjoint union of cells
of Si+1

◦ either a graph ΓS,j, of one of the ξS,j, pour j=1, ..., ℓS

◦ or a band BS,j of the cylinder between the graphs of two
functions ξS,j and ξS,j+1

cylindrical algebraic decomposition adapted to a family of polynomials : on
each cell the signs of the polynomials in P are fixed
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• picture : the sphere

π2

π1

Figure 1. cylindrical decomposition adapted to the sphere
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• Theorem 3. For every finite P ⊂ R[X1, ..., Xk], there exists a cylin-

drical algebraic decomposition of Rk adapted to P.

idea: fix the degree of all gcd of two polynomials in the family so
that roots dont mix up, using subresultant

induction on number of variables

as a consequence : semi-algebraic set: finite union of connected
pieces, semi-algebraically homeomorphic to open cubes
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• cylindrical decomposition algorithm

projection phase : Elim(P) compute subresultants of pairs of (trun-
cations of) polynomials in the family recursively

above a connected component of the realization of a sign condition
on Elim(P) the cylinder of sign conditions satisfied by P is fixed

lifting phase : produce a sampling point in each cell starting from
the line (needs to deal with real algebraic numbers)
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advantages

very simple
produces a lot of information
solves the Existential theory of the reals (and much more, see

Michel’s talk)
Decides connectivity, describes connected components
gives a Stratification (after linear change of variables) thus all the

Betti numbers
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inconvenience : complexity doubly exponential in the number of
variables:

eliminating one variable squares the degree and the number of poly-
nomials

doubly exponential

O(s d)2
k−1

(dependance in s doubly exponential even in o-minimal setting, see
Saugata’s talk)

Doubly exponential dependence of Cylindrical Decomposition is
unavoidable. Lower bound due to Davenport and Heintz [1988].
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• 4 Criticalpoints: singlyexponential complexity

• geometrically

based on Morse, Oleinick, Petrowski, Thom, Milnor
nonsingular bounded compact hypersurface

V = {M ∈Rk , H(M)= 0},

i.e. such that

GradM(H)=

[

∂H

∂X1
(M), ...,

∂H

∂Xk

(M)

]

does not vanish on the zeros of H in Ck.
critical points of the projection on the X − axis meet all the connected
components of V
except special cases, d(d− 1)k−1 such critical points (Bezout),

H(M)=
∂H

∂X2
(M)= ...,

∂H

∂Xk

(M)= 0,
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general case

several equations reduce to one equation by sum of squares (reals !)

bounded by adding one variable and taking intersection between
cylinder and big sphere

deformation so that it becomes smooth and X1-is guaranteed to be a
good Morse projection

(this is crucial for us since determining a good Morse projection would
spoil the complexity, and not determining a good Morse projection leads
to a “probabilistic algorithm” (see later for roadmaps))

Critical points: singly exponential complexity 17



Deformation explained by an example

Let Q∈R[X1, X2, X3] be defined by

Q=X2
2−X1

2+X1
4+X2

4+X3
4.

Figure 2.
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Def(Q, ζ)=Q2− ζ (X1
10+X2

10+X3
10+1).

Figure 3.

special deformation such that X1 is good (no linear change of variable)
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• complexity

Grigori’ev/Vorobjov, Canny, Renegar, Heintz/Roy/Solerno, Basu/Pol-
lack/Roy

a point in every connected component of an algebraic set: finite number
(single exponential) of critical points,

polynomial system solving : complexity polynomial in the finite
number of solutions
projection on a well chosen line : solutions expressed in terms of roots
of a univariate polynomial of degree the number of solutions

Sampling points of connected components of algebraic sets

dO(k)

quasi-optimal since polynomial in the sign of the output
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reduction to smooth and bounded: infinitesimals and limits
• infinitesimals ?

R(ε) ordered by: ε> 0, ε< r for every positive r ∈R

field of algebraic Puiseux series R〈ε〉, real closure of R(ε)
computations in Q(ε), answers about R〈ε〉
similar to computations over Q, answer about R

• limits ?
no analysis: constant term of a bounded Puiseux series
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• Existential theory of the reals

a point in every connected component of a semi-algebraic set
• use infinitesimals

Proposition 4. C connected component of a set defined by

P1= ···=Pℓ=0, Pℓ+1> 0, ···, Ps> 0

exist indices i1, ..., im such that

P1= ···=Pℓ=Pi1− ε= ···Pim − ε=0

has a connected component D contained in C.
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• complexity singly exponential

-not too many intersections: general position worst case (needs a
new deformation)

- for each algebraic set single exponential

- sk+1dO(k) for finding simultaneously sampling points in connected
components of all non empty sign conditions

also Euler-Poincaré characteristic of sign conditions

More general results (see Michel’s talk)
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• Deciding connectivity : roadmap
• roadmap definition

semi-algebraic set M of dimension at most one contained in S

− RM1 For every connected component D of S, D∩M is semi-
algebraically connected.

− RM2 For every x∈R and for every connected component D ′

of Sx, D
′∩M =/ ∅.

24 Section 4



• the torus

X1

X2

X3

Figure 4. A torus in R
3
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perform sampling points parametrically

Figure 5. Parametrized sampling points on a torus in R3
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then make a recursion

X1

X2

X3

Figure 6. The roadmap of the torus

single exponential complexity : dO(k 2)

(number of recursive calls)
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construct connecting path : roadmap through a point, counts connected
components
• describe connected components

parametrized connecting paths

singly exponential complexity dk
O(1)

• compute the first Betti number b1 (Basu/Pollack/R 2004)
cover by contractible sets using parametrized paths
cover by closed contractible sets (using Gabrielov-Vorobjov reduc-

tion to P-closed)
use Mayer-Vietoris sequences
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So, complexity of classical roadmaps dO(k2)....

Some motivation behind trying to improve this result

• number of connected components of an algebraic set Zer(Q, Rk) is
bounded by O(d)k where d= deg (Q)

• algorithms for testing emptiness and for computing the Euler-Poincaŕe

characteristic with complexity dO(k)

• D’Acunto, Kurdyka : geodesic diameter of any connected compo-
nent of a real variety (defined by polynomials of degree d) contained in

an unit ball bounded by dO(k), no complexity bound on the description
of the path

• many other algorithms in real algebraic geometry use roadmap
construction as an intermediate step (i.e. describing connected com-
ponents, computing higher Betti numbers)
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Divide and conquer roadmaps

S basic closed semi-algebraic set
consider a k/2-dimensional subset S0 of S (think of a finite number of

critical points, above each y ∈R
k/2

) and make recursive calls
- at S0 itself
- at S1, union of certain (k/2)-dimensional linear spaces intersected with S

prove that (S, S0, S1) have good connectivity property
main difficulty to overcome: in recursive calls, no more an hypersurface in

a smaller ambiant space but algebraic sets of various codimensions (even if
the starting point is an hypersurface)

even if the original situation is sufficiently generic, such genericity proper-
ties are difficult to maintain throughout the algorithm ...
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Two approaches

-work of Safey and Schost in the case of a smooth hypersurface (proba-
bilistic) using polar varieties

over 125 pages
(probabilistic because not possible to find good Morse functions within the

complexity aimed at)

-work of Basu and R. in the case of a general real algebraic set, using
deformations and semi-algebraic techniques

paper under revision to appear in Discrete and Computational Geometry,
50 pages

(but uses book Algorithms in Real Algebraic Geometry Basu, Pollack, R.,
over 600 pages)

Critical points: singly exponential complexity 31



Statement

Theorem 5.

Let V be the zero set of a polynomials of degree d in k variables and with

coefficients in an ordered domain D. We describe

1. algorithm for constructing a roadmap for V using
(

klog(k) d
)

klog2(k)

arithmetic operations in D

2. algorithm for counting the number of connected components of V using
(

klog(k) d
)

klog2(k) arithmetic operations in D.

3. algorithm for deciding whether two given points belong to the same

connected component of V using
(

klog(k) d
)

klog2(k) arithmetic operations

in D.
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• 5 Quadratic case: polynomial in k

• Sampling for algebraic sets Grigor’ev Pasechnik
s quadratic equations, dimension k

derivatives of quadratic are linear
go to s+ k variables
a generic linear combination of s matrices of size k + s is of rank
k− s+1
use there single exponential complexity

kO(s)

similar results for optimization in the quadratic case
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• 6 Symmetric case: polynomial in k

• Existential theory of the reals

degree principle (Timofte, Riener)
if x∈Rk is an isolated point of a set defined by symmetric polyno-

mials, its number of distinct coordinates if at most d
Csq: existential theory of reals (d s k)O(d)

polynomial in k but exponential in d

computation of the Euler-Poincaré characteristic (Basu/Riener,
2014) using symmetric Morse theory (see Cordian’s talk in next work-
shop)
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• 7 Open problems

Stratification (single exponential complexity)?
All Betti numbers (single exponential complexity)?
Extend results in quadratic case

Divide and conquer road map in the semi-algebraic case
Computation of connected components by divide and conquer

Symmetric Morse theory+divide and conquer for symmetric roadmap
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