Distinct distances on algebraic curves

Frank de Zeeuw – EPFL

IPAM Workshop I:
Combinatorial geometry problems at the algebraic interface

March 27, 2014
SSS - Micha Sharir, Adam Sheffer, and József Solymosi,
Distinct distances on two lines,

PZ - János Pach and Frank de Zeeuw,
Distinct distances on algebraic curves in the plane,

VZ - Claudiu Valculescu and Frank de Zeeuw,
Distinct pinned triangle areas on algebraic curves,
Background

- **Elekes-Rónyai** (2000): Given two sets of \(n\) points on two lines in \(\mathbb{R}^2\), the number of distinct distances between the sets is superlinear, unless the lines are parallel or orthogonal.
 (Corollary of a more general theorem about polynomials, improved by Raz-Sharir-Solymosi in 2014.)

- **Elekes** (1999): The number of distances is \(\Omega(n^{5/4})\), unless the two lines are parallel or orthogonal.

- **Conjecture**: \(\Omega(n^{2-\epsilon})\)
Distances between two algebraic curves

Theorem (Sharir-Sheffer-Solymosi, 2013)

Given two n-point sets on two lines in \(\mathbb{R}^2 \), the number of distances between them is \(\Omega(n^{4/3}) \), unless the lines are parallel or orthogonal.

- \(cn \) distances on parallel lines:
- \(cn \) distances on orthogonal lines:

Theorem (Pach-De Zeeuw, 2013)

Given two n-point sets on two irreducible algebraic curves of degree \(d \) in \(\mathbb{R}^2 \), there are \(\Omega_d(n^{4/3}) \) distances between them, unless the curves are parallel lines, orthogonal lines, or concentric circles.

- \(cn \) on concentric circles:
Theorem (Charalambides, July 2013)

Given n points on an irreducible algebraic curve of degree d in \mathbb{R}^2, there are $\Omega_d(n^{5/4})$ distinct distances, unless it is a line or a circle.

Charalambides used the approach of Elekes’s 1999 paper, with some algebraic geometry, analysis, and rigidity theory.

Theorem (PZ, August 2013)

Given n points on an irreducible algebraic curve of degree d in \mathbb{R}^2, there are $\Omega_d(n^{4/3})$ distinct distances, unless it is a line or a circle.

Charalambides proved his bound in any dimension, with the exceptional curves being “algebraic helices” like

$$\gamma(t) = (\cos(\lambda_1 t), \sin(\lambda_1 t), \cos(\lambda_2 t), \sin(\lambda_2 t)), \quad \lambda_i \in \mathbb{Q} \cdot \pi.$$
Motivation

Theorem (PZ)

Given n points on an irreducible algebraic curve of degree d in \mathbb{R}^2, there are $\geq c_d n^{4/3}$ distances, unless it is contains a line or circle.

Interpolation: Given any n points in \mathbb{R}^2, there is a curve of degree $c \sqrt{n}$ passing through them.

Suppose we lived in a fantasy world where we could prove the above with $c_d = d^{-2/3}$. Then it would follow that a set with $o(n)$ distinct distances would have to have many points on lines or circles. That sounds like a grid...

Back to the real world. In the current proof we have $c_d = d^{-11}$. It seems that the best we could do with this setup is $d^{-4/3}$.
Main open problems

- Improve the exponent $4/3$.

- Extend to curves in **higher dimensions**.

- Extend to **general polynomials** $F: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$: For $S \subset C$ we should have
 $$|F(S, S)| = \Omega_{\deg(C), \deg(F)} \left(|S|^{4/3}\right),$$
 unless C is special or F is special.

- Extend to functions with **more variables**, like distinct areas of triangles determined by triples of points on a curve.

- Extend to **“implicit functions”**: e.g., show that if n points on a curve span $\Omega(n^{2-\alpha})$ triple lines, then it must be a cubic curve (done for small α by Elekes-Szabó). Or with unit area triangles.
For \(p, q \in \mathbb{R}^2 \), let \(F(p, q) = y_px_q - x_py_q \). Then \(|F(p, q)|/2 \) is the area of the triangle spanned by \(p, q, \) and the origin.

Theorem (Iosevich-Roche-Newton-Rudnev, 2011)

A set of \(n \) points in \(\mathbb{R}^2 \) determines \(\Omega(n/\log(n)) \) distinct values of \(F \), unless the points lie on a line (through the origin).
Pinned triangle areas on curves

Theorem (Charalambides, 2013)

Given n points on an irreducible algebraic curve of degree d in \mathbb{R}^2, there are $\Omega_d(n^{5/4})$ distinct values of F, unless the curve is a line, ellipse centred at the origin, or hyperbola centred at the origin.

Theorem (Valculescu-De Zeeuw, 2014)

Given n points on an irreducible algebraic curve of degree d in \mathbb{R}^2, there are $\Omega_d(n^{4/3})$ distinct values of F, unless the curve is a line, ellipse centred at the origin, or hyperbola centred at the origin.
Proof of SSS

Recall:

Theorem (Sharir-Sheffer-Solymosi, 2013)

Given two lines in \mathbb{R}^2 with n points each, the number of distances is $|D| = \Omega(n^{4/3})$, unless the two lines are parallel or orthogonal.

We have $S_1 \subset l_1$, $S_2 \subset l_2$, $|S_1| = |S_2| = n$.

We count the quadruples

$$Q = \{(p, p', q, q') \in S_1^2 \times S_2^2 : d(p, q) = d(p', q')\}.$$

Then

$$\frac{n^4}{|D|} \leq |Q| \preceq cn^{8/3} \implies |D| = \Omega(n^{4/3}).$$

The lower bound for $|Q|$ is easy with Cauchy-Schwarz; the upper bound is all the work. The main tool is Pach-Sharir.
Proof of SSS

For \(p_i, p_j \in S_1 \) define an algebraic curve in \(\mathbb{R}^4 \) by

\[
\gamma_{ij} = \left\{ (q, q') \in l_2 \times l_2 : d(p_i, q) = d(p_j, q') \right\},
\]

which is actually a hyperbola on a fixed plane. We have \(n^2 \) curves in

\[
\Gamma = \{ \gamma_{ij} : p_i, p_j \in S_1 \}
\]

and \(n^2 \) points in

\[
P = \{ (q_s, q_t) : q_s, q_t \in S_2 \}.
\]

Then

\[
|Q| = I(P, \Gamma) = |\{(p, \gamma) \in P \times \Gamma : p \in \gamma\}|.
\]
Theorem (Pach-Sharir, 1992)

Given $P \subset \mathbb{R}^D$ and Γ a set of algebraic curves in \mathbb{R}^D with two degrees of freedom:

- any $\gamma, \gamma' \in \Gamma$ intersect in at most s points of P,
- any $p, p' \in P$ belong to at most s curves of Γ.

Then

$$I(P, \Gamma) = O_s \left(|P|^{2/3} |\Gamma|^{2/3} + |P| + |\Gamma| \right).$$
Proof of SSS

Our P, Γ have two degrees of freedom:

• Because the lines are not parallel or orthogonal, the curves are distinct and irreducible, so $|\gamma_{ij} \cap \gamma_{kl}| \leq 4$ by Bézout. (Write out the equation: reducible \Rightarrow parallel, non-distinct \Rightarrow orthogonal)

• Define “dual” curves for $q_s, q_t \in S_2$:

$$\tilde{\gamma}_{st} = \{(p, p') \in l_1 \times l_1 : d(p, q_s) = d(p', q_t)\}.$$

Then $|\tilde{\gamma}_{st} \cap \tilde{\gamma}_{uv}| \leq 4$ means $(q_s, q_t), (q_u, q_v)$ belong to $\leq 4 \gamma_{ij} \in \Gamma$.

So:

$$I(P, \Gamma) = O \left((n^2)^{2/3} (n^2)^{2/3} \right) = O \left(n^{8/3} \right).$$

Done.
Recall $F(p, q) = y_p x_q - x_p y_q$.

Theorem (VZ, 2014)

If S is contained in an irreducible algebraic curve C of degree d in \mathbb{R}^2, then $|F(S, S)| = \Omega_d(|S|^{4/3})$, unless C is a line, ellipse centred at the origin, or hyperbola centred at the origin.

Preparation: We first prepare S so that it contains at most one point on any line through the origin. This is possible by removing at most $d - 1$ points of S per line, leaving $\geq |S|/d$ points. This does not affect the bound. The reason is that now, for distinct p_i, p_k,

$$F(p_i, q) = 0, \quad F(p_k, q) = 0$$

are independent linear equations.
Proof of VZ

We surprise everyone by bounding the quadruples

$$Q = \{(p, p', q, q') \in S^4 : F(p, q) = F(p', q')\}$$

by

$$\frac{n^4}{|F(S, S)|} \leq |Q| = I(P, \Gamma) \leq cn^{8/3} \Rightarrow |F(S, S)| = \Omega(n^{4/3});$$

for the upper bound on $|Q|$ we will define points P and curves Γ, and show that they have two degrees of freedom.
Proof of VZ

For \(p_i, p_j \in S \) define an algebraic curve in \(\mathbb{R}^4 \):

\[
C_{ij} = \{(q, q') \in C \times C : F(p_i, q) = F(p_j, q')\}.
\]

We have \(n^2 \) curves in \(\Gamma = \{\gamma_{ij} : p_i, p_j \in S\} \) and \(n^2 \) points in \(P = \{(q_s, q_t) : q_s, q_t \in S\} \). Define “dual” curves

\[
\tilde{C}_{st} = \{(p, p') \in C \times C : F(p, q_s) = F(p', q_t)\}.
\]

Finally, define “bad sets”

\[
\Gamma_0 = \{C_{ij} \in \Gamma : \exists C_{kl} \text{ such that } |C_{ij} \cap C_{kl}| = \infty\},
\]

\[
P_0 = \{(q_s, q_t) \in P : \exists \tilde{C}_{uv} \text{ such that } |\tilde{C}_{st} \cap \tilde{C}_{uv}| = \infty\},
\]

and \(\Gamma_1 = \Gamma \setminus \Gamma_0, P_1 = P \setminus P_0 \).
Proof of VZ

Lemma

If \(C_{ij}, C_{kl} \in \Gamma_1 \), then \(|C_{ij} \cap C_{kl}| = O_d(1) \).

Any two points in \(P_1 \) belong to \(O_d(1) \) curves in \(\Gamma \).

Proof.

We want to bound the number of real solutions \((q, q')\) of

\[
 f(q) = 0, \quad f(q') = 0, \quad F(p_i, q) = F(p_j, q'), \quad F(p_k, q) = F(p_l, q'),
\]

where \(f \) is the polynomial defining \(C \). Pick your method:

- Oleinik-Petrovski-Milnor-Thom;
- Move to \(\mathbb{C} \) and use complex Bézout;
- Last two equations define a plane, apply real planar Bézout there.

Do the same for the dual curves.

So \(P_1, \Gamma_1 \) have two degrees of freedom and \(I(P_1, \Gamma_1) = O_d(n^{8/3}) \).
Proof of VZ

Now the bad sets Γ_0, P_0.
For linear $T : \mathbb{R}^2 \to \mathbb{R}^2$, set $G_T = \{(q, q') \in C \times C : T(q) = q'\}$.

Lemma

For any $C_{ij}, C_{kl} \in \Gamma$ we have $C_{ij} \cap C_{kl} = G_T$ for some linear T.
If $|G_T| = |C_{ij} \cap C_{kl}| = \infty$, then T is an automorphism of C.

Proof.

If $(q, q') \in C_{ij} \cap C_{kl}$ then since $F(p_i, q) = y_{p_i}x_q - x_{p_i}y_q$ we have

$$M_{ik}q = M_{jl}q' \text{ with } M_{ik} = \begin{pmatrix} y_{p_i} & -x_{p_i} \\ y_{p_k} & -x_{p_k} \end{pmatrix}, \quad M_{jl} = \begin{pmatrix} y_{p_j} & -x_{p_j} \\ y_{p_l} & -x_{p_l} \end{pmatrix}.$$

The matrices are invertible thanks to the preparation of S. So $q' = M_{jl}^{-1}M_{ik}q =: T(q)$. Also vice versa.

If $|G_T| = \infty$, then $|T(C) \cap C| = \infty$, so $T(C) = C$.

Proof of VZ

Lemma

\[I(P, \Gamma_0) = O_d(n^2), \quad I(P_0, \Gamma) = O_d(n^2). \]

Proof.

By the Automorphism Lemma below, \(C \) has \(\leq 4d \) linear automorphisms, unless it is a special curve. It is not hard to see that each automorphism occurs \(\leq n \) times. So \(|\Gamma_0| \leq 4dn \) and the lemma follows easily.

This finishes the proof:

\[I(P, \Gamma) \leq I(P_0, \Gamma) + I(P, \Gamma_0) + I(P_1, \Gamma_1) = O_d \left(n^{8/3} \right). \]
Automorphism Lemma

Lemma

An irreducible algebraic curve of degree \(d \) has \(\leq 4d \) linear automorphisms, unless it is a line or linearly equivalent to one of:

<table>
<thead>
<tr>
<th>Type</th>
<th>Equation</th>
<th>Matrix</th>
</tr>
</thead>
</table>
| **Ellipses** | \(x^2 + y^2 = 1 \) | \[
\begin{pmatrix}
\frac{a}{\sqrt{1-a^2}} & -\sqrt{1-a^2} \\
\frac{\sqrt{1-a^2}}{a} & a
\end{pmatrix}
\] |
| **Hyperbolas** | \(xy = 1 \) | \[
\begin{pmatrix}
a & 0 \\
0 & a^{-1}
\end{pmatrix}
\] |
| **Parabolas** | \(x = y^2 \) | \[
\begin{pmatrix}
a^2 & 0 \\
0 & a
\end{pmatrix}
\] |
| “Pseudohyperbolas” | \(x^p y^q = 1 \) | \[
\begin{pmatrix}
a^q & 0 \\
0 & a^{-p}
\end{pmatrix}
\] |
| “Pseudocusps” | \(x^p = y^q \) | \[
\begin{pmatrix}
a^q & 0 \\
0 & a^p
\end{pmatrix}
\] |

Calculation shows that the last three cannot occur for our \(F \). \(\square \)
About the Automorphism Lemma

Of course, something much stronger has long been known:

Theorem (Hurwitz, 1893)

A nonsingular curve of genus $g \geq 2$ has at most $84(g - 1)$ polynomial automorphisms.

But this does not give the detailed information that we need. In particular, it does not apply to singular curves, which is a problem if we want to do interpolation.
About the Automorphism Lemma

Idea of our proof of the Automorphism Lemma:

Most algebraic curves cannot contain an infinite orbit \(\{ T^{(k)}(p) \} \).

E.g., let \(C : f(x, y) = \sum a_{ij}x^iy^j \) and \(T = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}, \lambda, \mu \in \mathbb{R}_{>0}. \)

Then, if \(p = (x_0, y_0) \) and \(T^{(k)}(p) \in C \), we would have

\[
0 = f(\lambda^k x_0, \mu^k y_0) = \sum (a_{ij}x_0^iy_0^j) e^{(\ln(\lambda)i + \ln(\mu)j)k} = \sum b_{ij}e^{c_{ij}k}.
\]

Such a function has only finitely many roots \(k \) (unless...).

We do this for each Jordan form, and we get exactly the exceptions in the lemma.
Proof sketch of PZ

As above but with $F(p, q) = (x_p - x_q)^2 + (y_p - y_q)^2$.
If $(q, q') \in C_{ij} \cap C_{kl}$, then

Suppose $F(p_i, p_k) = F(p_j, p_l)$ (other case is annoying...).
$\Rightarrow \exists$ isometry T so that $T(p_i) = p_k, T(p_j) = p_l \Rightarrow T(q) = q'$ (...)

Then $|C_{ij} \cap C_{kl}| = \infty \Rightarrow |T(C) \cap C| = \infty \Rightarrow T(C) = C$.

Lemma (Isometry Lemma)

An irreducible algebraic curve of degree d has at most $4d$ isometries, unless it is a line or a circle.
Main references (in order of appearance)