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Note: good & bad news

Good news:

Talk is simple & elementary 

Bad news:

Audience is tired …&

Speaker is jet-lagged
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Reminder: Crossing -Lemma

 G = (V,E) arbitrary simple graph

 X = # edge crossings

 Thm:  [Ajtai et al. ‘82, Leighton ‘83]

(|E|  ≥  4|V|)  X  ≥  (|E|3/|V|2)
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Selection Lemmas: circles and points

 |P|=n pts in R2 

 |C| = c > 4n arbitrary circles 
spanned by pairs of pts in P

 Thm:

1.  p  (c2/n2)  
2. If circles spanned by triples,

  p  (c3/2/n3/2) circles

 Bounds asymptotically tight!
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Selection Lemmas: circles and points

#empty circles (Delaunay circles) is O(n)
 Bootstrapping Lemma:

X > c – 3n

 X>  (c3/2/n1/2) (using the sampling technique )

 p   (x/n) configurations

 p  (c3/2/n3/2) circles (asymptotically tight)

X = # (pt,circle) pt inside circle |P|=n pts in R2 

|C| = c > 4n triples circles
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Selection Lemmas: pseudo-circles and points

 Proof technique generalizes to 
Pseudo-Circles

 Replace circles by arbitrary 
simple closed Jordan curves:

n pts and c pseudo-circles
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Selection Lemmas: pseudo-circles and 
points

Proof:

Construct graph on pts as 

follows:

Lemma: #empty pseudo-circles is  3n-6 
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Selection Lemmas: pseudo-circles and 
points

Drawing is not planar 

However:

edges intersect even #times 

Combined with [Hanani, Tutte ‘70] 
implies planarity.

Lemma: #empty pseudo-circles is  3n-6
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Unit Distances

 Problem:

What is the maximum number of times, 𝑓𝑑 𝑛 , that the 
same (say, the unit) distance can occur among 𝑛 points 
in 𝑅𝑑

 Old Open and Hard:
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Unit Distances (cont)

Known bounds:

𝑛
1+

𝑐

log log 𝑛 ≤ 𝑓2 𝑛 ≤ 𝑂(𝑛
3

2) [Erdős ‘46]

 𝑓2 𝑛 ≤ 𝑂(𝑛
4

3) [Spencer, Szemerédi, Trotter ‘84]

[Clarkson, Edelsbrunner, Guibas, Sharir, Welzl ‘90]

 𝑓2 𝑛 ≤ 𝑂(𝑛
4

3) Székely ‘97 using the Crossing 
Lemma!
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Unit Distances (cont)

 Erdős’s proof of the weaker upper bound 𝑂(𝑛
3

2) :

The unit distance graph does not contain a 

subgraph K2,3. Hence its size is at most 𝑂(𝑛
3

2)
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Unit Distances (cont)

 Simple proof of the O(n4/3) upper bound.

Connect every pair of consecutive pts with a circular 
arc along the circle.

 Draw a unit circle around each pt
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Unit Distances (cont)

 We obtain a (almost simple) graph with n pts and e
edges.

 I = 2 #unit distances

 X = #crossings so (e3/n2) = X = O(n2) and 
e=O(n4/3)

 Big open problem: Improve the bounds
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More applications for Crossing Lemma:
polygons spanned by pts

|P|=n pts in plane

 Each polygon = convex hull of subset of P
 Bound the total # polygon edges

 |C| = k convex polygons with distinct edges
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 e = total #edges of all polygons

 We have: (e3/n2) = X

 X = O(ek)

 e =  O(nk1/2).

 Asymptotically tight!

More applications for Crossing Lemma:
polygons spanned by pts
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The K-set problem in the plane

 P: n pts in R2 (assume n is even)

 In how many ways can we halve P with a line?
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The K-set problem in the plane

 |P| = n pts in the plane

 A halving-edge is a pair of points of P which spans 
a halving line ( i.e., (n-2)/2 points on each side). 

 Enough to count  halving-edges !!!

 Bound the number F2(n)

of halving-edges in the worst case

A halving 

edge
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The K-set problem in the plane

 A construction with “many” halving edges

f(3n) > 3f(n) + Ω(n)

=> f(n) = Ω(n log n)
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The K-set problem in the plane

 Equivalent formulation

 |L| = n lines in the plane

 Bound the number of median vertices
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Example:

Algorithmic problem:

P a set of n points in the plane

Find a line l (1-median line) that minimizes pP d(p, l)
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If direction of l is fixed,

and P is projected on a line orthogonal to l

Optimal placement of l is at the median of the 
projected points

 l is a halving line of P
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Algorithm: Vary the direction θ of l from 0 to π

Keep track of the halving line l(θ)

As long as the split of P by l(θ) is unchanged,

Optimize pP d(p, l(θ)) as a function of θ (easy task)

Output the best θ overall
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How efficient is the algorithm?

key question: 

How many changes can occur in the splitting

of P into two equal halves by l(θ) ?

This is the famous k-set problem !
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S = n pts in Rd

A (d - 1)-dimensional simplex σ spanned by d points 

fo S is a halving-facet of S if:

the hyperplane spanned by σ contains exactly

(n-d)/2 points of S on each side 

Fd (n) = maximum # of halving-facets in a set of n

points in d-space in general position.

Goal: Obtain sharp bounds on Fd(n) 

Still, after 40 years of research, very elusive

The K-set problem (Definition)
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[Lovász ‘71], [Erdős, Lovász, Simmons, Straus ‘73] posed +

Initial upper bound F2(n) = O(n3/2)

Initial lower bound F2(n) = (n log n)

Slight improvement 20 years later

[Pach, Steiger, Szemerédi ‘92]

F2(n) = O(n3/2/log*n)

Record upper bound F2(n)  = O(n4/3) [Dey, ‘98]

Record lower bound F2(n) = Ω(n · 2 c √ log n) [Tóth, ‘00]

Closing the gap: 

Major intriguing open problem in combinatorial geometry

The K-set problem (History in R2)
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History in R3

[Bárány, Fϋredi, Lovász ‘90]:
F3(n) = O(n3-1/343)

[Aronov, Chazelle, Edelsbrunner, Guibas, Sharir,Wenger ‘91]:
F3(n) = O(n8/3log5/3 n)

[Dey, Edelsbrunner ‘94]:
F3(n) = O(n8/3)

[Sharir, Smorodinsky, Tardos ‘00]:
F3(n) = O(n5/2) (current record)

Lower bound of [Tóth, ‘00] `lifted' from the plane:

F3(n) = Ω (n2 2 c √ log n) 



27

History in Rd (d ≥ 4)

[Alon, Bárány, Fϋredi, Kleitman ‘92]:

[Živaljević, Vrećica ‘92]:

Fd(n) = O(nd-ε(d)) (algebraic topology)

Where ε(d) is exponentially small in d

[Matoušek, Sharir, Smorodinsky, Wagner ‘06]:

F4(n)=O(n4 - 2/45) (current record) elementary proof!
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The K-set problem in the plane
reminder:

 |P| = n pts in plane

 A halving-edge is a pair of points which spans a halving 
line ( i.e., (n-2)/2 points

on each side). 

 Bound the number F2(n)

of halving-edges in the worst case

halving edge
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The K-set problem in the plane

Upper Bound sketch of proofs

 Construct the halving-edge graph G = (V,E)

 Count the number of crossings:

There are Ω(|E|3/n2) crossings.

 Lovász’ Lemma:

A line can cross at most n halving-edges!
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The K-set problem in the plane

Claim: The halving-edge graph is antipodal
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Lovász’ Lemma

Any line intersects at most n edges

In particular any edge e crosses at most n other 
edges

So #crossings = O(|E|n)

Combined with lower bound of Ω(|E|3/n2) yields

The O(n3/2) bound of

[Lovász, 1971], [Erdős et al., 1973]
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The K-set problem (cont)

A simpler version of Dey's proof:
Claim: G has only O(n2) crossings

Decompose the edges into concave chains
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The K-set problem (cont)

 At most one chain ends at a given point
=> #chains ≤ n

 Apply a symmetric decomposition into ≤ n convex 
chains 
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The K-set problem (cont)

 Upper bounds on # of crossings
 Charge each crossing to the pair of concave and 

convex chains:

 #such pairs is O(n2)
 Combined with lower bound yields O(n4/3)


