Geometric Incidences and related problems

Shakhar Smorodinsky
(Ben-Gurion University)
Note: good & bad news

Good news:
Talk is simple & elementary

Bad news:
Audience is tired ...&
Speaker is jet-lagged
Reminder: Crossing -Lemma

- \(G = (V,E) \) arbitrary simple graph
- \(X = \# \text{ edge crossings} \)
- Thm: [Ajtai et al. '82, Leighton '83]
 \(|E| \geq 4|V| \Rightarrow X \geq \Omega(|E|^3/|V|^2)\)
Selection Lemmas: circles and points

- $|P| = n$ pts in \mathbb{R}^2
- $|C| = c > 4n$ arbitrary circles spanned by pairs of pts in P

Thm:
1. $\exists p \in \Omega \left(\frac{c^2}{n^2} \right)$
2. If circles spanned by triples,
 - $\exists p \in \Omega \left(\frac{c^{3/2}}{n^{3/2}} \right)$ circles
 - Bounds asymptotically tight!
Selection Lemmas: circles and points

\[X = \# (pt, \text{circle}) \text{ pt inside circle} \]

\#empty circles (Delaunay circles) is \(O(n) \)

- **Bootstrapping Lemma:**
 \[X > c - 3n \]

- \(X > \Omega (c^{3/2}/n^{1/2}) \) (using the sampling technique)

- \(\exists p \in \Omega (x/n) \) configurations

- \(\exists p \in \Omega (c^{3/2}/n^{3/2}) \) circles (asymptotically tight)

\(|P| = n \text{ pts in } \mathbb{R}^2\)

\(|C| = c > 4n \text{ triples circles}\)
Selection Lemmas: pseudo-circles and points

- Proof technique generalizes to **Pseudo-Circles**
- Replace circles by arbitrary simple closed Jordan curves:

\[n \text{ pts and } c \text{ pseudo-circles} \]
Lemma: #empty pseudo-circles is $\leq 3n-6$

Proof:
Construct graph on pts as follows:
Selection Lemmas: pseudo-circles and points

Lemma: \#empty pseudo-circles is \(\leq 3n-6 \)

Drawing is not planar

However:
edges intersect even \#times

Combined with [Hanani, Tutte '70] implies planarity.
Unit Distances

Problem:
What is the maximum number of times, $f_d(n)$, that the same (say, the unit) distance can occur among n points in \mathbb{R}^d.

Old Open and Hard:
Unit Distances (cont)

Known bounds:

\[n^{1 + \frac{c}{\log \log n}} \leq f_2(n) \leq O(n^{\frac{3}{2}}) \quad \text{[Erdős '46]} \]

- \[f_2(n) \leq O(n^{\frac{4}{3}}) \quad \text{[Spencer, Szemerédi, Trotter '84]} \]

 [Clarkson, Edelsbrunner, Guibas, Sharir, Welzl '90]

- \[f_2(n) \leq O(n^{\frac{4}{3}}) \quad \text{Szekely '97 using the Crossing Lemma!} \]
Erdős's proof of the weaker upper bound $O(n^2)$:
The unit distance graph does not contain a subgraph $K_{2,3}$. Hence its size is at most $O(n^3)$.
Unit Distances (cont)

- Simple proof of the $O(n^{4/3})$ upper bound.
 - Draw a unit circle around each pt
 - Connect every pair of consecutive pts with a circular arc along the circle.
Unit Distances (cont)

- We obtain a (almost simple) graph with \(n \) pts and \(e \) edges.
- \(I = 2 \) #unit distances
- \(X = \) #crossings so \(\Omega(e^3/n^2) = X = O(n^2) \) and \(e=O(n^{4/3}) \)
- Big open problem: Improve the bounds
More applications for **Crossing Lemma:** polygons spanned by pts

|P| = n pts in plane

|C| = k convex polygons with distinct edges

- Each polygon = convex hull of subset of P
- Bound the total # **polygon edges**
More applications for **Crossing Lemma:**

- $e =$ total #edges of all polygons
- We have: $\Omega(e^3/n^2) = X$
- $X = O(ek)$
- $e = O(nk^{1/2})$.
- Asymptotically tight!
The K-set problem in the plane

- **P**: \(n \) pts in \(\mathbb{R}^2 \) (assume \(n \) is even)
- In how many ways can we halve \(P \) with a line?
The K-set problem in the plane

|\(|P| = n\) pts in the plane

A halving-edge is a pair of points of \(P\) which spans a halving line (i.e., \((n-2)/2\) points on each side).

Enough to count halving-edges !!!

Bound the number \(F^2(n)\)
of halving-edges in the worst case

A halving edge
The K-set problem in the plane

A construction with “many” halving edges

\[f(3n) > 3f(n) + \Omega(n) \]
\[\Rightarrow f(n) = \Omega(n \log n) \]
The K-set problem in the plane

- Equivalent formulation
 - $|L| = n$ lines in the plane
 - Bound the number of median vertices
Example:

Algorithmic problem:

P a set of n points in the plane

Find a line l (1-median line) that minimizes $\sum_{p \in P} d(p, l)$
If direction of \(l \) is fixed, and \(P \) is projected on a line orthogonal to \(l \),

Optimal placement of \(l \) is at the median of the projected points.

\[\Rightarrow l \text{ is a halving line of } P \]
Algorithm: Vary the direction θ of l from 0 to π

Keep track of the halving line $l(\theta)$

As long as the split of P by $l(\theta)$ is unchanged,

Optimize $\sum_{p \in P} d(p, l(\theta))$ as a function of θ (easy task)

Output the best θ overall
How efficient is the algorithm?

Key question:

How many changes can occur in the splitting of P into two equal halves by $l(\theta)$?

This is the famous k-set problem!
The K-set problem (Definition)

$S = n$ pts in \mathbb{R}^d

A $(d - 1)$-dimensional simplex σ spanned by d points $fo S$ is a **halving-facet** of S if:

the hyperplane spanned by σ contains exactly $(n-d)/2$ points of S on each side

$F^d(n)$ = maximum # of halving-facets in a set of n points in d-space in general position.

Goal: Obtain sharp bounds on $F^d(n)$

Still, after 40 years of research, very elusive
The K-set problem (History in \mathbb{R}^2)

[Lovász '71], [Erdős, Lovász, Simmons, Straus '73] posed +

Initial upper bound $F^2(n) = O(n^{3/2})$

Initial lower bound $F^2(n) = \Omega(n \log n)$

Slight improvement 20 years later

[Pach, Steiger, Szemerédi '92]

$F^2(n) = O(n^{3/2}/\log^*n)$

Record upper bound $F^2(n) = O(n^{4/3})$ [Dey, '98]

Record lower bound $F^2(n) = \Omega(n \cdot 2^{c \sqrt{\log n}})$ [Tóth, '00]

Closing the gap:

Major intriguing open problem in combinatorial geometry
History in \mathbb{R}^3

[Bárány, Füredi, Lovász '90]:
\[F^3(n) = O(n^{3-1/343}) \]

[Aronov, Chazelle, Edelsbrunner, Guibas, Sharir, Wenger '91]:
\[F^3(n) = O(n^{8/3}\log^{5/3}n) \]

[Dey, Edelsbrunner '94]:
\[F^3(n) = O(n^{8/3}) \]

[Sharir, Smorodinsky, Tardos '00]:
\[F^3(n) = O(n^{5/2}) \] (current record)

Lower bound of [Tóth, '00] `lifted' from the plane:
\[F^3(n) = \Omega \left(n^2 2^{c\sqrt{\log n}} \right) \]
History in \mathbb{R}^d ($d \geq 4$)

[Alon, Bárány, Füredi, Kleitman '92]:

[Živaljević, Vrećica '92]:

$$F^d(n) = O(n^{d-\varepsilon(d)}) \text{ (algebraic topology)}$$

Where $\varepsilon(d)$ is exponentially small in d

[Matoušek, Sharir, Smorodinsky, Wagner '06]:

$$F^4(n) = O(n^4 - 2^{2/45}) \text{ (current record) elementary proof!}$$
The K-set problem in the plane reminder:

- $|P| = n$ pts in plane

- A halving-edge is a pair of points which spans a halving line (i.e., $(n-2)/2$ points on each side).

- Bound the number $F^2(n)$ of halving-edges in the worst case.
Upper Bound sketch of proofs

- Construct the halving-edge graph $G = (V,E)$

- Count the number of crossings:
 There are $\Omega(|E|^3/n^2)$ crossings.

- Lovász’ Lemma:
 A line can cross at most n halving-edges!
The K-set problem in the plane

Claim: The halving-edge graph is antipodal
Lovásvz' Lemma

Any line intersects at most \(n \) edges

In particular any edge \(e \) crosses at most \(n \) other edges

So \(#\text{crossings} = O(|E|n)\)

Combined with lower bound of \(\Omega(|E|^3/n^2) \) yields

The \(O(n^{3/2}) \) bound of

[Lovász, 1971], [Erdős et al., 1973]
A simpler version of Dey's proof:
Claim: G has only $O(n^2)$ crossings

Decompose the edges into concave chains
The K-set problem (cont)

- At most one chain ends at a given point
 \[\Rightarrow \text{\#chains} \leq n \]
- Apply a symmetric decomposition into \(\leq n \) convex chains
The K-set problem (cont)

- Upper bounds on # of crossings
- Charge each crossing to the pair of concave and convex chains:
 - #such pairs is $O(n^2)$
 - Combined with lower bound yields $O(n^{4/3})$