Geometric Incidences and related problems

Shakhar Smorodinsky (Ben-Gurion University)

Note: good & bad news

Good news:

Talk is simple & elementary

Bad news:

Audience is tired ...& Speaker is jet-lagged

Reminder: Crossing -Lemma

G = (V, E) arbitrary simple graph

X = # edge crossings

Thm: [Ajtai et al. '82, Leighton '83] $(|E| \ge 4|V|) \Rightarrow X \ge \Omega(|E|^3/|V|^2)$

Selection Lemmas: circles and points

- \blacksquare |P|=n pts in \mathbb{R}^2
- |C| = c > 4n <u>arbitrary</u> circles spanned by pairs of pts in P
- Thm:
- 1. $\exists p \in \Omega (c^2/n^2)$
- 2. If circles spanned by **triples**,
 - $\exists p \in \Omega (c^{3/2}/n^{3/2})$ circles
 - Bounds asymptotically tight!

Selection Lemmas: circles and points

X = # (pt,circle) pt inside circle

|P|=n pts in R^2 |C|=c > 4n **triples** circles

#empty circles (Delaunay circles) is O(n)

Bootstrapping Lemma:

$$X > c - 3n$$

- $lacksquare X > \Omega\left(c^{3/2}/n^{1/2}
 ight)$ (using the sampling technique
- \blacksquare $\exists p \in \Omega (x/n)$ configurations
- $lacksquare \exists p \in \Omega(c^{3/2}/n^{3/2})$ circles (asymptotically tight)

Selection Lemmas: pseudo-circles and points

- Proof technique generalizes to <u>Pseudo-Circles</u>
- Replace circles by arbitrary simple closed Jordan curves:

n pts and c pseudo-circles

Selection Lemmas: pseudo-circles and points

Lemma: #empty pseudo-circles is $\leq 3n-6$

Proof:

Construct graph on pts as follows:

Selection Lemmas: pseudo-circles and points

Lemma: #empty pseudo-circles is $\leq 3n-6$

Drawing is not planar

However:

edges intersect even #times

Combined with [Hanani, Tutte '70] implies planarity.

Unit Distances

Problem:

What is the maximum number of times, $f_d(n)$, that the same (say, the **unit**) distance can occur among n points in \mathbb{R}^d

Old Open and Hard:

Known bounds:

$$n^{1 + \frac{c}{\log \log n}} \le f_2(n) \le O(n^{\frac{3}{2}})$$
 [Erdős '46]

- $f_2(n) \le O(n^{\frac{4}{3}})$ [Spencer, Szemerédi, Trotter '84] [Clarkson, Edelsbrunner, Guibas, Sharir, Welzl '90]
- $f_2(n) \le O(n^{\frac{4}{3}})$ Székely '97 using the Crossing Lemma!

■ Erdős's proof of the weaker upper bound $O(n^{\frac{3}{2}})$:

The unit distance graph does not contain a subgraph $K_{2,3}$. Hence its size is at most $O(n^{\frac{3}{2}})$

- Simple proof of the $O(n^{4/3})$ upper bound.
 - Draw a unit circle around each pt
 - Connect every pair of consecutive pts with a circular arc along the circle.

- We obtain a (almost simple) graph with n pts and e edges.
- I = 2 #unit distances
- X = #crossings so $\Omega(e^3/n^2)$ = X = $O(n^2)$ and $e=O(n^{4/3})$
- Big open problem: Improve the bounds

More applications for <u>Crossing Lemma:</u> polygons spanned by pts

|P|=n pts in plane

 $lacksquare |\mathbf{C}| = \mathbf{k}$ convex polygons with distinct edges

- Each polygon = convex hull of subset of P
- Bound the total # polygon edges

More applications for <u>Crossing Lemma:</u> polygons spanned by pts

e = total #edges of all polygons
We have: Ω(e³/n²) = X
X = O(ek)
e = O(nk^{1/2}).

Asymptotically tight!

- |P| = n pts in the plane
- A halving-edge is a pair of points of P which spans a halving line (i.e., (n-2)/2 points on each side).
- Enough to count halving-edges !!!
- Bound the number F²(n) of halving-edges in the worst case

Example:

Algorithmic problem:

P a set of n points in the plane

Find a line 1 (1-median line) that minimizes $\sum_{p \in P} d(p, 1)$

If direction of l is fixed, and P is projected on a line orthogonal to l

Optimal placement of *l* is at the median of the projected points

 \Rightarrow 1 is a halving line of P

Algorithm: Vary the direction θ of 1 from 0 to π Keep track of the halving line $I(\theta)$ As long as the split of P by $I(\theta)$ is unchanged,
Optimize $\sum_{p \in P} d(p, I(\theta))$ as a function of θ (easy task)
Output the best θ overall

How efficient is the algorithm?

key question:

How many changes can occur in the splitting

of P into two equal halves by $l(\theta)$?

This is the famous k-set problem!

The K-set problem (Definition)

```
S = n pts in Rd
A (d-1)-dimensional simplex \sigma spanned by d points
fo 5 is a halving-facet of 5 if:
the hyperplane spanned by \sigma contains exactly
(n-d)/2 points of 5 on each side
Fd (n) = maximum # of halving-facets in a set of n
points in d-space in general position.
Goal: Obtain sharp bounds on Fd(n)
Still, after 40 years of research, very elusive
```

The K-set problem (History in R²)

[Lovász '71], [Erdős, Lovász, Simmons, Straus '73] posed +

Initial upper bound $F^2(n) = O(n^{3/2})$

Initial lower bound $F^2(n) = \Omega(n \log n)$

Slight improvement 20 years later

[Pach, Steiger, Szemerédi '92]

$$F^2(n) = O(n^{3/2}/\log^* n)$$

Record upper bound $F^2(n) = O(n^{4/3})$ [Dey, '98]

Record lower bound $F^2(n) = \Omega(n \cdot 2^{c \sqrt{\log n}})$ [Tóth, '00]

Closing the gap:

Major intriguing open problem in combinatorial geometry

History in R³

```
[Bárány, Füredi, Lovász '90]:
                               F^3(n) = O(n^{3-1/343})
[Aronov, Chazelle, Edelsbrunner, Guibas, Sharir, Wenger '91
                              F^3(n) = O(n^{8/3} \log^{5/3} n)
[Dey, Edelsbrunner '94]:
                                F^3(n) = O(n^{8/3})
[Sharir, Smorodinsky, Tardos '00]:
                     F^3(n) = O(n^{5/2}) (current record)
Lower bound of [Tóth, '00] \ lifted' from the plane:
                           F^{3}(n) = \Omega \left(n^{2} 2^{c \sqrt{\log n}}\right)
```

History in R^d ($d \ge 4$)

```
[Alon, Bárány, Füredi, Kleitman '92]:
[Živaljević, Vrećica '92]:
               F^{d}(n) = O(n^{d-\epsilon(d)}) (algebraic topology)
Where \varepsilon(d) is exponentially small in d
[Matoušek, Sharir, Smorodinsky, Wagner '06]:
      F^4(n)=O(n^4-2/45) (current record) elementary proof!
```

The K-set problem in the plane reminder:

- |P| = n pts in plane
- A halving-edge is a pair of points which spans a halving line (i.e., (n-2)/2 points
 - on each side).
- Bound the number F²(n)
 of halving-edges in the worst case

Upper Bound sketch of proofs

- Construct the halving-edge graph G = (V,E)
- Count the number of crossings:

There are $\Omega(|E|^3/n^2)$ crossings.

Lovász' Lemma:

A line can cross at most n halving-edges!

Lovász' Lemma

The K-set problem (cont)

A simpler version of Dey's proof: Claim: G has only $O(n^2)$ crossings

Decompose the edges into concave chains

The K-set problem (cont)

- At most one chain ends at a given point
 ⇒ #chains ≤ n
- Apply a symmetric decomposition into ≤ n convex chains

The K-set problem (cont)

- Upper bounds on # of crossings
- Charge each crossing to the pair of concave and convex chains:
- #such pairs is O(n²)
- Combined with lower bound yields $O(n^{4/3})$

