Geometric Incidences and related problems

Shakhar Smorodinsky
(Ben-Gurion University)
Note: *good* & *bad* news

Good news: Last Talk

Bad news: Pick your favorite one....
The K-set problem (Definition)

$S = n$ pts in \mathbb{R}^d

A $(d - 1)$-dimensional simplex σ spanned by d points for S is a halving-facet of S if:

- the hyperplane spanned by σ contains exactly $(n-d)/2$ points of S on each side

$F^d(n) =$ maximum $\#$ of halving-facets in a set of n points in d-space in general position.

Goal: Obtain sharp bounds on $F^d(n)$

Still, after 40 years of research, very elusive
The K-set problem (History in \mathbb{R}^2)

Record upper bound $F^2(n) = \mathcal{O}(n^{4/3})$ [Dey, '98]

Record lower bound $F^2(n) = \Omega(n \cdot 2^{c \sqrt{\log n}})$ [Tóth, '00]
History in \mathbb{R}^3

[Bárány, Füredi, Lovász '90]:
$$F^3(n) = O(n^{3-1/343})$$

[Aronov, Chazelle, Edelsbrunner, Guibas, Sharir, Wenger '91]:
$$F^3(n) = O(n^{8/3}\log^{5/3} n)$$

[Dey, Edelsbrunner '94]:
$$F^3(n) = O(n^{8/3})$$

[Sharir, Smorodinsky, Tardos '00]:
$$F^3(n) = O(n^{5/2}) \text{ (current record)}$$

Lower bound of [Tóth, '00] `lifted' from the plane:
$$F^3(n) = \Omega \left(n^2 2^c \sqrt[3]{\log n} \right)$$
The K-set problem in the plane

Claim: The halving-edge graph is antipodal
Lovász' Lemma

Any line intersects at most $O(n^{d-1})$ halving simplices.
Points and triangles in 3D

- $|P| = n$ pts in \mathbb{R}^3
- $|T| = t = \Omega(n^2)$ triangles spanned by P

THM: [Dey, Edelsbrunner ’94]
Always \exists line that stabs $\Omega(t^3/n^6)$ triangles
Points and triangles in 3D (cont)

- There exists a line that stabs $\Omega(t^3/n^6)$ triangles

Simple Proof:

- $X = \#$crossing pairs with a common vertex
Points and triangles in 3D (cont)

- Consider $T_p =$ triangles incident to p
- Intersect T_p with small sphere centered at p
- $G_p =$ the induced graph
- Points of G_p induced by segments
- Edges of G_p induced by triangles incident to p
Points and triangles in 3D (cont)

- $\exists \Omega(|T_p|^3/n^2)$ crossing in G_p.

- A crossing corresponds to:
Points and triangles in 3D (cont)

- (By Hölder’s inequality) we have:
 \[\sum_{p \in \mathcal{P}} \Omega(|T_p|^3/n^2) \geq \Omega \left((\sum_{p \in \mathcal{P}} |T_p|)^3/n^4 \right) \]

configurations of:

\[((\sum_{p \in \mathcal{P}} |T_p|)^3/n^4 = \Omega(t^3/n^4) \]

=> \(\exists \) edge in \(\Omega(t^3/n^6) \) configurations
Points and triangles (cont)

- **Remark:**
 Best known upper bound construction $O(t^2/n^3)$

- **Conjecture:**
 Always \exists line that intersects $\Omega(t^2/n^3)$ triangles ($\gg t^3/n^6$)
Applications (k-sets in 3D)

- $|P| = n$ pts in \mathbb{R}^3
- $|T| = t$, the set of halving-triangles

Lovász’ Lemma in 3D:
- Any line stabs at most $O(n^2)$ halving-triangles

We have:
\[\Omega(t^3/n^6) \leq O(n^2) \]
\[t = O(n^{8/3}) \]
Improved bounds on k-sets in 3D

- **Thm:** [Sharir, Smorodinsky, Tardos '00]
 \[t = O(n^{5/2}) \]

- **Proof:**

 The halving-triangles are antipodal
Improved bounds on k-sets in 3D

The halving-triangles are antipodal

This property will imply:

- \exists \text{ line that stabs } \Omega(t^2/n^3) \text{ triangles}
- \text{Combined with } O(n^2) \text{ upper bound (Lovász)}

 We will get the $O(n^{5/2})$ upper bound.
Improved bounds on k-sets in 3D (cont)

- ∃ line that stabs $\Omega(t^2/n^3)$ triangles

Proof:
- For a point p, G_p is the stereographic projection of T_p on a plane above p
Improved bounds on k-sets in 3D (cont)

- $\sum_{p \in P} e_p = t$
- $\sum_{p \in P} r_p = t$
Improved bounds on k-sets in 3D (cont)

G_p consists of
- n vertices
- e_p edges
- r_p rays

G_p is antipodal so:
- G_p is decomposed to $\Omega(r_p)$ convex chains
- Contains $\Omega(r_p^2 - nr_p)$ crossings
Improved bounds on k-sets in 3D (cont)

- G_p Contains $\Omega(r_p^2 - nr_p)$ crossings
 Proof: bound the # pairs of convex chains which do not cross
- At most $O(nr_p)$ pairs out of the r_p^2
Improved bounds on k-sets in 3D (cont)

- \(G_p \) contains \(\Omega(r_p^2) \) crossings. Hence:

- \(X = \# \text{crossings} = \sum_{p \in P} r_p^2 = \Omega(\sum_{p \in P} r_p)^2 / n \)

 \[\Rightarrow X = \Omega(t^2 / n) \text{ and } \Rightarrow \]

 \(\exists \) line that stabs \(\Omega(t^2 / n^3) \) triangles

- Combined with Lovász' Lemma we have:
 \(t = O(n^{2.5}) \)
k-sets in 4D (Sketch)

- $P := n$ pts in \mathbb{R}^4
- $S :=$ the set of halving-simplices of P
- **Thm:** [Matoušek, Sharir, Smorodinsky, Wagner '05]
 \[|S| = O(n^{4-2/45}) \]

Proof uses two main lemmas:

Lemma 1:
There is a 2-plane that intersects $\Omega(|S|^3/n^8)$ simplices of S

Lemma 2:
Any such 2-plane intersects $O(n^{4-2/15})$ simplices (main new ingredient)
Lemma 1:
There is a 2-plane that intersects $\Omega(|S|^3/n^8)$ simplices of S

Proof (sketch): Project P and S orthogonally onto R^3

We have $|P'|=n$ pts in R^3 and $|S|$ tetrahedra spanned by P'
Lemma 1:
There is a 2-plane that intersects $\Omega(|S|^3/n^8)$ simplices of S

We show that there is a line that intersects this many tetrahedra

`lifting' that line back to \mathbb{R}^4 we get the desired plane
k-sets in 4D (Sketch)

Maybe Stop here???
A square matrix is called totally positive (TP) if:
the determinant of any square sub matrix (minor) is positive

\[
A = \begin{pmatrix}
1 & 2 & 3 \\
4 & 9 & 15 \\
5 & 12 & 30
\end{pmatrix}
\]

\[
det \begin{pmatrix}
1 & 3 \\
4 & 15
\end{pmatrix} = 3
\]

\[
det \begin{pmatrix}
4 & 9 \\
5 & 12
\end{pmatrix} = 3
\]

\[
det(A) = 9
\]
Example: Vandermonde matrix

\[V = \begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{m-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{m-1} \\ 1 & \alpha_3 & \alpha_3^2 & \cdots & \alpha_3^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_m & \alpha_m^2 & \cdots & \alpha_m^{m-1} \end{pmatrix} \]

\[\alpha_1 < \alpha_2 < \cdots < \alpha_m \]

\[\det(V) = \prod_{1 \leq i < j \leq n} (\alpha_j - \alpha_i) \]

\[\begin{vmatrix} \alpha_1 & \alpha_1^2 \\ \alpha_2 & \alpha_2^2 \end{vmatrix} = \alpha_1 \alpha_2 \begin{vmatrix} 1 & \alpha_1 \\ 1 & \alpha_2 \end{vmatrix} \]
The multiplicity of an entry \(a \) in a matrix \(M \) is the number of occurrences of \(a \) in \(M \).

\[
M = \begin{pmatrix}
30 & 2 & 3 \\
4 & 9 & 15 \\
5 & 12 & 30 \\
\end{pmatrix}
\]

The multiplicity of 30 is 2.
Question (Farber et al.)

What is the maximum number of equal entries in an $N \times N$ TP matrix?

- $N = 2$, $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, 3 equal entries
- $N = 3$, $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & \frac{1}{\sqrt{2}} & 1 \\ 1 & 1 & 2 \end{pmatrix}$, $\text{det}(A) = \frac{3}{\sqrt{2}} - 2$, 6 equal entries
Answer (Farber et al.)

Theorem [Farber, Faulk, Johnson, Marzion '12]:
The max # of equal entries in $N \times N$ TP matrix is $\Theta(N^{4/3})$

PF of upper bound relies on a result of J. Pach and G. Tardos '06,

PF of lower bound:
Construction using many pts-lines incidences...
Question (Farber et al.)

Consider $2 \times N$ matrices with positive entries and positive 2×2 minors (TP_2)

What is the max # of equal 2×2 minors in a $2 \times N$ TP_2 matrix?

More generally: What is max # of equal 2×2 minors in $N \times N$ TP_2 matrix?
Equal 2×2 minors

Thm 1 [Farber-Ray-Smorodinsky '13]:

The max # of equal 2×2 minors in a $2 \times N$ TP$_2$ matrix is $\Theta(N^{4/3})$

(Reduction to pts-lines incidences)

Thm 2 [Farber-Ray-Smorodinsky '13]:

The max # of equal $d \times d$ minors in a $d \times N$ TP$_2$ matrix is $\Theta(N^{d-(d/d+1)})$

(Reduction to pts-hyperplane incidences and a result of Apfelbaum-Sharir 2007)
A construction of TP$_2$

Fix sets A, B of n reals;

$0 < a_1 < ... < a_n$ and $b_1 > ... > b_n > 0$

Define $A = (A_{i,j})$ where $A_{i,j} = b_i + a_j$

Claim: A is a TP$_2$ matrix (easy to check)

And moreover... in $A \times B$

The area of an axis-parallel rectangle spanned by $A \times B$ corresponds to a 2×2 minor

Open problem: How many such repeated (unit)-area rectangles are possible?
Lower bound of $\Omega(n^{2+1/\log\log n})$:

- Consider $A=B=\{1,2,\ldots,2n\}$: fix $1 \leq k \leq n$ s.t. $\text{div}(k) = \Omega(n^{1/\log\log n})$.
- For each divisor x of k we have $\Omega(n^2)$ rectangles with area k.

![Diagram showing the relationship between k, x, and k/x.]
Upper bound on repeated areas

Note: $O(n^3) =$ trivial upper bound. Any point can be the lower left corner of at most n unit area rectangles!

Thm 3 [Farber-Ray-Smorodinsky '13]: $P = n$ arbitrary pts in the plane.
max #unit area axis-parallel rectangles in P is $O(n^{4/3})$.

Pf: For $p=(a,b) \in P$ define the hyperbola:

$$\gamma_p = \{(x,y) : (x-a)(y-b)=1\}$$

Observe: $(x,y) \in \gamma_p$ iff (a,b) and (x,y) opposite corners of unit area axis-parallel rectangle.

#rectangles \leq # incidences between P and $\Gamma=\{\gamma_p | p \in P\}$

Luckily: Γ is a family of pseudo lines.
Corollary: For $|P| = n$ points we have:

$O(n^{4/3})$ repeated (unit) area rectangles.