
THE MINOR FALL, THE MAJOR LIFT:
WHAT CAN WE LEARN FROM LARGE CORPORA OF LYRICS?

Yong-Yeol (YY) Ahn, @yy
http://yongyeol.com

CNetS, IUNI, School of Informatics and Computing
Indiana University Bloomington

http://yongyeol.com

Warning:
violence & obscene language

Original plan:
Ingredients, flavor compounds, and recipes —> Network

Check out CAW1 talks!

#0 Large corpora +
text analysis

1.

1.

1.

Valence

Arousal

Two-dimensional model of emotion

Valence

Arousal

Two-dimensional model of emotion

Exciting

Valence

Arousal

Two-dimensional model of emotion

Happy

Exciting

Valence

Arousal

Two-dimensional model of emotion

Happy

Exciting

Calm

Valence

Arousal

Two-dimensional model of emotion

Happy

Exciting

Calm

Sleepy

Valence

Arousal

Two-dimensional model of emotion

Happy

Exciting

Calm

Sleepy
Bored

Valence

Arousal

Two-dimensional model of emotion

Happy

Exciting

Calm

Sleepy
Bored

Frustrated

Valence

Arousal

Two-dimensional model of emotion

Happy

Exciting

Calm

Sleepy
Bored

Frustrated

Angry

Valence

Arousal

Two-dimensional model of emotion

Happy

Exciting

Calm

Sleepy
Bored

Frustrated

Angry

Affective Norms for English Words (ANEW)

Affective Norms for English Words (ANEW)

How happy is the word …

Affective Norms for English Words (ANEW)

“laughter”?
How happy is the word …

Affective Norms for English Words (ANEW)

“laughter”?

“war”?
How happy is the word …

Affective Norms for English Words (ANEW)

“laughter”?

“war”?

“baby”?

How happy is the word …

Affective Norms for English Words (ANEW)

“laughter”?

“war”?

“baby”?

“smile”?How happy is the word …

corpus (see Methods), as a standardized list, and using this list, we
then transformed texts into vectors of word frequencies. The
number 50,000 was chosen both for computational ease–a master
list of all words appearing in our corpus would be too large–and
the fact that various measures of information content (described
below) can be reliably computed.

2.2 Word evaluations using Mechanical Turk. For human
evaluations of happiness, we used Amazon’s Mechanical Turk [24]
to obtain ratings for individual words. There are three main
aspects to explain here: (1) how we created our initial word list, (2)
the ratings procedure, and (3) how a requirement of robustness
leads us to using a tunable subset of words. As per our introductory
remarks, we will refer to this data set as labMT 1.0 (Data Set S1).
We discuss the first two points in this section and the third in the
ensuing one.

We drew on four disparate text sources: Twitter, Google Books
(English) [12,13], music lyrics (1960 to 2007) [23], and the New
York Times (1987 to 2007) [53]. For each corpus, we compiled
word lists ordered by decreasing frequency of occurrence f , which
is well known to follow a power-law decay as a function of word
rank r for natural texts [54]. We merged the top 5,000 words from
each source, resulting in a composite set of 10,222 unique words.

By simply employing frequency as the measure of a word’s
importance, we naturally achieve a number of goals: (1) Precision:
we have evaluations for as many words in a text as possible, given
cost restrictions (the number of unique ‘words’ being tens of
millions); (2) Relevance: we tailor our instrument to our focus of
study; and (3) Impartiality: we do not a priori decide if a given
word has emotional or meaningful content. Our word set
consequently involves multiple languages, all parts of speech,
plurals, conjugations of verbs, slang, abbreviations, and emotion-
less, or neutral, words such as ‘the’ and ‘of’.

For the evaluations, we asked users on Mechanical Turk to rate
how a given word made them feel on a nine point integer scale,
obtaining 50 independent evaluations per word. We broke the
overall assignment into 100 smaller tasks of rating approximately
100 randomly assigned words at a time. We emphasized the scores
1, 3, 5, 7, and 9 by stylized faces, representing a sad to happy
spectrum. Such five point scales are in widespread use on the web
today (e.g., Amazon) and would likely be familiar with users. The
four intermediate scores of 2, 4, 6, 8 allowed for fine tuning of
assessments. In using this scheme, we remained consistent with the
1999 Affective Norms for English Words (ANEW) study by
Bradley and Lang [55], the results of which we used in
constructing our initial metric [23].

Some illustrative examples of average happiness we obtained for
individual words are:

havg(laughter)~8:50,

havg(food)~7:44,

havg(reunion)~6:96,

havg(truck)~5:48,

havg(the)~4:98,

havg(of)~4:94,

havg(vanity)~4:30,

havg(greed)~3:06,

havg(hate)~2:34,

havg(funeral)~2:10,

and havg(terrorist)~1:30:

As this small sample indicates, we find the evaluations are sensible
with neutral words averaging around 5.

Note that in analysing texts, we avoid stemming words, i.e.,
conflating inflected words with their root form, such as all
conjugations of a specific verb. For verbs in particular, by focusing
on the most frequent words, we obtained scores for those
conjugations likely to appear in texts, obviating any need for
stemming. Moreover, while we observe stemming works well in
some cases for happiness measures, e.g., havg(advance) = 6.58,
havg(advanced) = 6.58, and havg(advances) = 6.24, it fails badly in
others, e.g., havg(have) = 5.82 and havg(had) = 4.74; havg(arm)
= 5.50 and havg(armed) = 3.84; and havg(capture) = 4.18 and
havg(captured) = 3.22.

In the Supplementary Information, we provide happiness
averages and standard deviations for all 10,222 words, along with
other information.

An immediate and reassuring sign of the robustness of the word
happiness scores we obtained via Mechanical Turk is that our
results agree very well with that of the earlier ANEW study which
consisted of 1034 words [55] (Spearman’s correlation coefficient
rs~0:944 and p-value v10{10). This adds to earlier suggestions
of universality in the form of a high correlation between the
ANEW study happiness scores and those made by participants in
Madrid for a direct Spanish translation of the ANEW study words
[56]. Furthermore, the ANEW study involved students at the
University of Florida, a group evidently distinct from users on
Mechanical Turk.

The ANEW study words were also broadly chosen for their
emotional and meaningful import rather than usage frequency,
and we show below that our larger frequency-based word set
affords a much greater coverage of texts. (By coverage, we mean
the percentage of words in a text for which we have individual
happiness estimates.) Note that in the ANEW study and our earlier
work [23], happiness was referred to as psychological valence, or
simply valence, a standard terminology [57].

2.3 Robustness and Refinement of Hedonometer. We
now show that our hedonometer can be improved by considering
the effects of taking subsets of the overall list of 10,222 words.
Clearly, truly neutral words such as ‘the’ and ‘of’ should be
omitted, especially because of their high relative abundance,
thereby forming a list of excluded words commonly referred to as
stop words [58].

Because we have filtered by frequency in selecting our word list,
we are able to determine stop word lists in a principled way,

Hedonometrics and Twitter

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e26752

corpus (see Methods), as a standardized list, and using this list, we
then transformed texts into vectors of word frequencies. The
number 50,000 was chosen both for computational ease–a master
list of all words appearing in our corpus would be too large–and
the fact that various measures of information content (described
below) can be reliably computed.

2.2 Word evaluations using Mechanical Turk. For human
evaluations of happiness, we used Amazon’s Mechanical Turk [24]
to obtain ratings for individual words. There are three main
aspects to explain here: (1) how we created our initial word list, (2)
the ratings procedure, and (3) how a requirement of robustness
leads us to using a tunable subset of words. As per our introductory
remarks, we will refer to this data set as labMT 1.0 (Data Set S1).
We discuss the first two points in this section and the third in the
ensuing one.

We drew on four disparate text sources: Twitter, Google Books
(English) [12,13], music lyrics (1960 to 2007) [23], and the New
York Times (1987 to 2007) [53]. For each corpus, we compiled
word lists ordered by decreasing frequency of occurrence f , which
is well known to follow a power-law decay as a function of word
rank r for natural texts [54]. We merged the top 5,000 words from
each source, resulting in a composite set of 10,222 unique words.

By simply employing frequency as the measure of a word’s
importance, we naturally achieve a number of goals: (1) Precision:
we have evaluations for as many words in a text as possible, given
cost restrictions (the number of unique ‘words’ being tens of
millions); (2) Relevance: we tailor our instrument to our focus of
study; and (3) Impartiality: we do not a priori decide if a given
word has emotional or meaningful content. Our word set
consequently involves multiple languages, all parts of speech,
plurals, conjugations of verbs, slang, abbreviations, and emotion-
less, or neutral, words such as ‘the’ and ‘of’.

For the evaluations, we asked users on Mechanical Turk to rate
how a given word made them feel on a nine point integer scale,
obtaining 50 independent evaluations per word. We broke the
overall assignment into 100 smaller tasks of rating approximately
100 randomly assigned words at a time. We emphasized the scores
1, 3, 5, 7, and 9 by stylized faces, representing a sad to happy
spectrum. Such five point scales are in widespread use on the web
today (e.g., Amazon) and would likely be familiar with users. The
four intermediate scores of 2, 4, 6, 8 allowed for fine tuning of
assessments. In using this scheme, we remained consistent with the
1999 Affective Norms for English Words (ANEW) study by
Bradley and Lang [55], the results of which we used in
constructing our initial metric [23].

Some illustrative examples of average happiness we obtained for
individual words are:

havg(laughter)~8:50,

havg(food)~7:44,

havg(reunion)~6:96,

havg(truck)~5:48,

havg(the)~4:98,

havg(of)~4:94,

havg(vanity)~4:30,

havg(greed)~3:06,

havg(hate)~2:34,

havg(funeral)~2:10,

and havg(terrorist)~1:30:

As this small sample indicates, we find the evaluations are sensible
with neutral words averaging around 5.

Note that in analysing texts, we avoid stemming words, i.e.,
conflating inflected words with their root form, such as all
conjugations of a specific verb. For verbs in particular, by focusing
on the most frequent words, we obtained scores for those
conjugations likely to appear in texts, obviating any need for
stemming. Moreover, while we observe stemming works well in
some cases for happiness measures, e.g., havg(advance) = 6.58,
havg(advanced) = 6.58, and havg(advances) = 6.24, it fails badly in
others, e.g., havg(have) = 5.82 and havg(had) = 4.74; havg(arm)
= 5.50 and havg(armed) = 3.84; and havg(capture) = 4.18 and
havg(captured) = 3.22.

In the Supplementary Information, we provide happiness
averages and standard deviations for all 10,222 words, along with
other information.

An immediate and reassuring sign of the robustness of the word
happiness scores we obtained via Mechanical Turk is that our
results agree very well with that of the earlier ANEW study which
consisted of 1034 words [55] (Spearman’s correlation coefficient
rs~0:944 and p-value v10{10). This adds to earlier suggestions
of universality in the form of a high correlation between the
ANEW study happiness scores and those made by participants in
Madrid for a direct Spanish translation of the ANEW study words
[56]. Furthermore, the ANEW study involved students at the
University of Florida, a group evidently distinct from users on
Mechanical Turk.

The ANEW study words were also broadly chosen for their
emotional and meaningful import rather than usage frequency,
and we show below that our larger frequency-based word set
affords a much greater coverage of texts. (By coverage, we mean
the percentage of words in a text for which we have individual
happiness estimates.) Note that in the ANEW study and our earlier
work [23], happiness was referred to as psychological valence, or
simply valence, a standard terminology [57].

2.3 Robustness and Refinement of Hedonometer. We
now show that our hedonometer can be improved by considering
the effects of taking subsets of the overall list of 10,222 words.
Clearly, truly neutral words such as ‘the’ and ‘of’ should be
omitted, especially because of their high relative abundance,
thereby forming a list of excluded words commonly referred to as
stop words [58].

Because we have filtered by frequency in selecting our word list,
we are able to determine stop word lists in a principled way,

Hedonometrics and Twitter

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e26752

corpus (see Methods), as a standardized list, and using this list, we
then transformed texts into vectors of word frequencies. The
number 50,000 was chosen both for computational ease–a master
list of all words appearing in our corpus would be too large–and
the fact that various measures of information content (described
below) can be reliably computed.

2.2 Word evaluations using Mechanical Turk. For human
evaluations of happiness, we used Amazon’s Mechanical Turk [24]
to obtain ratings for individual words. There are three main
aspects to explain here: (1) how we created our initial word list, (2)
the ratings procedure, and (3) how a requirement of robustness
leads us to using a tunable subset of words. As per our introductory
remarks, we will refer to this data set as labMT 1.0 (Data Set S1).
We discuss the first two points in this section and the third in the
ensuing one.

We drew on four disparate text sources: Twitter, Google Books
(English) [12,13], music lyrics (1960 to 2007) [23], and the New
York Times (1987 to 2007) [53]. For each corpus, we compiled
word lists ordered by decreasing frequency of occurrence f , which
is well known to follow a power-law decay as a function of word
rank r for natural texts [54]. We merged the top 5,000 words from
each source, resulting in a composite set of 10,222 unique words.

By simply employing frequency as the measure of a word’s
importance, we naturally achieve a number of goals: (1) Precision:
we have evaluations for as many words in a text as possible, given
cost restrictions (the number of unique ‘words’ being tens of
millions); (2) Relevance: we tailor our instrument to our focus of
study; and (3) Impartiality: we do not a priori decide if a given
word has emotional or meaningful content. Our word set
consequently involves multiple languages, all parts of speech,
plurals, conjugations of verbs, slang, abbreviations, and emotion-
less, or neutral, words such as ‘the’ and ‘of’.

For the evaluations, we asked users on Mechanical Turk to rate
how a given word made them feel on a nine point integer scale,
obtaining 50 independent evaluations per word. We broke the
overall assignment into 100 smaller tasks of rating approximately
100 randomly assigned words at a time. We emphasized the scores
1, 3, 5, 7, and 9 by stylized faces, representing a sad to happy
spectrum. Such five point scales are in widespread use on the web
today (e.g., Amazon) and would likely be familiar with users. The
four intermediate scores of 2, 4, 6, 8 allowed for fine tuning of
assessments. In using this scheme, we remained consistent with the
1999 Affective Norms for English Words (ANEW) study by
Bradley and Lang [55], the results of which we used in
constructing our initial metric [23].

Some illustrative examples of average happiness we obtained for
individual words are:

havg(laughter)~8:50,

havg(food)~7:44,

havg(reunion)~6:96,

havg(truck)~5:48,

havg(the)~4:98,

havg(of)~4:94,

havg(vanity)~4:30,

havg(greed)~3:06,

havg(hate)~2:34,

havg(funeral)~2:10,

and havg(terrorist)~1:30:

As this small sample indicates, we find the evaluations are sensible
with neutral words averaging around 5.

Note that in analysing texts, we avoid stemming words, i.e.,
conflating inflected words with their root form, such as all
conjugations of a specific verb. For verbs in particular, by focusing
on the most frequent words, we obtained scores for those
conjugations likely to appear in texts, obviating any need for
stemming. Moreover, while we observe stemming works well in
some cases for happiness measures, e.g., havg(advance) = 6.58,
havg(advanced) = 6.58, and havg(advances) = 6.24, it fails badly in
others, e.g., havg(have) = 5.82 and havg(had) = 4.74; havg(arm)
= 5.50 and havg(armed) = 3.84; and havg(capture) = 4.18 and
havg(captured) = 3.22.

In the Supplementary Information, we provide happiness
averages and standard deviations for all 10,222 words, along with
other information.

An immediate and reassuring sign of the robustness of the word
happiness scores we obtained via Mechanical Turk is that our
results agree very well with that of the earlier ANEW study which
consisted of 1034 words [55] (Spearman’s correlation coefficient
rs~0:944 and p-value v10{10). This adds to earlier suggestions
of universality in the form of a high correlation between the
ANEW study happiness scores and those made by participants in
Madrid for a direct Spanish translation of the ANEW study words
[56]. Furthermore, the ANEW study involved students at the
University of Florida, a group evidently distinct from users on
Mechanical Turk.

The ANEW study words were also broadly chosen for their
emotional and meaningful import rather than usage frequency,
and we show below that our larger frequency-based word set
affords a much greater coverage of texts. (By coverage, we mean
the percentage of words in a text for which we have individual
happiness estimates.) Note that in the ANEW study and our earlier
work [23], happiness was referred to as psychological valence, or
simply valence, a standard terminology [57].

2.3 Robustness and Refinement of Hedonometer. We
now show that our hedonometer can be improved by considering
the effects of taking subsets of the overall list of 10,222 words.
Clearly, truly neutral words such as ‘the’ and ‘of’ should be
omitted, especially because of their high relative abundance,
thereby forming a list of excluded words commonly referred to as
stop words [58].

Because we have filtered by frequency in selecting our word list,
we are able to determine stop word lists in a principled way,

Hedonometrics and Twitter

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e26752

corpus (see Methods), as a standardized list, and using this list, we
then transformed texts into vectors of word frequencies. The
number 50,000 was chosen both for computational ease–a master
list of all words appearing in our corpus would be too large–and
the fact that various measures of information content (described
below) can be reliably computed.

2.2 Word evaluations using Mechanical Turk. For human
evaluations of happiness, we used Amazon’s Mechanical Turk [24]
to obtain ratings for individual words. There are three main
aspects to explain here: (1) how we created our initial word list, (2)
the ratings procedure, and (3) how a requirement of robustness
leads us to using a tunable subset of words. As per our introductory
remarks, we will refer to this data set as labMT 1.0 (Data Set S1).
We discuss the first two points in this section and the third in the
ensuing one.

We drew on four disparate text sources: Twitter, Google Books
(English) [12,13], music lyrics (1960 to 2007) [23], and the New
York Times (1987 to 2007) [53]. For each corpus, we compiled
word lists ordered by decreasing frequency of occurrence f , which
is well known to follow a power-law decay as a function of word
rank r for natural texts [54]. We merged the top 5,000 words from
each source, resulting in a composite set of 10,222 unique words.

By simply employing frequency as the measure of a word’s
importance, we naturally achieve a number of goals: (1) Precision:
we have evaluations for as many words in a text as possible, given
cost restrictions (the number of unique ‘words’ being tens of
millions); (2) Relevance: we tailor our instrument to our focus of
study; and (3) Impartiality: we do not a priori decide if a given
word has emotional or meaningful content. Our word set
consequently involves multiple languages, all parts of speech,
plurals, conjugations of verbs, slang, abbreviations, and emotion-
less, or neutral, words such as ‘the’ and ‘of’.

For the evaluations, we asked users on Mechanical Turk to rate
how a given word made them feel on a nine point integer scale,
obtaining 50 independent evaluations per word. We broke the
overall assignment into 100 smaller tasks of rating approximately
100 randomly assigned words at a time. We emphasized the scores
1, 3, 5, 7, and 9 by stylized faces, representing a sad to happy
spectrum. Such five point scales are in widespread use on the web
today (e.g., Amazon) and would likely be familiar with users. The
four intermediate scores of 2, 4, 6, 8 allowed for fine tuning of
assessments. In using this scheme, we remained consistent with the
1999 Affective Norms for English Words (ANEW) study by
Bradley and Lang [55], the results of which we used in
constructing our initial metric [23].

Some illustrative examples of average happiness we obtained for
individual words are:

havg(laughter)~8:50,

havg(food)~7:44,

havg(reunion)~6:96,

havg(truck)~5:48,

havg(the)~4:98,

havg(of)~4:94,

havg(vanity)~4:30,

havg(greed)~3:06,

havg(hate)~2:34,

havg(funeral)~2:10,

and havg(terrorist)~1:30:

As this small sample indicates, we find the evaluations are sensible
with neutral words averaging around 5.

Note that in analysing texts, we avoid stemming words, i.e.,
conflating inflected words with their root form, such as all
conjugations of a specific verb. For verbs in particular, by focusing
on the most frequent words, we obtained scores for those
conjugations likely to appear in texts, obviating any need for
stemming. Moreover, while we observe stemming works well in
some cases for happiness measures, e.g., havg(advance) = 6.58,
havg(advanced) = 6.58, and havg(advances) = 6.24, it fails badly in
others, e.g., havg(have) = 5.82 and havg(had) = 4.74; havg(arm)
= 5.50 and havg(armed) = 3.84; and havg(capture) = 4.18 and
havg(captured) = 3.22.

In the Supplementary Information, we provide happiness
averages and standard deviations for all 10,222 words, along with
other information.

An immediate and reassuring sign of the robustness of the word
happiness scores we obtained via Mechanical Turk is that our
results agree very well with that of the earlier ANEW study which
consisted of 1034 words [55] (Spearman’s correlation coefficient
rs~0:944 and p-value v10{10). This adds to earlier suggestions
of universality in the form of a high correlation between the
ANEW study happiness scores and those made by participants in
Madrid for a direct Spanish translation of the ANEW study words
[56]. Furthermore, the ANEW study involved students at the
University of Florida, a group evidently distinct from users on
Mechanical Turk.

The ANEW study words were also broadly chosen for their
emotional and meaningful import rather than usage frequency,
and we show below that our larger frequency-based word set
affords a much greater coverage of texts. (By coverage, we mean
the percentage of words in a text for which we have individual
happiness estimates.) Note that in the ANEW study and our earlier
work [23], happiness was referred to as psychological valence, or
simply valence, a standard terminology [57].

2.3 Robustness and Refinement of Hedonometer. We
now show that our hedonometer can be improved by considering
the effects of taking subsets of the overall list of 10,222 words.
Clearly, truly neutral words such as ‘the’ and ‘of’ should be
omitted, especially because of their high relative abundance,
thereby forming a list of excluded words commonly referred to as
stop words [58].

Because we have filtered by frequency in selecting our word list,
we are able to determine stop word lists in a principled way,

Hedonometrics and Twitter

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e26752

corpus (see Methods), as a standardized list, and using this list, we
then transformed texts into vectors of word frequencies. The
number 50,000 was chosen both for computational ease–a master
list of all words appearing in our corpus would be too large–and
the fact that various measures of information content (described
below) can be reliably computed.

2.2 Word evaluations using Mechanical Turk. For human
evaluations of happiness, we used Amazon’s Mechanical Turk [24]
to obtain ratings for individual words. There are three main
aspects to explain here: (1) how we created our initial word list, (2)
the ratings procedure, and (3) how a requirement of robustness
leads us to using a tunable subset of words. As per our introductory
remarks, we will refer to this data set as labMT 1.0 (Data Set S1).
We discuss the first two points in this section and the third in the
ensuing one.

We drew on four disparate text sources: Twitter, Google Books
(English) [12,13], music lyrics (1960 to 2007) [23], and the New
York Times (1987 to 2007) [53]. For each corpus, we compiled
word lists ordered by decreasing frequency of occurrence f , which
is well known to follow a power-law decay as a function of word
rank r for natural texts [54]. We merged the top 5,000 words from
each source, resulting in a composite set of 10,222 unique words.

By simply employing frequency as the measure of a word’s
importance, we naturally achieve a number of goals: (1) Precision:
we have evaluations for as many words in a text as possible, given
cost restrictions (the number of unique ‘words’ being tens of
millions); (2) Relevance: we tailor our instrument to our focus of
study; and (3) Impartiality: we do not a priori decide if a given
word has emotional or meaningful content. Our word set
consequently involves multiple languages, all parts of speech,
plurals, conjugations of verbs, slang, abbreviations, and emotion-
less, or neutral, words such as ‘the’ and ‘of’.

For the evaluations, we asked users on Mechanical Turk to rate
how a given word made them feel on a nine point integer scale,
obtaining 50 independent evaluations per word. We broke the
overall assignment into 100 smaller tasks of rating approximately
100 randomly assigned words at a time. We emphasized the scores
1, 3, 5, 7, and 9 by stylized faces, representing a sad to happy
spectrum. Such five point scales are in widespread use on the web
today (e.g., Amazon) and would likely be familiar with users. The
four intermediate scores of 2, 4, 6, 8 allowed for fine tuning of
assessments. In using this scheme, we remained consistent with the
1999 Affective Norms for English Words (ANEW) study by
Bradley and Lang [55], the results of which we used in
constructing our initial metric [23].

Some illustrative examples of average happiness we obtained for
individual words are:

havg(laughter)~8:50,

havg(food)~7:44,

havg(reunion)~6:96,

havg(truck)~5:48,

havg(the)~4:98,

havg(of)~4:94,

havg(vanity)~4:30,

havg(greed)~3:06,

havg(hate)~2:34,

havg(funeral)~2:10,

and havg(terrorist)~1:30:

As this small sample indicates, we find the evaluations are sensible
with neutral words averaging around 5.

Note that in analysing texts, we avoid stemming words, i.e.,
conflating inflected words with their root form, such as all
conjugations of a specific verb. For verbs in particular, by focusing
on the most frequent words, we obtained scores for those
conjugations likely to appear in texts, obviating any need for
stemming. Moreover, while we observe stemming works well in
some cases for happiness measures, e.g., havg(advance) = 6.58,
havg(advanced) = 6.58, and havg(advances) = 6.24, it fails badly in
others, e.g., havg(have) = 5.82 and havg(had) = 4.74; havg(arm)
= 5.50 and havg(armed) = 3.84; and havg(capture) = 4.18 and
havg(captured) = 3.22.

In the Supplementary Information, we provide happiness
averages and standard deviations for all 10,222 words, along with
other information.

An immediate and reassuring sign of the robustness of the word
happiness scores we obtained via Mechanical Turk is that our
results agree very well with that of the earlier ANEW study which
consisted of 1034 words [55] (Spearman’s correlation coefficient
rs~0:944 and p-value v10{10). This adds to earlier suggestions
of universality in the form of a high correlation between the
ANEW study happiness scores and those made by participants in
Madrid for a direct Spanish translation of the ANEW study words
[56]. Furthermore, the ANEW study involved students at the
University of Florida, a group evidently distinct from users on
Mechanical Turk.

The ANEW study words were also broadly chosen for their
emotional and meaningful import rather than usage frequency,
and we show below that our larger frequency-based word set
affords a much greater coverage of texts. (By coverage, we mean
the percentage of words in a text for which we have individual
happiness estimates.) Note that in the ANEW study and our earlier
work [23], happiness was referred to as psychological valence, or
simply valence, a standard terminology [57].

2.3 Robustness and Refinement of Hedonometer. We
now show that our hedonometer can be improved by considering
the effects of taking subsets of the overall list of 10,222 words.
Clearly, truly neutral words such as ‘the’ and ‘of’ should be
omitted, especially because of their high relative abundance,
thereby forming a list of excluded words commonly referred to as
stop words [58].

Because we have filtered by frequency in selecting our word list,
we are able to determine stop word lists in a principled way,

Hedonometrics and Twitter

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e26752

corpus (see Methods), as a standardized list, and using this list, we
then transformed texts into vectors of word frequencies. The
number 50,000 was chosen both for computational ease–a master
list of all words appearing in our corpus would be too large–and
the fact that various measures of information content (described
below) can be reliably computed.

2.2 Word evaluations using Mechanical Turk. For human
evaluations of happiness, we used Amazon’s Mechanical Turk [24]
to obtain ratings for individual words. There are three main
aspects to explain here: (1) how we created our initial word list, (2)
the ratings procedure, and (3) how a requirement of robustness
leads us to using a tunable subset of words. As per our introductory
remarks, we will refer to this data set as labMT 1.0 (Data Set S1).
We discuss the first two points in this section and the third in the
ensuing one.

We drew on four disparate text sources: Twitter, Google Books
(English) [12,13], music lyrics (1960 to 2007) [23], and the New
York Times (1987 to 2007) [53]. For each corpus, we compiled
word lists ordered by decreasing frequency of occurrence f , which
is well known to follow a power-law decay as a function of word
rank r for natural texts [54]. We merged the top 5,000 words from
each source, resulting in a composite set of 10,222 unique words.

By simply employing frequency as the measure of a word’s
importance, we naturally achieve a number of goals: (1) Precision:
we have evaluations for as many words in a text as possible, given
cost restrictions (the number of unique ‘words’ being tens of
millions); (2) Relevance: we tailor our instrument to our focus of
study; and (3) Impartiality: we do not a priori decide if a given
word has emotional or meaningful content. Our word set
consequently involves multiple languages, all parts of speech,
plurals, conjugations of verbs, slang, abbreviations, and emotion-
less, or neutral, words such as ‘the’ and ‘of’.

For the evaluations, we asked users on Mechanical Turk to rate
how a given word made them feel on a nine point integer scale,
obtaining 50 independent evaluations per word. We broke the
overall assignment into 100 smaller tasks of rating approximately
100 randomly assigned words at a time. We emphasized the scores
1, 3, 5, 7, and 9 by stylized faces, representing a sad to happy
spectrum. Such five point scales are in widespread use on the web
today (e.g., Amazon) and would likely be familiar with users. The
four intermediate scores of 2, 4, 6, 8 allowed for fine tuning of
assessments. In using this scheme, we remained consistent with the
1999 Affective Norms for English Words (ANEW) study by
Bradley and Lang [55], the results of which we used in
constructing our initial metric [23].

Some illustrative examples of average happiness we obtained for
individual words are:

havg(laughter)~8:50,

havg(food)~7:44,

havg(reunion)~6:96,

havg(truck)~5:48,

havg(the)~4:98,

havg(of)~4:94,

havg(vanity)~4:30,

havg(greed)~3:06,

havg(hate)~2:34,

havg(funeral)~2:10,

and havg(terrorist)~1:30:

As this small sample indicates, we find the evaluations are sensible
with neutral words averaging around 5.

Note that in analysing texts, we avoid stemming words, i.e.,
conflating inflected words with their root form, such as all
conjugations of a specific verb. For verbs in particular, by focusing
on the most frequent words, we obtained scores for those
conjugations likely to appear in texts, obviating any need for
stemming. Moreover, while we observe stemming works well in
some cases for happiness measures, e.g., havg(advance) = 6.58,
havg(advanced) = 6.58, and havg(advances) = 6.24, it fails badly in
others, e.g., havg(have) = 5.82 and havg(had) = 4.74; havg(arm)
= 5.50 and havg(armed) = 3.84; and havg(capture) = 4.18 and
havg(captured) = 3.22.

In the Supplementary Information, we provide happiness
averages and standard deviations for all 10,222 words, along with
other information.

An immediate and reassuring sign of the robustness of the word
happiness scores we obtained via Mechanical Turk is that our
results agree very well with that of the earlier ANEW study which
consisted of 1034 words [55] (Spearman’s correlation coefficient
rs~0:944 and p-value v10{10). This adds to earlier suggestions
of universality in the form of a high correlation between the
ANEW study happiness scores and those made by participants in
Madrid for a direct Spanish translation of the ANEW study words
[56]. Furthermore, the ANEW study involved students at the
University of Florida, a group evidently distinct from users on
Mechanical Turk.

The ANEW study words were also broadly chosen for their
emotional and meaningful import rather than usage frequency,
and we show below that our larger frequency-based word set
affords a much greater coverage of texts. (By coverage, we mean
the percentage of words in a text for which we have individual
happiness estimates.) Note that in the ANEW study and our earlier
work [23], happiness was referred to as psychological valence, or
simply valence, a standard terminology [57].

2.3 Robustness and Refinement of Hedonometer. We
now show that our hedonometer can be improved by considering
the effects of taking subsets of the overall list of 10,222 words.
Clearly, truly neutral words such as ‘the’ and ‘of’ should be
omitted, especially because of their high relative abundance,
thereby forming a list of excluded words commonly referred to as
stop words [58].

Because we have filtered by frequency in selecting our word list,
we are able to determine stop word lists in a principled way,

Hedonometrics and Twitter

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e26752

Valence of a document (sentence)
~ the average of the word sentiment

Maybe not the most accurate nor
sophisticated sentiment analysis method,

but

Super easy, scalable, and transparent

Word-shift diagram

PS Dodds, CM Danforth

as:

100 ·

+/�z }| {�
hi � h(ref)

�
"/#z }| {⇣

pi � p(ref)i

⌘

|h(comp) � h(ref)|

where hi is the valence score of word i in the lexicon, h(ref) and h(comp) are the mean valences

of the words in the reference corpus and comparison corpus respectively, pi is the normalized

frequency of word i in the comparison corpus, and p(ref)i is the normalized frequency of word

i in the reference corpus (normalized frequencies are computed as pi = niP
i0 ni0

, where ni

is the number of occurrences of a word i). The first term (indicated by ‘+/-’) measures

the di↵erence in word valence between word i and the mean valence of the reference corpus,

while the second term (indicated by " / #) looks at the di↵erence in word prevalence between

the comparison and reference corpus. In plotting the word shift graphs, for each word we

use +/- signs and blue/green bar colors to indicate the (positive or negative) sign of the

valence term and " / # arrows to indicate the sign of the prevalence term.

F. Model comparison

In section II E, we evaluate what explanatory factors (chord category, genre, era, and

region) best account for di↵erences in valence scores. Using the statsmodels toolbox [64],

we estimated linear regression models where the mean valence of each chord served as the

response variable and the most popular chord categories, genres, eras, and regions served as

the categorical predictor variables. The variance of the residuals was used to compute the

proportion of variance explained when using each factor in turn.

We also compared models that used combinations of factors. As before, we fit linear

models of mean valence. Now, however, explanatory factors were added in a greedy fashion,

with each additional factor to minimize the Aikake information criterion (AIC) of the overall

model.

16

Word-shift diagram

PS Dodds, CM Danforth

as:

100 ·

+/�z }| {�
hi � h(ref)

�
"/#z }| {⇣

pi � p(ref)i

⌘

|h(comp) � h(ref)|

where hi is the valence score of word i in the lexicon, h(ref) and h(comp) are the mean valences

of the words in the reference corpus and comparison corpus respectively, pi is the normalized

frequency of word i in the comparison corpus, and p(ref)i is the normalized frequency of word

i in the reference corpus (normalized frequencies are computed as pi = niP
i0 ni0

, where ni

is the number of occurrences of a word i). The first term (indicated by ‘+/-’) measures

the di↵erence in word valence between word i and the mean valence of the reference corpus,

while the second term (indicated by " / #) looks at the di↵erence in word prevalence between

the comparison and reference corpus. In plotting the word shift graphs, for each word we

use +/- signs and blue/green bar colors to indicate the (positive or negative) sign of the

valence term and " / # arrows to indicate the sign of the prevalence term.

F. Model comparison

In section II E, we evaluate what explanatory factors (chord category, genre, era, and

region) best account for di↵erences in valence scores. Using the statsmodels toolbox [64],

we estimated linear regression models where the mean valence of each chord served as the

response variable and the most popular chord categories, genres, eras, and regions served as

the categorical predictor variables. The variance of the residuals was used to compute the

proportion of variance explained when using each factor in turn.

We also compared models that used combinations of factors. As before, we fit linear

models of mean valence. Now, however, explanatory factors were added in a greedy fashion,

with each additional factor to minimize the Aikake information criterion (AIC) of the overall

model.

16

Valence of blog posts

PS Dodds, CM Danforth

PS Dodds, CM Danforth

Valence of lyrics

PS Dodds, CM Danforth

Valence of lyrics

PS Dodds, CM Danforth

Valence of lyrics

PS Dodds, CM Danforth

2.

http://www.nytimes.com/interactive/2009/02/02/sports/20090202_superbowl_twitter.html?emc=eta3

Visualization of Super Bowl tweets (2009)

http://www.nytimes.com/interactive/2009/02/02/sports/20090202_superbowl_twitter.html?emc=eta3

http://www.nytimes.com/interactive/2009/02/02/sports/20090202_superbowl_twitter.html?emc=eta3

Visualization of Super Bowl tweets (2009)

(simple) text analysis
+ rich text data

(simple) text analysis
+ rich text data

Can we map daily mood of the
whole nation through Twitter?

Alan Mislove
Sune Lehmann

+ James Bagrow, JP Onnela, J Niels Rosenquist

300 million tweets (Sep 2006 - Aug 2009)
+

ANEW sentiment
+

Simple geocoding to states
+

Cartogram

Can we map daily mood of the
whole nation through Twitter?

http://www.ccs.neu.edu/home/amislove/twittermood/

http://www.ccs.neu.edu/home/amislove/twittermood/

#1: Lyrics and Emotion

Coming back to music,

Valence of lyrics

“Music is the shorthand of emotion.”

Interesting because music
evokes strong emotion

Music != lyrics

Music != lyrics

Melody

Music != lyrics

Melody

Harmony

Music != lyrics

Melody

Harmony
Rhythm

Music != lyrics

Melody

Harmony

Timbre
Rhythm

Music != lyrics

Melody

Harmony

Timbre
Rhythm

…

Music != lyrics

Melody

Harmony

Timbre
Rhythm

…

They are not
“texts” :(

C Major C Minor

For instance, harmony has power.

C Major C Minor

For instance, harmony has power.

C Major C Minor

:)

For instance, harmony has power.

C Major C Minor

:)

For instance, harmony has power.

C Major C Minor

:)

For instance, harmony has power.

C Major C Minor

:) :(

For instance, harmony has power.

https://www.youtube.com/watch?v=uNaQE9K3eO0

https://www.youtube.com/watch?v=uNaQE9K3eO0

Analyzing Lyrics & Chords together?

Nakul Dhande

“Maybe we can use
sentiment analysis of
lyrics in combination

with chords…”

Difficult: what kinds of emotion (or
‘meaning’) does this chord convey?

Difficult: what kinds of emotion (or
‘meaning’) does this chord convey?

Somewhat feasible: what kinds of words are
associated with this chord? How happy are they?

Difficult: what kinds of emotion (or
‘meaning’) does this chord convey?

Somewhat feasible: what kinds of words are
associated with this chord? How happy are they?

“Did you lose the keys here?”
“No, but the light is much better here.”

Data (~100k songs)

Chords Accompanied lyrics

C Major Now I’ve heard that there was a

A Minor Secret chord, that

C Major David Played, and it

A Minor Pleased the Lord but

… …

Each chord (type): a “document”

Sentiment analysis using

“labMT”
(language assessment by

Mechanical Turk)

Danforth, Dodds, et al.

Are Major chords happier than Minor chords?

Are Major chords associated with happier
words than Minor chords?

Are Major chords associated with happier
words than Minor chords?

Yes! But,

Are Major chords associated with happier
words than Minor chords?

Yes! But,

7th chords are associated with
happier words than Major chords

Yes! But,

Major, compared with Minor

love, down, home,
old, well, baby,

good, sing, song,
happy

you, not, never,
don’t, no, pain, we,
can’t, lost, nothing

vs.

7ths vs. Major
love, baby, no,

bad, ain’t, sweet,
cry, good, lonely

vs.

down, we, don’t,
hate, can’t, alone,
die, not, hell, fight,
dead, waiting, lie,

…

But how about genres?

But how about genres?

5.6 5.8 6.0 6.2 6.4 6.6 6.8

Valence

Metal

Punk

Emo & Hardcore

Alternative

Indie Rock

Alternative Folk

Brit Rock

Adult Alternative Rock

Mainstream Rock

Alternative Roots

Folk Rock

Folk

Western Pop

Classic Country

70's Rock

Country

Contemporary R&B/Soul

Classic R&B/Soul

Religious

60's Rock

A Genre Valence B

FIG. 3. (A) Mean valence of lyrics in songs by genre. (B) Major vs. Minor valence di↵erences

for songs by genre. (C) Word shift plot for the Religious genre. (D) Word shift plot for the Punk

genre. See caption of Fig. 2 for explanation of word shift plot symbols.

C. Era

In this section, we overview sentiment trends across di↵erent historical eras. Fig. 4A

shows the mean valence of lyrics in di↵erent eras. Valence has steadily decreased since the

1950’s, in line with previous sentiment analysis of lyrics which attributed the decline to

the recent emergence of ‘dark’ genres such as metal and punk [35]. However, our results

demonstrate that this trend has recently undergone a reversal: lyrics are higher-valence in

the 2010’s era than in the 2000’s era.

As in the last section, we shows di↵erence between Major and Minor chords for lyrics

belonging to di↵erent eras (Fig. 4B). While Major chords are generally higher valence than

Minor chords, surprisingly this distinction does not hold in the 1980’s era, in which Minor

6

5.6 5.8 6.0 6.2 6.4 6.6 6.8

Valence

Metal

Punk

Emo & Hardcore

Alternative

Indie Rock

Alternative Folk

Brit Rock

Adult Alternative Rock

Mainstream Rock

Alternative Roots

Folk Rock

Folk

Western Pop

Classic Country

70's Rock

Country

Contemporary R&B/Soul

Classic R&B/Soul

Religious

60's Rock

A Genre Valence B

FIG. 3. (A) Mean valence of lyrics in songs by genre. (B) Major vs. Minor valence di↵erences

for songs by genre. (C) Word shift plot for the Religious genre. (D) Word shift plot for the Punk

genre. See caption of Fig. 2 for explanation of word shift plot symbols.

C. Era

In this section, we overview sentiment trends across di↵erent historical eras. Fig. 4A

shows the mean valence of lyrics in di↵erent eras. Valence has steadily decreased since the

1950’s, in line with previous sentiment analysis of lyrics which attributed the decline to

the recent emergence of ‘dark’ genres such as metal and punk [35]. However, our results

demonstrate that this trend has recently undergone a reversal: lyrics are higher-valence in

the 2010’s era than in the 2000’s era.

As in the last section, we shows di↵erence between Major and Minor chords for lyrics

belonging to di↵erent eras (Fig. 4B). While Major chords are generally higher valence than

Minor chords, surprisingly this distinction does not hold in the 1980’s era, in which Minor

6

6.8 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Valence difference

B Major vs. Minor Valence

 +

C

D

FIG. 3. (A) Mean valence of lyrics in songs by genre. (B) Major vs. Minor valence di↵erences

for songs by genre. (C) Word shift plot for the Religious genre. (D) Word shift plot for the Punk

genre. See caption of Fig. 2 for explanation of word shift plot symbols.

C. Era

In this section, we overview sentiment trends across di↵erent historical eras. Fig. 4A

shows the mean valence of lyrics in di↵erent eras. Valence has steadily decreased since the

1950’s, in line with previous sentiment analysis of lyrics which attributed the decline to

the recent emergence of ‘dark’ genres such as metal and punk [35]. However, our results

demonstrate that this trend has recently undergone a reversal: lyrics are higher-valence in

the 2010’s era than in the 2000’s era.

As in the last section, we shows di↵erence between Major and Minor chords for lyrics

belonging to di↵erent eras (Fig. 4B). While Major chords are generally higher valence than

Minor chords, surprisingly this distinction does not hold in the 1980’s era, in which Minor

6

5.6 5.8 6.0 6.2 6.4 6.6 6.8

Valence

Metal

Punk

Emo & Hardcore

Alternative

Indie Rock

Alternative Folk

Brit Rock

Adult Alternative Rock

Mainstream Rock

Alternative Roots

Folk Rock

Folk

Western Pop

Classic Country

70's Rock

Country

Contemporary R&B/Soul

Classic R&B/Soul

Religious

60's Rock

A Genre Valence B

FIG. 3. (A) Mean valence of lyrics in songs by genre. (B) Major vs. Minor valence di↵erences

for songs by genre. (C) Word shift plot for the Religious genre. (D) Word shift plot for the Punk

genre. See caption of Fig. 2 for explanation of word shift plot symbols.

C. Era

In this section, we overview sentiment trends across di↵erent historical eras. Fig. 4A

shows the mean valence of lyrics in di↵erent eras. Valence has steadily decreased since the

1950’s, in line with previous sentiment analysis of lyrics which attributed the decline to

the recent emergence of ‘dark’ genres such as metal and punk [35]. However, our results

demonstrate that this trend has recently undergone a reversal: lyrics are higher-valence in

the 2010’s era than in the 2000’s era.

As in the last section, we shows di↵erence between Major and Minor chords for lyrics

belonging to di↵erent eras (Fig. 4B). While Major chords are generally higher valence than

Minor chords, surprisingly this distinction does not hold in the 1980’s era, in which Minor

6

6.8 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Valence difference

B Major vs. Minor Valence

 +

C

D

FIG. 3. (A) Mean valence of lyrics in songs by genre. (B) Major vs. Minor valence di↵erences

for songs by genre. (C) Word shift plot for the Religious genre. (D) Word shift plot for the Punk

genre. See caption of Fig. 2 for explanation of word shift plot symbols.

C. Era

In this section, we overview sentiment trends across di↵erent historical eras. Fig. 4A

shows the mean valence of lyrics in di↵erent eras. Valence has steadily decreased since the

1950’s, in line with previous sentiment analysis of lyrics which attributed the decline to

the recent emergence of ‘dark’ genres such as metal and punk [35]. However, our results

demonstrate that this trend has recently undergone a reversal: lyrics are higher-valence in

the 2010’s era than in the 2000’s era.

As in the last section, we shows di↵erence between Major and Minor chords for lyrics

belonging to di↵erent eras (Fig. 4B). While Major chords are generally higher valence than

Minor chords, surprisingly this distinction does not hold in the 1980’s era, in which Minor

6

5.6 5.8 6.0 6.2 6.4 6.6 6.8

Valence

Metal

Punk

Emo & Hardcore

Alternative

Indie Rock

Alternative Folk

Brit Rock

Adult Alternative Rock

Mainstream Rock

Alternative Roots

Folk Rock

Folk

Western Pop

Classic Country

70's Rock

Country

Contemporary R&B/Soul

Classic R&B/Soul

Religious

60's Rock

A Genre Valence B

FIG. 3. (A) Mean valence of lyrics in songs by genre. (B) Major vs. Minor valence di↵erences

for songs by genre. (C) Word shift plot for the Religious genre. (D) Word shift plot for the Punk

genre. See caption of Fig. 2 for explanation of word shift plot symbols.

C. Era

In this section, we overview sentiment trends across di↵erent historical eras. Fig. 4A

shows the mean valence of lyrics in di↵erent eras. Valence has steadily decreased since the

1950’s, in line with previous sentiment analysis of lyrics which attributed the decline to

the recent emergence of ‘dark’ genres such as metal and punk [35]. However, our results

demonstrate that this trend has recently undergone a reversal: lyrics are higher-valence in

the 2010’s era than in the 2000’s era.

As in the last section, we shows di↵erence between Major and Minor chords for lyrics

belonging to di↵erent eras (Fig. 4B). While Major chords are generally higher valence than

Minor chords, surprisingly this distinction does not hold in the 1980’s era, in which Minor

6

6.8 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Valence difference

B Major vs. Minor Valence

 +

C

D

FIG. 3. (A) Mean valence of lyrics in songs by genre. (B) Major vs. Minor valence di↵erences

for songs by genre. (C) Word shift plot for the Religious genre. (D) Word shift plot for the Punk

genre. See caption of Fig. 2 for explanation of word shift plot symbols.

C. Era

In this section, we overview sentiment trends across di↵erent historical eras. Fig. 4A

shows the mean valence of lyrics in di↵erent eras. Valence has steadily decreased since the

1950’s, in line with previous sentiment analysis of lyrics which attributed the decline to

the recent emergence of ‘dark’ genres such as metal and punk [35]. However, our results

demonstrate that this trend has recently undergone a reversal: lyrics are higher-valence in

the 2010’s era than in the 2000’s era.

As in the last section, we shows di↵erence between Major and Minor chords for lyrics

belonging to di↵erent eras (Fig. 4B). While Major chords are generally higher valence than

Minor chords, surprisingly this distinction does not hold in the 1980’s era, in which Minor

6

Major vs. Minor Valence

−10 0 10

Contribution %

 lonely -
 - sin

 bad -
 life +

 + baby
 + like

 sing +
 glory +
 praise +

 love +

C Religious Genre

FIG. 3. (A) Mean valence of lyrics in songs by genre. (B) Major vs. Minor valence di↵erences

for songs by genre. (C) Word shift plot for the Religious genre. (D) Word shift plot for the Punk

genre. See caption of Fig. 2 for explanation of word shift plot symbols.

C. Era

In this section, we overview sentiment trends across di↵erent historical eras. Fig. 4A

shows the mean valence of lyrics in di↵erent eras. Valence has steadily decreased since the

1950’s, in line with previous sentiment analysis of lyrics which attributed the decline to

the recent emergence of ‘dark’ genres such as metal and punk [35]. However, our results

demonstrate that this trend has recently undergone a reversal: lyrics are higher-valence in

the 2010’s era than in the 2000’s era.

As in the last section, we shows di↵erence between Major and Minor chords for lyrics

belonging to di↵erent eras (Fig. 4B). While Major chords are generally higher valence than

Minor chords, surprisingly this distinction does not hold in the 1980’s era, in which Minor

6

5.6 5.8 6.0 6.2 6.4 6.6 6.8

Valence

Metal

Punk

Emo & Hardcore

Alternative

Indie Rock

Alternative Folk

Brit Rock

Adult Alternative Rock

Mainstream Rock

Alternative Roots

Folk Rock

Folk

Western Pop

Classic Country

70's Rock

Country

Contemporary R&B/Soul

Classic R&B/Soul

Religious

60's Rock

A Genre Valence B

FIG. 3. (A) Mean valence of lyrics in songs by genre. (B) Major vs. Minor valence di↵erences

for songs by genre. (C) Word shift plot for the Religious genre. (D) Word shift plot for the Punk

genre. See caption of Fig. 2 for explanation of word shift plot symbols.

C. Era

In this section, we overview sentiment trends across di↵erent historical eras. Fig. 4A

shows the mean valence of lyrics in di↵erent eras. Valence has steadily decreased since the

1950’s, in line with previous sentiment analysis of lyrics which attributed the decline to

the recent emergence of ‘dark’ genres such as metal and punk [35]. However, our results

demonstrate that this trend has recently undergone a reversal: lyrics are higher-valence in

the 2010’s era than in the 2000’s era.

As in the last section, we shows di↵erence between Major and Minor chords for lyrics

belonging to di↵erent eras (Fig. 4B). While Major chords are generally higher valence than

Minor chords, surprisingly this distinction does not hold in the 1980’s era, in which Minor

6

6.8 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Valence difference

B Major vs. Minor Valence

 +

C

D

FIG. 3. (A) Mean valence of lyrics in songs by genre. (B) Major vs. Minor valence di↵erences

for songs by genre. (C) Word shift plot for the Religious genre. (D) Word shift plot for the Punk

genre. See caption of Fig. 2 for explanation of word shift plot symbols.

C. Era

In this section, we overview sentiment trends across di↵erent historical eras. Fig. 4A

shows the mean valence of lyrics in di↵erent eras. Valence has steadily decreased since the

1950’s, in line with previous sentiment analysis of lyrics which attributed the decline to

the recent emergence of ‘dark’ genres such as metal and punk [35]. However, our results

demonstrate that this trend has recently undergone a reversal: lyrics are higher-valence in

the 2010’s era than in the 2000’s era.

As in the last section, we shows di↵erence between Major and Minor chords for lyrics

belonging to di↵erent eras (Fig. 4B). While Major chords are generally higher valence than

Minor chords, surprisingly this distinction does not hold in the 1980’s era, in which Minor

6

Major vs. Minor Valence

−10 0 10

Contribution %

 lonely -
 - sin

 bad -
 life +

 + baby
 + like

 sing +
 glory +
 praise +

 love +

C Religious Genre

FIG. 3. (A) Mean valence of lyrics in songs by genre. (B) Major vs. Minor valence di↵erences

for songs by genre. (C) Word shift plot for the Religious genre. (D) Word shift plot for the Punk

genre. See caption of Fig. 2 for explanation of word shift plot symbols.

C. Era

In this section, we overview sentiment trends across di↵erent historical eras. Fig. 4A

shows the mean valence of lyrics in di↵erent eras. Valence has steadily decreased since the

1950’s, in line with previous sentiment analysis of lyrics which attributed the decline to

the recent emergence of ‘dark’ genres such as metal and punk [35]. However, our results

demonstrate that this trend has recently undergone a reversal: lyrics are higher-valence in

the 2010’s era than in the 2000’s era.

As in the last section, we shows di↵erence between Major and Minor chords for lyrics

belonging to di↵erent eras (Fig. 4B). While Major chords are generally higher valence than

Minor chords, surprisingly this distinction does not hold in the 1980’s era, in which Minor

6

0.4 −5 0

Contribution %

 - worst
 - shit

 cry -
 - lost
 - bad

 - hate
 + baby
 - hell
 - sick

 - dead

D Punk Genre

FIG. 3. (A) Mean valence of lyrics in songs by genre. (B) Major vs. Minor valence di↵erences

for songs by genre. (C) Word shift plot for the Religious genre. (D) Word shift plot for the Punk

genre. See caption of Fig. 2 for explanation of word shift plot symbols.

C. Era

In this section, we overview sentiment trends across di↵erent historical eras. Fig. 4A

shows the mean valence of lyrics in di↵erent eras. Valence has steadily decreased since the

1950’s, in line with previous sentiment analysis of lyrics which attributed the decline to

the recent emergence of ‘dark’ genres such as metal and punk [35]. However, our results

demonstrate that this trend has recently undergone a reversal: lyrics are higher-valence in

the 2010’s era than in the 2000’s era.

As in the last section, we shows di↵erence between Major and Minor chords for lyrics

belonging to di↵erent eras (Fig. 4B). While Major chords are generally higher valence than

Minor chords, surprisingly this distinction does not hold in the 1980’s era, in which Minor

6

Valence of lyrics

Valence of lyrics

1950's

1960's

1970's

1980's

1990's

2000's

2010's

Era

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Va
le

nc
e

A Era Valence

FIG. 4. (A) Mean valence of lyrics in songs by era. (B) Major vs. Minor valence di↵erences for

songs by era. (C) Proportion of chords in each chord category in di↵erent eras (note logarithmic

scale).

and Major chord valences are similar. The genres in the 1980’s that had Minor chords

with higher mean valence than Major chords — in other words, which had an ‘inverted’

Major/Minor valence pattern — include Alternative Folk, Indie Rock, and Punk (data not

shown).

Finally, we report changes in chord usage patterns across time. Fig. 4C shows the pro-

portion of chords belonging to each chord category in di↵erent eras (note the logarithmic

scale). Since the 1950’s, Major chord usage has been stable while Minor chords usage has

been steadily growing. Dominant 7th chords have become less prevalent, while Major 7th

and Minor 7th chords had an increase in usage during the 1970’s.

The finding that Minor chords have become more prevalent while Dominant 7th chords

have become rarer agrees with a recent data-driven study of the evolution of popular music

genres [53]. The authors attribute the latter e↵ect to the decline in the popularity of blues

and jazz, which frequently use Dominant 7th chords. However, we find that this e↵ect holds

widely, with Dominant 7th chords diminishing in prevalence even when we exclude genres

associated with Blues and Jazz (data not shown). More qualitatively, musicologists [54]

have argued that in the 1970’s, many popular music styles exhibited a decline in the use of

Dominant 7th chords and a growth in the use of Major 7th and Minor 7th chords — clearly

seen in the corresponding increases in Fig. 4C.

7

Valence of lyrics

1950's

1960's

1970's

1980's

1990's

2000's

2010's

Era

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Va
le

nc
e

A Era Valence

FIG. 4. (A) Mean valence of lyrics in songs by era. (B) Major vs. Minor valence di↵erences for

songs by era. (C) Proportion of chords in each chord category in di↵erent eras (note logarithmic

scale).

and Major chord valences are similar. The genres in the 1980’s that had Minor chords

with higher mean valence than Major chords — in other words, which had an ‘inverted’

Major/Minor valence pattern — include Alternative Folk, Indie Rock, and Punk (data not

shown).

Finally, we report changes in chord usage patterns across time. Fig. 4C shows the pro-

portion of chords belonging to each chord category in di↵erent eras (note the logarithmic

scale). Since the 1950’s, Major chord usage has been stable while Minor chords usage has

been steadily growing. Dominant 7th chords have become less prevalent, while Major 7th

and Minor 7th chords had an increase in usage during the 1970’s.

The finding that Minor chords have become more prevalent while Dominant 7th chords

have become rarer agrees with a recent data-driven study of the evolution of popular music

genres [53]. The authors attribute the latter e↵ect to the decline in the popularity of blues

and jazz, which frequently use Dominant 7th chords. However, we find that this e↵ect holds

widely, with Dominant 7th chords diminishing in prevalence even when we exclude genres

associated with Blues and Jazz (data not shown). More qualitatively, musicologists [54]

have argued that in the 1970’s, many popular music styles exhibited a decline in the use of

Dominant 7th chords and a growth in the use of Major 7th and Minor 7th chords — clearly

seen in the corresponding increases in Fig. 4C.

7

Was 80’s weird?

1950's

1960's

1970's

1980's

1990's

2000's

2010's

Era

Va
le

nc
e

di
ffe

re
nc

e

B Major vs. Minor Valence

FIG. 4. (A) Mean valence of lyrics in songs by era. (B) Major vs. Minor valence di↵erences for

songs by era. (C) Proportion of chords in each chord category in di↵erent eras (note logarithmic

scale).

and Major chord valences are similar. The genres in the 1980’s that had Minor chords

with higher mean valence than Major chords — in other words, which had an ‘inverted’

Major/Minor valence pattern — include Alternative Folk, Indie Rock, and Punk (data not

shown).

Finally, we report changes in chord usage patterns across time. Fig. 4C shows the pro-

portion of chords belonging to each chord category in di↵erent eras (note the logarithmic

scale). Since the 1950’s, Major chord usage has been stable while Minor chords usage has

been steadily growing. Dominant 7th chords have become less prevalent, while Major 7th

and Minor 7th chords had an increase in usage during the 1970’s.

The finding that Minor chords have become more prevalent while Dominant 7th chords

have become rarer agrees with a recent data-driven study of the evolution of popular music

genres [53]. The authors attribute the latter e↵ect to the decline in the popularity of blues

and jazz, which frequently use Dominant 7th chords. However, we find that this e↵ect holds

widely, with Dominant 7th chords diminishing in prevalence even when we exclude genres

associated with Blues and Jazz (data not shown). More qualitatively, musicologists [54]

have argued that in the 1970’s, many popular music styles exhibited a decline in the use of

Dominant 7th chords and a growth in the use of Major 7th and Minor 7th chords — clearly

seen in the corresponding increases in Fig. 4C.

7

Was 80’s weird?

1950's

1960's

1970's

1980's

1990's

2000's

2010's

Era

Va
le

nc
e

di
ffe

re
nc

e

B Major vs. Minor Valence

FIG. 4. (A) Mean valence of lyrics in songs by era. (B) Major vs. Minor valence di↵erences for

songs by era. (C) Proportion of chords in each chord category in di↵erent eras (note logarithmic

scale).

and Major chord valences are similar. The genres in the 1980’s that had Minor chords

with higher mean valence than Major chords — in other words, which had an ‘inverted’

Major/Minor valence pattern — include Alternative Folk, Indie Rock, and Punk (data not

shown).

Finally, we report changes in chord usage patterns across time. Fig. 4C shows the pro-

portion of chords belonging to each chord category in di↵erent eras (note the logarithmic

scale). Since the 1950’s, Major chord usage has been stable while Minor chords usage has

been steadily growing. Dominant 7th chords have become less prevalent, while Major 7th

and Minor 7th chords had an increase in usage during the 1970’s.

The finding that Minor chords have become more prevalent while Dominant 7th chords

have become rarer agrees with a recent data-driven study of the evolution of popular music

genres [53]. The authors attribute the latter e↵ect to the decline in the popularity of blues

and jazz, which frequently use Dominant 7th chords. However, we find that this e↵ect holds

widely, with Dominant 7th chords diminishing in prevalence even when we exclude genres

associated with Blues and Jazz (data not shown). More qualitatively, musicologists [54]

have argued that in the 1970’s, many popular music styles exhibited a decline in the use of

Dominant 7th chords and a growth in the use of Major 7th and Minor 7th chords — clearly

seen in the corresponding increases in Fig. 4C.

7

M. Mauch et al., Roy. Sci.
Open Science (2016).

Topic analysis of sound
features of Billboard 100

Regional difference

Summary

Summary
• Lyrics as a proxy to understand ‘meaning’ of other

musical elements?

Summary
• Lyrics as a proxy to understand ‘meaning’ of other

musical elements?

• Curious associations: 7th > Major > Minor; Minor ~
negations; 7th ~ Love, …

Summary
• Lyrics as a proxy to understand ‘meaning’ of other

musical elements?

• Curious associations: 7th > Major > Minor; Minor ~
negations; 7th ~ Love, …

• Major - Minor difference is fairly consistent, but not
as robust as we may assume.

Summary
• Lyrics as a proxy to understand ‘meaning’ of other

musical elements?

• Curious associations: 7th > Major > Minor; Minor ~
negations; 7th ~ Love, …

• Major - Minor difference is fairly consistent, but not
as robust as we may assume.

• Still lots of caveats!

https://www.youtube.com/watch?v=oOlDewpCfZQ

https://www.youtube.com/watch?v=oOlDewpCfZQ

#2 Lyrics and Society

“Acoustic guitar player”

“Rapper”

Jaehyuk Park

Can we study the
relationship between
hip hop lyrics and
social movements?

“F*** tha police” by N.W.A.
(1988)

F*** the police coming straight from the underground
A young n**** got it bad cause I'm brown
And not the other color so police think
They have the authority to kill a minority
…
Searching my car, looking for the product
Thinking every n**** is selling narcotics
…
Punk police are afraid of me, huh
A young n**** on the warpath
And when I'm finished, it's gonna be a bloodbath
Of cops, dying in L.A

https://www.youtube.com/watch?v=-fVsA_Gm0No

https://www.youtube.com/watch?v=-fVsA_Gm0No

“Music … heralds, for it is prophetic. It has always
been in its essence a herald of times to come.”

—Jacques Attali,
Noise: the Political Economy of Music

OHHLA.com
(lyrics)

spotify
(metadata)

http://ohhla.com

Total 18,126 lyrics
from 3,340 albums
by 1,350 artists
during 1960 ~ 2016

How to analyze the
the corpus?

Counting + word2vec

A brief intro about
word2vec

Word embedding
the = (1, 0, 0, 0, …, 0)
quick = (0, 1, 0, 0, …, 0)
…

“One-hot”
representation

Similarity(v(w1), v(w2)) = 0

Can we find dense, continuous,
meaningful representations of words?

Embedding ~ Extracting features

How can we put
similar words into

similar place?

great
good

excellent

chair

Embedding ~ Extracting features

Hand-crafting
Factorization of term-document matrix

Information theory (PMI)
…..

How can we put
similar words into

similar place?

great
good

excellent

chair

word2vec: Idea
Language model: how well can we predict

the next word based on the context?

P (w1, . . . , wm) =
mY

i=1

P (wi | w1, . . . , wi�1)

word2vec: Idea
Language model: how well can we predict

the next word based on the context?

P (w1, . . . , wm) =
mY

i=1

P (wi | w1, . . . , wi�1)

Why not “deep-learning” it?

word2vec: Idea
Language model: how well can we predict

the next word based on the context?

P (w1, . . . , wm) =
mY

i=1

P (wi | w1, . . . , wi�1)

Why not “deep-learning” it?

word2vec: Idea
Language model: how well can we predict

the next word based on the context?

P (w1, . . . , wm) =
mY

i=1

P (wi | w1, . . . , wi�1)

Why not “deep-learning” it?

 (i.e. why not trying to find the vector representations that
can predict target words based on the context best?)

Each word has two vector representations (‘in’ and ‘out’) and
you learn both.

Credit: Tomas Mikolov, Chris Moody

Each word has two vector representations (‘in’ and ‘out’) and
you learn both.

Credit: Tomas Mikolov, Chris Moody

“Skip-gram model”

Each word has two vector representations (‘in’ and ‘out’) and
you learn both.

Credit: Tomas Mikolov, Chris Moody

“Skip-gram model”

Each word has two vector representations (‘in’ and ‘out’) and
you learn both.

Credit: Tomas Mikolov, Chris Moody

“Skip-gram model”
…

Each word has two vector representations (‘in’ and ‘out’) and
you learn both.

Credit: Tomas Mikolov, Chris Moody

“Skip-gram model”
word

2ve
c

“The fox jumped over the lazy dog”

vOUT

P(vOUT|vIN)

vIN

Twist: we have two vectors for every word.
Should depend on whether it’s the input or the output.

Also a context window around every input word.

…

“Skip-gram model”

!"#$

%&'(#)))))))))))'*+,-.#/+&))))))+(#'(#

!"#01$

!"#02$

!"#32$

!"#31$

Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

“Skip-gram model”

!"#$

%&'(#)))))))))))'*+,-.#/+&))))))+(#'(#

!"#01$

!"#02$

!"#32$

!"#31$

Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

“Skip-gram model”

!"#$

%&'(#)))))))))))'*+,-.#/+&))))))+(#'(#

!"#01$

!"#02$

!"#32$

!"#31$

Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

“Skip-gram model”

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

!"#$

%&'(#)))))))))))'*+,-.#/+&))))))+(#'(#

!"#01$

!"#02$

!"#32$

!"#31$

Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

“Skip-gram model”

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

Softmax: Difficult

!"#$

%&'(#)))))))))))'*+,-.#/+&))))))+(#'(#

!"#01$

!"#02$

!"#32$

!"#31$

Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

“Skip-gram model”

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

Negative sampling (easy)

Softmax: Difficult

!"#$

%&'(#)))))))))))'*+,-.#/+&))))))+(#'(#

!"#01$

!"#02$

!"#32$

!"#31$

Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

“Skip-gram model”

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

Negative sampling (easy)

Softmax: Difficult

Actual target word

!"#$

%&'(#)))))))))))'*+,-.#/+&))))))+(#'(#

!"#01$

!"#02$

!"#32$

!"#31$

Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

“Skip-gram model”

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

Negative sampling (easy)

Softmax: Difficult

Actual target word

random words

word2vec

If two words tend to appear in the
similar context, they tend to have

similar vector representation

word2vec: analogy

v(king) - v(man) + v(woman) ~ v(queen)

word2vec: analogy

v(king) - v(man) + v(woman) ~ v(queen)

Mikolov et al. 2013

tensorflow.org

http://tensorflow.org

Credit: Christopher Moody

Takeaways

• word2vec != magic. Actually word2vec works
similarly to traditional methods (PMI, SVD, …)

• several tweaks in word2vec are actually important
and can be transferred to traditional methods.

• Yet, word2vec is a nice method—it’s robust, fast,
memory efficient.

More takeaways

• word2vec distance != semantic distance

• it picks up weird word pairs that share weird contexts.

https://quomodocumque.wordpress.com/2016/01/15/messing-around-with-word2vec/

If two words tend to appear in the similar context, they tend to have similar
vector representation

word2vec is not magic!

word2vec is not magic!

word2vec is not magic!

But the one task that word2vec is consistently
doing really well (by the formulation):

word2vec is not magic!

But the one task that word2vec is consistently
doing really well (by the formulation):

word2vec is not magic!

But the one task that word2vec is consistently
doing really well (by the formulation):

pulling out replaceable words.

word2vec is not magic!

But the one task that word2vec is consistently
doing really well (by the formulation):

pulling out replaceable words.
(i.e. what are the other words that you’ll see in

the same context?)

word2vec is not magic!

But the one task that word2vec is consistently
doing really well (by the formulation):

pulling out replaceable words.
(i.e. what are the other words that you’ll see in

the same context?)

word2vec is not magic!

But the one task that word2vec is consistently
doing really well (by the formulation):

pulling out replaceable words.
(i.e. what are the other words that you’ll see in

the same context?)

Can be super useful and complement other
methods such as topic modeling

Going back to lyrics…

gun money crack police
gat cash coke cops

glock dough heroin feds
burner loot cocain coppers
pistol paper caine pigs
rifle cheese sacks popo

ratchet chips dope fbi
guns cheddar addicts sirens
tec cake cracks jackers

strap scrilla slingin officer
shot dollas powder neighbors

word2vec of hip hop lyrics

PCA

Religion

Love

Gun

Police

Drugs

Crime

REHN, A. L. F., and David Sköld. "‘I
Love The Dough’: Rap lyrics as a minor
economic literature." Culture and
Organization 11.1 (2005): 17-31.

Manual curation word2vec
cheese o
cheddar o

chips o
dough o
cream x
cake o
scrilla o
green x
loot o

paper o
Benjamins o

dead presidents x

x

cash, dollar, profit,
stacks, chedda,

dollars, funds, mail,
clout, moneys, fetti

A sanity check: what are the similar words to “money”?

*Representing Tec-9, popular street gun
** A gun or firearm, usually a pistol
*** U.S. weapons manufacturer

heater, uzi, gunshot, ak, tec*, strap**, pistols,
grenades, m16, ruger, fired, nines, glocks, 44, 45,

gats, magnum, hammers, pistol, guns, sniper, glock,
tool, gat, mag, rifle, cap, matic, calico***, blasted, 38,

aks, biscuit**, straps, gun, shots, sawedoff,
automatic, grenade, sprayed, shot

Similar words to “gun”
(word2vec + manual curation)

Patterns of individual word usage: what do you see?

portion	of	words	related	to	Gun

portion	of	words	related	to	Gun

popo, official, agents, fbi, badges, coppers,
siren, judges, atf*, police, officers, sirens,

helicopters, detectives, cops, pigs, feds, cia,
popos, fiveoh**, officer

Similar words to “police”
(word2vec + manual curation)

*A part of the government dealing with the control of Alcohol Tobacco and Firearms
** The police in general or a police officer, taken from the 60’s police drama “Hawaii 5-0”

Patterns of individual word usage related to “police”

L.A. riot
(1992)

Beginning of
Obama Administration

(2009)

n**** - man + woman money - success + kill money - kill + success

hoe rob moneys

bitch smack patience

chick murda currency

trick slap dough

slut shoot potential

yous n**** wealth

scrub racks marriage

lady kidnap progress

slug toss relationships

girl fuck cash

How about the analogy?

More analogy fun

More analogy fun

More analogy fun

More analogy fun

More analogy fun

More analogy fun

More analogy fun

More analogy fun

More analogy fun

More analogy fun

Can we compare the
two cultures?

(*This is still a mixture of many types of music)

Hip hop Ultimate guitar

dough greenback

money stash

loot nickel

cheese dough

checks money

stacks credit

cheddar dope

chips jewelry

scrill dime

paper penny

“Cash”

Bold: unique in
either one dataset

Hip hop Ultimate guitar

henny whisky

bacardi morgan

gin bologna

cognac swig

alcohol pepsi

cranberry peanut

brew sushi

newports cuban

vodka hookers

paper hustlers

“Booze”

Hip hop Ultimate guitar

dealers dealer

dealer gateway

drugs heroin

dope sniff

illegal deparment

cocaine charity

narcotics fiend

dealas addiction

robbers n****

legal friction

“Drug”

Hip hop Ultimate guitar

you we

feds neighbors

i unjust

cops doctors

them lawyers

jealous kids

police neighbours

us babies

theyre they’d

others dealers

“they”

“Society” “Food”

Large-scale Lyrics datasets
can tell us so many interesting

stories about culture.

http://janysanalytics.com/

James P. Bagrow

 Sune Lehmann

Jukka-Pekka Onnela

James Niels Rosenquist

Alan Mislove

Twittermood
Hip hop

Nakul Dhande

Artemy Kolchinsky

Jaehyuk Park
Fabio Rojas

Kengjeun Park

Chords
and lyrics

James P. Bagrow

 Sune Lehmann

Jukka-Pekka Onnela

James Niels Rosenquist

Alan Mislove

Twittermood
Hip hop

Nakul Dhande

Artemy Kolchinsky

Jaehyuk Park
Fabio Rojas

Kengjeun Park

Chords
and lyrics

