Sentiment Analysis as Proxy for Plot

Matthew L. Jockers
University of Nebraska
@mljockers
“The fundamental idea is that stories have shapes which can be drawn on graph paper, and that the shape of a given society’s stories is at least as interesting as the shape of its pots or spearheads.”
“There is no reason why the simple shape of stories cannot be fed into computers.”
“Once upon a time and a very good time it was there was a moocow coming down along the road and this moocow that was coming down along the road met a nicens little boy named baby tuckoo.” (James Joyce, Portrait)

“I love you as the grass loves the dew, as the birds love a bough.” (Dave Eggers, The Circle)
All the filth of the world, all the offal and scum of the world, we are told, shall run there as to a vast reeking sewer when the terrible conflagration of the last day has purged the world.” (James Joyce, Portrait)

“I mean, do you know the chaos this is wreaking on my family?” (Dave Eggers, The Circle)
Neutral Sentiments

She opened the door.

The hat was on the table.

I hated the way he looked at me that morning, and I was glad that he had become my friend.
syuzhet: Extracts Sentiment and Sentiment-Derived Plot Arcs from Text

Extracts sentiment and sentiment-derived plot arcs from text using three sentiment dictionaries conveniently packaged for consumption by R users. Implemented dictionaries include "syuzhet" (default) developed in the Nebraska Literary Lab "afinn" developed by Finn (2011) rap Nissen, "bing" developed by Minqing Hu and Bing Liu, and "mrc" developed by Mohammed, Saif M. and Turney, Peter D. Applicable references are available in README.md and in the documentation for the "get_sentiment" function. The package also provides a hook for implementing Stanford's coreNLP sentiment parser. The package provides several methods for plot arc normalization.

Version: 1.0.0
Imports: openNLP, NLP, zoo, dtt, stats, graphics
Suggests: knitr, pandoc, testthat (≥ 0.9.1)
Published: 2016-04-28
Author: Matthew Jockers [aut, cre]
Maintainer: Matthew Jockers <mjockers at gmail.com>
License: GPL-3
URL: https://github.com/mjockers/syuzhet

NeedsCompilation: no
Citation: syuzhet citation info
Materials: README
CRAN checks: syuzhet results

Reference manual:
syuzhet.pdf
Vignettes:
Introduction to the Syuzhet Package
Package source:
syuzhet 1.0.0.tar.gz
Windows binaries:
rdist: syuzhet_1.0.0.zip, r-release: syuzhet_1.0.0.zip, r-oldrel: syuzhet_1.0.0.zip
OS X Mavericks binaries:
r-release: syuzhet_1.0.0.tar.gz, r-oldrel: syuzhet_1.0.0.tar.gz
Old sources:
syuzhet archive
Localized Sentiment Flow

"I grew to hate him with all my heart." (-)
"He was not at all nice or generous." (+)
“I vowed that I would someday kill him." (-)

> library(syuzhet)
> sample <- "I grew to hate him with all my heart. He was not at all nice or generous. I vowed that I would someday kill him."
> sent_v <- get_sentences(sample)
> result <- get_sentiment(sent_v, method = "afinn")
> mean(result)

[1] -0.3333333
1, 1, 0, 0, 0, 1, 1, 0, 0, -1, 1, 1, -1, -1, -1, 0, 1, 0, 1, 1

0, 0.7, 0.3, 0, 0.3, 0.7, 0.7, 0.3, -0.3, 0, 0.3, 0.3, -0.3, -1, -0.7, 0, 0.3, 0.7, 0.7, 0
Mean Machine to Human Correlation Coefficient: 0.85
Polarity Agreement (Human to Machine) 73.49
Romeo and Juliet

Images from Bamman and Underwood
1. Mean Inter-Coder Correlation Coefficient: 0.87
2. Mean Machine to Mean Human Correlation Coefficient: 0.72
3. Human Machine Polar Disagreement 24%
4. Human Machine Polar Disagreement (allowing neutral) 11%
1. Mean Inter-Coder Correlation Coefficient: 0.9
2. Mean Machine to Mean Human Correlation Coefficient: 0.79
3. Human Machine Polar Disagreement 28%
4. Human Machine Polar Disagreement (allowing neutral) 13%
1. Mean Inter-Coder Correlation Coefficient: 0.73
2. Mean Machine to Mean Human Correlation Coefficient: 0.69
3. Human Machine Polar Disagreement 23%
4. Human Machine Polar Disagreement (allowing neutral) 8%
1. Mean Inter-Coder Correlation Coefficient: 0.68
2. Mean Machine to Mean Human Correlation Coefficient: 0.79
3. Human Machine Polar Disagreement 20%
4. Human Machine Polar Disagreement (allowing neutral) 9%
1. Mean Inter-Coder Correlation Coefficient: 0.65
2. Mean Machine to Mean Human Correlation Coefficient: 0.66
3. Human Machine Polar Disagreement 23%
4. Human Machine Polar Disagreement (allowing neutral) 11%
1. Mean Inter-Coder Correlation Coefficient: 0.62
2. Mean Machine to Mean Human Correlation Coefficient: 0.6
3. Human Machine Polar Disagreement 25%
4. Human Machine Polar Disagreement (allowing neutral) 11%
With rolling means we lose the edges
The B-E Axis Problem
Binning (looks good here, but . . .)
Binning not so good for comparison...
Solution 1.0

A Beautiful “Man in Hole”
Solution 1.0

Madame Bovary

Bad Edges, Ugh!
Solution 1.1

Images from Tommy M. McGuire http://www.crsr.net/files/Exploring_Syuzhet.html
Solution 1.1

Madame Bovary

Sentiment

Narrative Time

Moving Average
Unpadded
Padded
Solution 2.0
(using DCT suggested by Brad Riddle)
Pick the two most similar
Euclidean Distance

Cluster Dendrogram

hclust(*, "complete")

<table>
<thead>
<tr>
<th></th>
<th>POA</th>
<th>FIRM</th>
<th>MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRM</td>
<td>8.582756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>12.251244</td>
<td>5.502215</td>
<td></td>
</tr>
<tr>
<td>DVC</td>
<td>12.651755</td>
<td>10.766414</td>
<td>9.783527</td>
</tr>
</tbody>
</table>
“Ideal” number of clusters = 7
Seven (average) Plot Shapes
Thank you