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Animation

3-dimensional Animation relies on computer graphics

computer graphics uses 3-dimensional mesh models
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3D meshes in computer graphics

In the beginning was the TEAPOT
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3D meshes in computer graphics

3D meshes became much more sophisticated over the years
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3D meshes: not only for design from scratch

Scan existing objects
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surfaces from scans

point cloud −→ triangulation
(Delauney triangulation)
edit triangulated surfaces
recognize identical surfaces?
or deformations of each other?
quantify difference?
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Reference points

Animating “humanoid” characters requires reference points
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Reference points

Animating “humanoid” characters requires reference points
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Summary of “problems”

We need to be able to:
recognize when two point clouds correspond to the same
surface or to two similar surfaces
quantify how different two surfaces are from each other (or
how similar to each other)
find correspondence points for similar surfaces

Distances between Surfaces



It all started with a conversation with biologists....

Doug Boyer

Jukka Jernvall

More Precisely: biological morphologistsy
Study Teeth & Bones of

extant & extinct animals∣∣
still live today fossils



First: project on “complexity” of teeth

Then: find automatic way to compute Procrustes distances
between surfaces — without landmarks

Landmarked Teeth −→

d2
Procrustes (S1, S2) = min

R rigid tr.

J∑
j=1

‖R (xj )− yj‖2

Find way to compute a distance that does as well,
for biological purposes, as Procrustes distance,
based on expert-placed landmarks, automatically?
examples: finely discretized triangulated surfaces
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We defined 2 different distances

dcWn (S1,S2): conformal flattening
comparison of neighborhood geometry
optimal mass transport

dcP (S1,S2): continuous Procrustes distance



Even mistake
made by dcP

were similar
to biologists’
mistakes

small distances between S1,S2 −→ OK maps
larger distances −→ not OK



Biologists’ “wish list” changed...

... as they learned our language and saw our methods

I mappings more important to them than distances
(−→ discussion of variability in individuals or between species,
locally)

I no holonomy!

Our formulation of problem changed too

Tingran Gao −→ reformulate as connection on fibre bundle
+ horizontal diffusion
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Even before this...
biological content in large concatenated matrix

X1

X2

X3

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

min ‖MX− X‖2
2 + λ ‖X‖1

s.t. ‖X‖2 = 1.

Resulting minimizers X
supported on union of 4
surfaces
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Use the Information in the Maps!

dcP (S1,S2) = inf
C∈A(S1,S2)

inf
R∈E(3)

(∫
S1

‖R (x)− C (x) ‖2 dvolS1 (x)

) 1
2

d12

−−−→
f12

S1 S2



Learning from Distances


d11 d12 · · · d1N

d21 d22 · · · d2N
...

...
. . .

...
dN1 dN2 · · · dNN
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Diffusion Distance



MDS for CPD & DD

CPD DD
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Diffusion Maps: “Knit Together” Local Geometry
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Diffusion Maps: “Knit Together” Local Geometry

dij

Si

Sj

• P = D−1W defines a random
walk on the graph

• Solve eigen-problem

Puj = λj uj , j = 1, 2, · · · ,m

and represent each individual
shape Sj as an m-vector(

λ
t/2
1 u1 (j) , · · · , λt/2

m um (j)
)
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Diffusion Distance (DD)
Fix 1 ≤ m ≤ N, t ≥ 0,

Dt
m (Si ,Sj ) =

(
m∑

k=1

λt
k (uk (i)− uk (j))2

) 1
2
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Even Better: More Information!

HBDD DD
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Use the Information in the Maps!

D (S1,S2) = inf
C∈A(S1,S2)

inf
R∈E(3)
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Correspondences Between Triangular Meshes

A1

A2 A3

B1

B2

B3



· · · B1 B2 B3 · · ·
...

...
...

...
A1 · · · 0 0 1 · · ·
A2 · · · 1 0 0 · · ·
A3 · · · 0 1 0 · · ·
...

...
...

...
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Correspondences Between Triangular Meshes

A1

A2 A3

B1

B2

B3

f12 (A3)



· · · B1 B2 B3 · · ·
...

...
...

...
A1 · · · 0 0 1 · · ·
A2 · · · 1 0 0 · · ·
A3 · · · 0 ? 0 · · ·
...

...
...

...
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Correspondences Between Triangular Meshes

A1

A2 A3

B1

B2

B3

f12 (A3)



· · · B1 B2 B3 · · ·
...

...
...

...
A1 · · · 0 0 1 · · ·
A2 · · · 1 0 0 · · ·
A3 · · · 0.91 0.95 0.88 · · ·
...

...
...

...



S2

S1

ρδ12 (r , s) = exp

(
−‖f12 (Ar )− Bs‖2

δ

)



Augmented Distance Graph
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Augmented Distance Graph

(
dij , ρ

δ
ij

)
Si

Sj



Horizontal Random Walk on a Fibre Bundle

Fibre Bundle E = (E ,M,F , π)

I E : total manifold

I M: base manifold

I π : E → M: smooth surjective map (bundle projection)

I F : fibre manifold

I local triviality: for “small” open set U ⊂ M, π−1 (U) is
diffeomorphic to U × F



Horizontal Random Walk on a Fibre Bundle

Fibre Bundle E = (E ,M,F , π)

I E : total manifold

I M: base manifold

I π : E → M: smooth surjective map (bundle projection)

I F : fibre manifold

I local triviality: for “small” open set U ⊂ M, π−1 (U) is
diffeomorphic to U × F



Horizontal Random Walk on a Fibre Bundle

Fibre Bundle E = (E ,M,F , π)

I E : total manifold

I M: base manifold

I π : E → M: smooth surjective map (bundle projection)

I F : fibre manifold

I local triviality: for “small” open set U ⊂ M, π−1 (U) is
diffeomorphic to U × F

M

S0

S1

S2

S3

P = D−1W

M

S0

S1

S2

S3



Horizontal Random Walk on a Fibre Bundle

Fibre Bundle E = (E ,M,F , π)

I E : total manifold

I M: base manifold

I π : E → M: smooth surjective map (bundle projection)

I F : fibre manifold

I local triviality: for “small” open set U ⊂ M, π−1 (U) is
diffeomorphic to U × F

M

S0

S1

S2

S3

P = D−1W

M

S0

S1

S2

S3



Horizontal Random Walk on a Fibre Bundle

Fibre Bundle E = (E ,M,F , π)

I E : total manifold

I M: base manifold

I π : E → M: smooth surjective map (bundle projection)

I F : fibre manifold

I local triviality: for “small” open set U ⊂ M, π−1 (U) is
diffeomorphic to U × F

M

S0

S1

S2

S3

P = D−1W

M

S0

S1

S2

S3



Horizontal Random Walk on a Fibre Bundle

Fibre Bundle E = (E ,M,F , π)

I E : total manifold

I M: base manifold

I π : E → M: smooth surjective map (bundle projection)

I F : fibre manifold

I local triviality: for “small” open set U ⊂ M, π−1 (U) is
diffeomorphic to U × F

M

S0

S1

S2

S3

P = D−1W

M

S0

S1

S2

S3



Horizontal Random Walk on a Fibre Bundle

Fibre Bundle E = (E ,M,F , π)

I E : total manifold

I M: base manifold

I π : E → M: smooth surjective map (bundle projection)

I F : fibre manifold

I local triviality: for “small” open set U ⊂ M, π−1 (U) is
diffeomorphic to U × F

M

S0

S1

S2

S3

P = D−1W

M

S0

S1

S2

S3



Horizontal Random Walk on a Fibre Bundle

Fibre Bundle E = (E ,M,F , π)

I E : total manifold

I M: base manifold

I π : E → M: smooth surjective map (bundle projection)

I F : fibre manifold

I local triviality: for “small” open set U ⊂ M, π−1 (U) is
diffeomorphic to U × F

M

S0

S1

S2

S3

P = D−1W

M

S0

S1

S2

S3



Towards Horizontal Diffusion Maps

Horizontal Diffusion Maps

D−1Wuk = λk uk , 1 ≤ k ≤ N

D−1
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· · · · · · e−d2
ij/ε · · ·
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Horizontal Diffusion Maps: For fixed 1 ≤ m ≤ κ, t ≥ 0,
represent Sj as a κj ×m matrix(

λ
t/2
1 u1[j], · · · , λ

t/2
m um[j]

)



Diffusion Maps vs. Horizontal Diffusion Maps

Diffusion Maps: For fixed 1 ≤ m ≤ κ, t ≥ 0, represent Sj as
an m-dimensional vector(

λ
t/2
1 u1 (j) , · · · , λt/2

m um (j)
)

Horizontal Diffusion Maps: For fixed 1 ≤ m ≤ κ, t ≥ 0,
represent Sj as a κj ×m matrix(

λ
t/2
1 u1[j], · · · , λ

t/2
m um[j]

)



HDM: Application in Geometric Morphometrics

1. Global Registration

2. Automatic Landmarking

3. Species Classification
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2. Automatic Landmarking: Spectral Clustering



2. Automatic Landmarking: Spectral Clustering



3. Species Classification: HBDM & HBDD

Horizontal Diffusion Maps (HDM): For fixed 1 ≤ m ≤ κ,
t ≥ 0, represent Sj as a κj ×m matrix(

λ
t/2
1 u1[j], · · · , λ

t/2
m um[j]

)

Horizontal Base Diffusion Maps (HBDM): For fixed
1 ≤ m ≤ κ, t ≥ 0, represent Sj as a

(m
2

)
-dimensional vector(

λ
t/2
` λ

t/2
k

〈
u`[j], uk[j]

〉 )
1≤`<k≤m
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3. Species Classification: HBDM & HBDD

Horizontal Base Diffusion Distance (HBDD): For fixed
1 ≤ m ≤ κ, t ≥ 0,

Dt
HB (Si , Sj ) =

 ∑
1≤`<k≤m

λt
`λ

t
k

(〈
u`[i ], uk[i ]

〉
−
〈
u`[j], uk[j]

〉)2

 1
2
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3. Species Classification: HBDM & HBDD
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3. Species Classification: HBDM & HBDD

invisible?

HBDD

“Form Follows Function”
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