Bones, Teeth and Animation

Ingrid Daubechies

May 10, 2016

Green Family Lecture, IPAM, UCLA

surfaces and Morphology

Collaborators

Rima Alaifari ETH Zürich

Doug Boyer Duke

Yaron Lipman Weizmann

Roi Poranne ETH Zürich

Ingrid Daubechies Duke

Jesús Puente J.P. Morgan

Tingran Gao Duke

Robert Ravier Duke

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

₹ 9 Q

Machine Learning, Fibre Bundles and Biological Morphology

Ingrid Daubechies Tingran Gao

Department of Mathematics Duke University

Feb 11, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• 3-dimensional Animation relies on computer graphics

- 3-dimensional Animation relies on computer graphics
- computer graphics uses 3-dimensional mesh models

In the beginning was the TEAPOT

TEAPOT:

Distances between Surfaces

ヘロト 人間 とくほ とくほとう

ъ

TEAPOT:

Distances between Surfaces

3D meshes became much more sophisticated over the years

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ - 三 - のへぐ

Distances between Surfaces

<ロ> <四> <四> <三</p>

<ロ> <同> <同> <同> < 同> < 同>

ъ

DQC

Distances between Surfaces

<ロ> <四> <四> <四> <三</td>

Distances between Surfaces

<ロ> <四> <四> <三</p>

Scan existing objects

Distances between Surfaces

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ─ 臣 … のへで

Scan existing objects

Distances between Surfaces

<ロ> <四> <四> <四> <三</td>

Scan existing objects

Scan existing objects

イロト イポト イヨト イヨト

Э

DQC

- point cloud → triangulation (Delauney triangulation)
- ۲
- ٩
- •

イロト イポト イヨト イヨト

Э

Dac

- point cloud → triangulation (Delauney triangulation)
- ۲
- ٩
- •
- •

◆ロ → ◆檀 → ◆注 → ◆注 → □ 注

DQC

- point cloud → triangulation (Delauney triangulation)
- edit triangulated surfaces
- ٩
- ٠
- •

イロト 不得 トイヨト イヨト

Э

- point cloud → triangulation (Delauney triangulation)
- edit triangulated surfaces
- recognize identical surfaces?
- ۹
- ۹

ヘロア 人間 アメヨア 人口 ア

Э

- point cloud → triangulation (Delauney triangulation)
- edit triangulated surfaces
- recognize identical surfaces?
- or deformations of each other?

ヘロア 人間 アメヨア 人口 ア

Э

- point cloud → triangulation (Delauney triangulation)
- edit triangulated surfaces
- recognize identical surfaces?
- or deformations of each other?
- quantify difference?

・ロト ・ 同ト ・ ヨト ・ ヨト

Reference points

Animating "humanoid" characters requires reference points

Distances between Surfaces

イロト イボト イヨト イヨト 二日

Reference points

Animating "humanoid" characters requires reference points

イロト 不得 トイヨト イヨト

3

Reference points

Animating "humanoid" characters requires reference points

Distances between Surfaces

<ロ> <四> <四> <四> <三</td>

We need to be able to:

- recognize when two point clouds correspond to the same surface or to two similar surfaces
- quantify how different two surfaces are from each other (or how similar to each other)
- find correspondence points for similar surfaces

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

It all started with a conversation with biologists....

Jukka Jernvall

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

More Precisely: biological morphologists Study Teeth & Bones of extant & extinct animals still live today fossils First: project on "complexity" of teeth

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Landmarked Teeth
$$\longrightarrow$$

 $d_{Procrustes}^{2}\left(S_{1}, S_{2}\right) = \min_{R \text{ rigid tr.}} \sum_{j=1}^{J} \left\|R\left(x_{j}\right) - y_{j}\right\|^{2}$

Landmarked Teeth
$$\longrightarrow$$

 $d_{Procrustes}^{2}\left(S_{1}, S_{2}\right) = \min_{R \text{ rigid tr.}} \sum_{j=1}^{J} \left\|R\left(x_{j}\right) - y_{j}\right\|^{2}$

Find way to compute a distance that does as well, for biological purposes, as Procrustes distance, based on expert-placed landmarks, automatically?

Landmarked Teeth
$$\longrightarrow$$

 $d_{Procrustes}^{2}\left(S_{1}, S_{2}\right) = \min_{R \text{ rigid tr.}} \sum_{j=1}^{J} \left\|R\left(x_{j}\right) - y_{j}\right\|^{2}$

Find way to compute a distance that does as well, for biological purposes, as Procrustes distance, based on expert-placed landmarks, automatically?

examples: finely discretized triangulated surfaces

We defined 2 different distances

- $d_{
 m cWn}(S_1,S_2)$: conformal flattening comparison of neighborhood geometry optimal mass transport
 - $d_{\mathrm{cP}}\left(S_{1},S_{2}
 ight)$: continuous Procrustes distance

Even mistake made by $d_{\rm cP}$ were similar to biologists' mistakes

small distances between $S_1, S_2 \longrightarrow OK$ maps larger distances \longrightarrow not OK

Biologists' "wish list" changed...

- ... as they learned our language and saw our methods
 - mappings more important to them than distances
 (---> discussion of variability in individuals or between species, locally)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

no holonomy!
Biologists' "wish list" changed...

- ... as they learned our language and saw our methods
 - mappings more important to them than distances
 (--> discussion of variability in individuals or between species, locally)
 - no holonomy!

Our formulation of problem changed too

 $\begin{array}{rcl} \mbox{Tingran Gao} & \longrightarrow & \mbox{reformulate as connection on fibre bundle} \\ & + & \mbox{horizontal diffusion} \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Even before this...

biological content in large concatenated matrix

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Even before this...

biological content in large concatenated matrix

$$\begin{array}{l} \min \ \left\|\boldsymbol{M}\mathbb{X}-\mathbb{X}\right\|_{2}^{2}+\lambda \left\|\mathbb{X}\right\|_{1}\\ \text{s.t.} \ \left\|\mathbb{X}\right\|_{2}=1. \end{array}$$

Resulting minimizers X supported on <u>union</u> of 4 surfaces

Use the Information in the Maps!

$$d_{\mathrm{cP}}\left(S_{1},S_{2}\right) = \inf_{\mathcal{C}\in\mathcal{A}\left(S_{1},S_{2}\right)} \inf_{R\in\mathbb{E}(3)} \left(\int_{S_{1}} \left\|R\left(x\right)-\mathcal{C}\left(x\right)\right\|^{2} d\mathrm{vol}_{S_{1}}\left(x\right)\right)^{\frac{1}{2}}$$

・ロト ・ 日 ト ・ モ ト ・ モ ト

Learning from Distances

・ロト ・聞ト ・ヨト ・ヨト

Learning from Distances

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Learning from Distances

Diffusion Distance

・ロト ・聞ト ・ヨト ・ヨト

- 2

MDS for CPD & DD

CPD

DD

・ロト ・聞ト ・ヨト ・ヨト

MDS for CPD & DD

CPD

DD

・ロト ・聞ト ・ヨト ・ヨト

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ●

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

・ロ・・(型・・(目・・(目・・)のへぐ

• $P = D^{-1}W$ defines a random walk on the graph

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- $P = D^{-1}W$ defines a random walk on the graph
- Solve eigen-problem

$$Pu_j = \lambda_j u_j, \ j = 1, 2, \cdots, m$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- $P = D^{-1}W$ defines a random walk on the graph
- Solve eigen-problem

$$Pu_j = \lambda_j u_j, \ j = 1, 2, \cdots, m$$

and represent each individual shape S_i as an *m*-vector

$$\left(\lambda_{1}^{t/2}u_{1}\left(j\right),\cdots,\lambda_{m}^{t/2}u_{m}\left(j\right)\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Diffusion Distance (DD) Fix $1 \le m \le N$, $t \ge 0$,

$$D_{m}^{t}(S_{i}, S_{j}) = \left(\sum_{k=1}^{m} \lambda_{k}^{t} (u_{k}(i) - u_{k}(j))^{2}\right)^{\frac{1}{2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Diffusion Distance (DD) Fix $1 \le m \le N$, $t \ge 0$,

$$D_m^t(S_i, S_j) = \left(\sum_{k=1}^m \lambda_k^t \left(u_k(i) - u_k(j)\right)^2\right)^{\frac{1}{2}}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

MDS for CPD & DD

CPD

DD

・ロト ・聞ト ・ヨト ・ヨト

Even Better: More Information!

HBDD

DD

<ロト <回ト < 注ト < 注ト

Even Better: More Information!

HBDD

DD

<ロト <回ト < 注ト < 注ト

Use the Information in the Maps!

$$D\left(S_{1},S_{2}\right) = \inf_{\mathcal{C}\in\mathcal{A}\left(S_{1},S_{2}\right)} \inf_{R\in\mathbb{E}\left(3\right)} \left(\int_{S_{1}} \|R\left(x\right) - \mathcal{C}\left(x\right)\|^{2} d\operatorname{vol}_{S_{1}}\left(x\right)\right)^{\frac{1}{2}}$$

・ロト ・ 日 ト ・ モ ト ・ モ ト

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�??

э

< ロ > < 同 > < 三 > <

▲口▼▲□▼▲目▼▲目▼ 目 めんぐ

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ め Q @ .

Distance Graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Augmented Distance Graph

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Fibre Bundle $\mathscr{E} = (E, M, F, \pi)$

- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

F: fibre manifold

Fibre Bundle $\mathscr{E} = (E, M, F, \pi)$

- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- Iocal triviality: for "small" open set U ⊂ M, π⁻¹(U) is diffeomorphic to U × F

Fibre Bundle $\mathscr{E} = (E, M, F, \pi)$

- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- Iocal triviality: for "small" open set U ⊂ M, π⁻¹(U) is diffeomorphic to U × F

Fibre Bundle $\mathscr{E} = (E, M, F, \pi)$

- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- Iocal triviality: for "small" open set U ⊂ M, π⁻¹(U) is diffeomorphic to U × F

- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- Iocal triviality: for "small" open set U ⊂ M, π⁻¹(U) is diffeomorphic to U × F

- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- Iocal triviality: for "small" open set U ⊂ M, π⁻¹(U) is diffeomorphic to U × F

- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- Iocal triviality: for "small" open set U ⊂ M, π⁻¹(U) is diffeomorphic to U × F

- E: total manifold
- M: base manifold
- $\pi: E \to M$: smooth surjective map (bundle projection)
- F: fibre manifold
- Iocal triviality: for "small" open set U ⊂ M, π⁻¹(U) is diffeomorphic to U × F

Diffusion Maps

$$D^{-1}Wu_k = \lambda_k u_k, \quad 1 \le k \le N$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Horizontal Diffusion Maps

$$\mathcal{D}^{-1}\mathcal{W}u_k = \lambda_k u_k, \quad 1 \le k \le \kappa$$

・ロット (日) (日) (日) (日) (日)

Horizontal Diffusion Maps

$$\mathcal{D}^{-1}\mathcal{W}u_k = \lambda_k u_k, \quad 1 \le k \le \kappa$$

・ロット (日) (日) (日) (日) (日)

Horizontal Diffusion Maps

$$\mathcal{D}^{-1}\mathcal{W}u_{k} = \lambda_{k}u_{k}, \quad 1 \leq k \leq \kappa$$

$$\mathcal{D}^{-1}\begin{pmatrix} & \vdots & \\ & \vdots & \\ & & e^{-d_{ij}^{2}/\epsilon}\rho_{ij}^{\delta} & \cdots \\ & & \vdots & \end{pmatrix}\begin{pmatrix} \vdots & \\ \vdots & \\ u_{k[j]} \\ \vdots \end{pmatrix} = \lambda_{k}\begin{pmatrix} \vdots & \\ \vdots \\ u_{k[j]} \\ \vdots \end{pmatrix}$$

Horizontal Diffusion Maps: For fixed $1 \le m \le \kappa$, $t \ge 0$, represent S_j as a $\kappa_j \times m$ matrix

$$\left(\lambda_1^{t/2}u_{1[j]},\cdots,\lambda_m^{t/2}u_{m[j]}\right)$$

Diffusion Maps vs. Horizontal Diffusion Maps

Diffusion Maps: For fixed $1 \le m \le \kappa$, $t \ge 0$, represent S_j as an *m*-dimensional vector

$$\left(\lambda_1^{t/2}u_1(j),\cdots,\lambda_m^{t/2}u_m(j)\right)$$

Horizontal Diffusion Maps: For fixed $1 \le m \le \kappa$, $t \ge 0$, represent S_j as a $\kappa_j \times m$ matrix

$$\left(\lambda_1^{t/2}u_{1[j]},\cdots,\lambda_m^{t/2}u_{m[j]}\right)$$

HDM: Application in Geometric Morphometrics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Global Registration
- 2. Automatic Landmarking
- 3. Species Classification

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへの

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

▲□> ▲圖> ▲目> ▲目> 二目 - のへで

- * ロ * * 個 * * 目 * * 目 * * の < ??

2. Automatic Landmarking: Spectral Clustering

2. Automatic Landmarking: Spectral Clustering

Horizontal Diffusion Maps (HDM): For fixed $1 \le m \le \kappa$, $t \ge 0$, represent S_i as a $\kappa_i \times m$ matrix

$$\left(\lambda_1^{t/2}u_{1[j]},\cdots,\lambda_m^{t/2}u_{m[j]}\right)$$

Horizontal Diffusion Maps (HDM): For fixed $1 \le m \le \kappa$, $t \ge 0$, represent S_j as a $\kappa_j \times m$ matrix

$$\left(\lambda_1^{t/2}u_{1[j]},\cdots,\lambda_m^{t/2}u_{m[j]}\right)$$

Horizontal Base Diffusion Maps (HBDM): For fixed $1 \le m \le \kappa, t \ge 0$, represent S_j as a $\binom{m}{2}$ -dimensional vector $\left(\lambda_{\ell}^{t/2}\lambda_{k}^{t/2} \langle u_{\ell[j]}, u_{k[j]} \rangle\right)_{1 \le \ell < k \le m}$

Horizontal Base Diffusion Distance (HBDD): For fixed

$$1 \le m \le \kappa, t \ge 0,$$

 $D_{HB}^{t}(S_{i}, S_{j}) = \left(\sum_{1 \le \ell < k \le m} \lambda_{\ell}^{t} \lambda_{k}^{t} \left(\langle u_{\ell[i]}, u_{k[i]} \rangle - \langle u_{\ell[j]}, u_{k[j]} \rangle \right)^{2} \right)^{\frac{1}{2}}$

Horizontal Base Diffusion Maps (HBDM): For fixed $1 \le m \le \kappa, t \ge 0$, represent S_j as a $\binom{m}{2}$ -dimensional vector $\left(\lambda_{\ell}^{t/2}\lambda_k^{t/2} \langle u_{\ell[j]}, u_{k[j]} \rangle\right)_{1 \le \ell < k \le m}$

HBDD

DD

・ロト ・ 日 ・ ・ ヨ ・

æ

э

HBDD

DD

・ロト ・ 日 ・ ・ ヨ ・

æ

э

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで