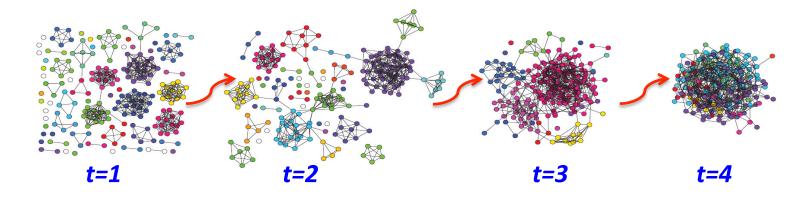


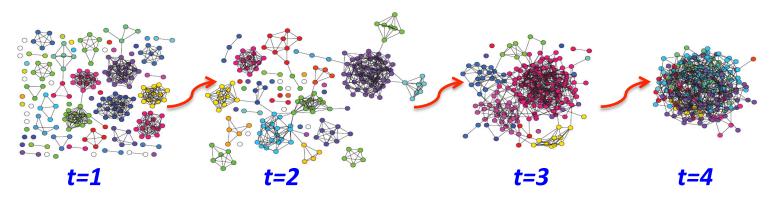
4322 North Quad, 105 S. State St. Ann Arbor, MI 48109-1285

Social Network Under Stress

Daniel M. Romero School of Information University of Michigan

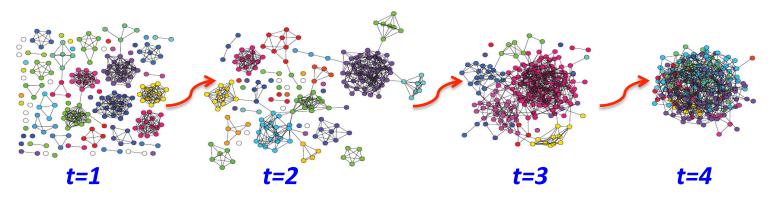
In collaboration with Jon Kleinberg, Toby Stuart, and Brian Uzzi





Temporal dynamics of networks:

Short diameter, densification, clustering, heavy tail degree distribution, ... [Leskovec et al. 2007, Barabasi et al. 1999, Kossinets et al. 2009, ...]

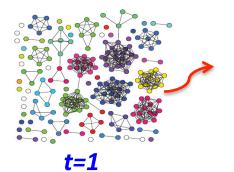


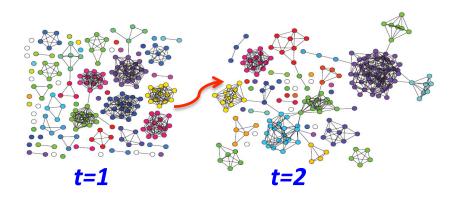
Temporal dynamics of networks:

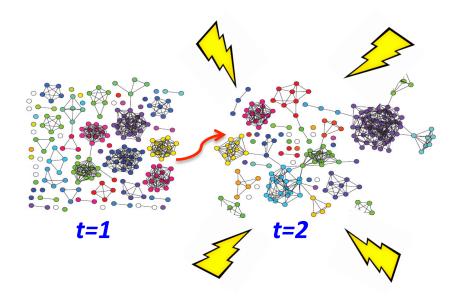
Short diameter, densification, clustering, heavy tail degree distribution, ... [Leskovec et al. 2007, Barabasi et al. 1999, Kossinets et al. 2009, ...]

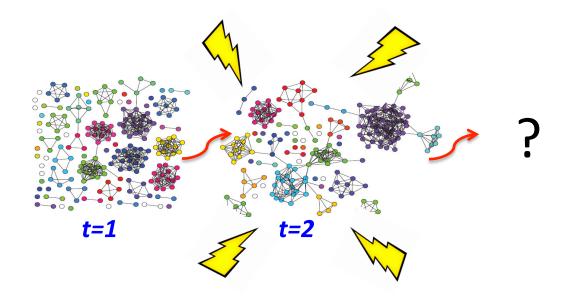
Useful for:

- Link prediction
- Detecting influential nodes
- Finding communities









Hedge Fund Data

Instant Messages (IM):

• Full record of IMs: content, sender, recipient, timestamp

182 internal decision makers,
8646 outside contacts

• 22 Million IMs

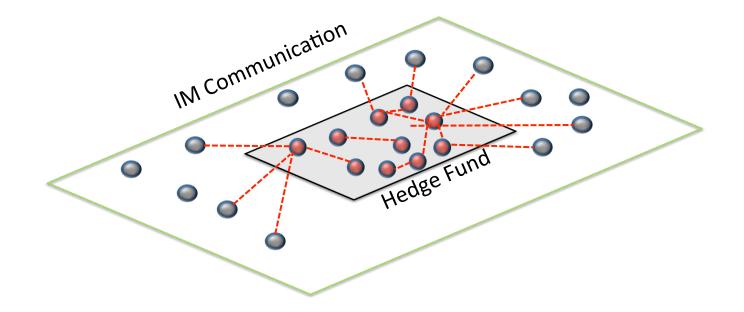
Hedge Fund Data

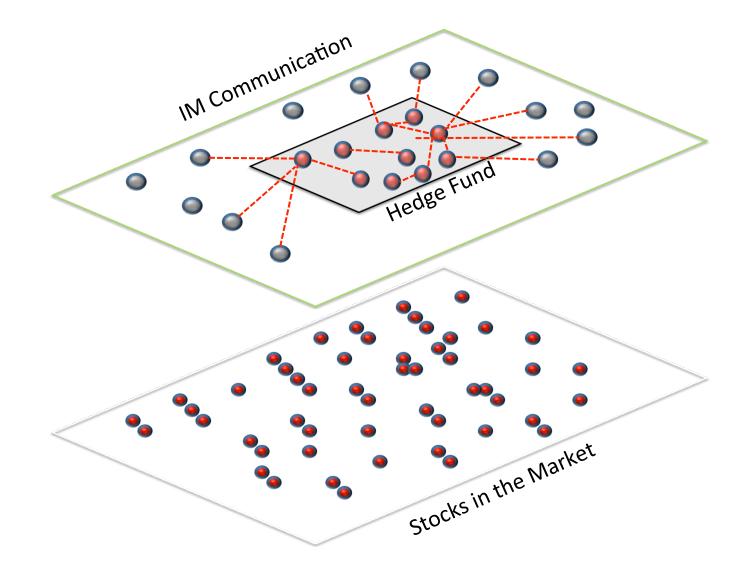
Instant Messages (IM):

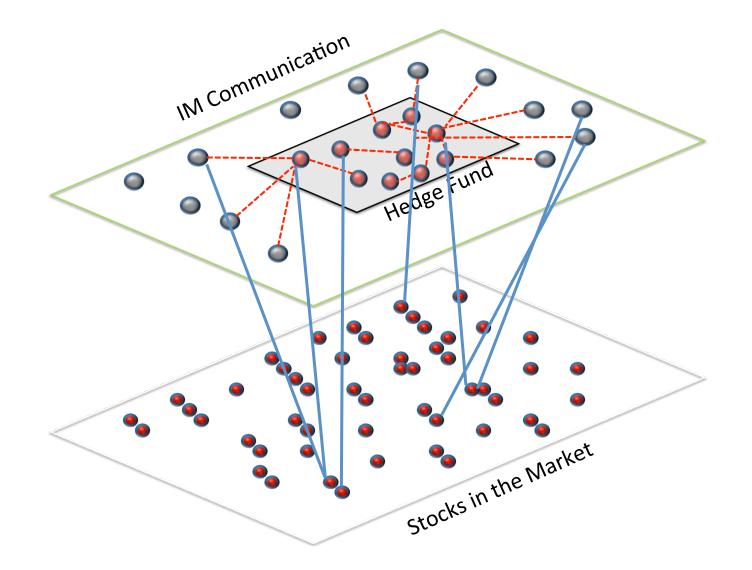
- Full record of IMs: content, sender, recipient, timestamp
- 182 internal decision makers,
 8646 outside contacts
- 22 Million IMs

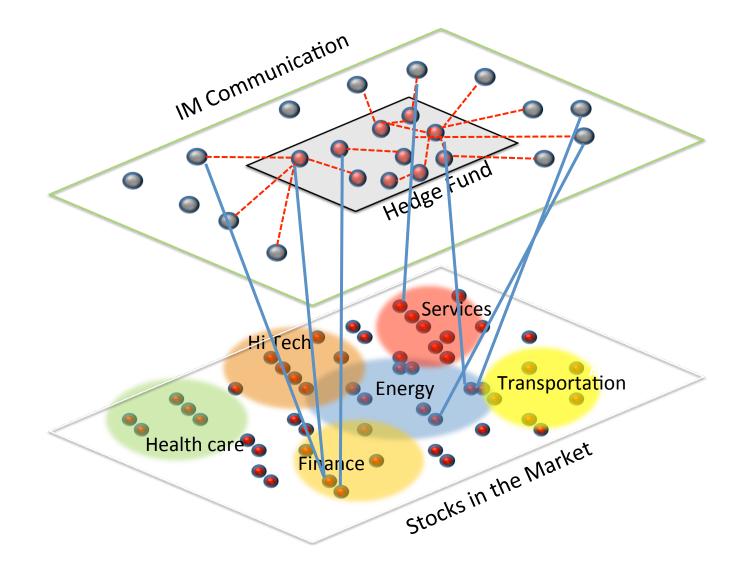
Stock Trading:

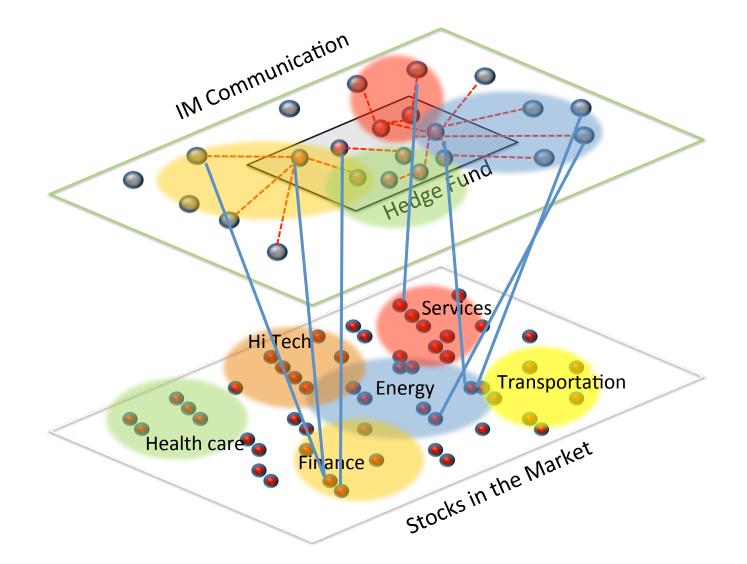
- Full record of all transactions: stock, price, number of stocks, type of transaction (Buy, Sell), timestamp
- 600K trades
- 2008 2012











Organizations and Individuals Under Threat

Ego-networks:

Individuals under threat activate different contacts in their network depending on the subject's power, status, and identity consistency (*Menon & Smith 2014, Smith, Thompson, Menon 2012*).

Organizations and Individuals Under Threat

Ego-networks:

Individuals under threat activate different contacts in their network depending on the subject's power, status, and identity consistency (*Menon & Smith 2014, Smith, Thompson, Menon 2012*).

Groups:

- Less information to make decision [Gladstein et al. 1985].
- Lesser team perspective [Driskell et al. 1999].

Organizations and Individuals Under Threat

Ego-networks:

Individuals under threat activate different contacts in their network depending on the subject's power, status, and identity consistency (*Menon & Smith 2014, Smith, Thompson, Menon 2012*).

Groups:

- Less information to make decision [Gladstein et al. 1985].
- Lesser team perspective [Driskell et al. 1999].

Organization theory: Reactions to threat: •Threat rigidity effect [*Staw et al. 1981*].

Market Movements

(Shocks)

Market Movements

(Shocks)

Market Movements

(Shocks)

Performance

Market Movements

(Shocks)

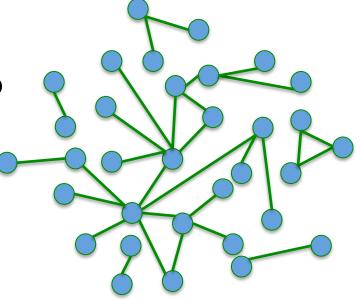
Performance

Emotional and Cognitive Content

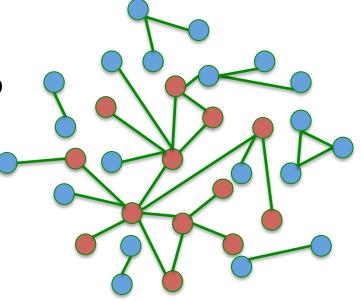
Shock: Change in price of stock s on day d
% change: (closing – opening) / opening

Shock: Change in price of stock s on day d
% change: (closing – opening) / opening

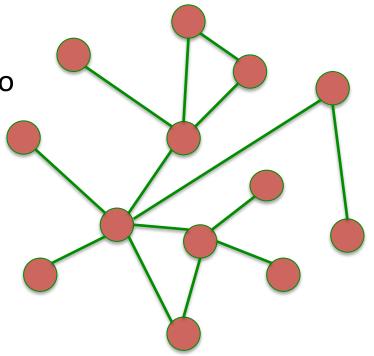
Shock: Change in price of stock s on day d
% change: (closing – opening) / opening



Shock: Change in price of stock s on day d
% change: (closing – opening) / opening



Shock: Change in price of stock s on day d
% change: (closing – opening) / opening

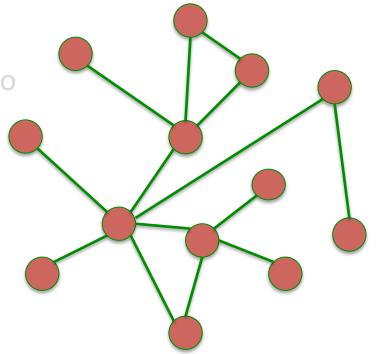


Shock: Change in price of stock **s** on day **d** % change: (closing – opening) / opening

For each stock *s* and day *d*, generate network *G(s,d)* among employees who mention *s*

Network's features:

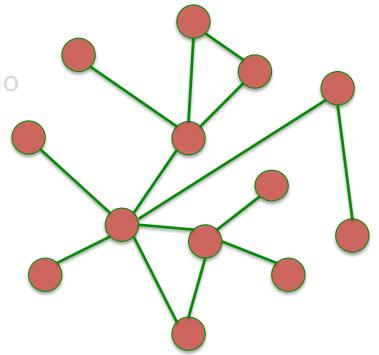
• Size (Nodes, edges)



Shock: Change in price of stock **s** on day **d** % change: (closing – opening) / opening

For each stock *s* and day *d*, generate network *G(s,d)* among employees who mention *s*

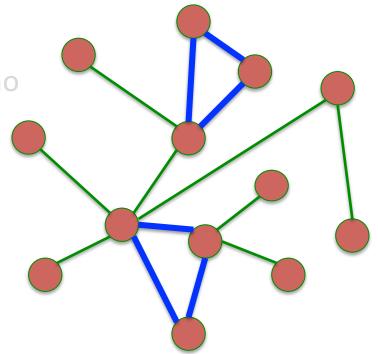
- Size (Nodes, edges)
- Density (Clustering



Shock: Change in price of stock **s** on day **d** % change: (closing – opening) / opening

For each stock *s* and day *d*, generate network *G(s,d)* among employees who mention *s*

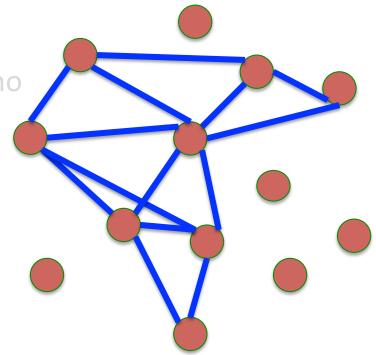
- Size (Nodes, edges)
- Density (Clustering



Shock: Change in price of stock **s** on day **d** % change: (closing – opening) / opening

For each stock *s* and day *d*, generate network *G(s,d)* among employees who mention *s*

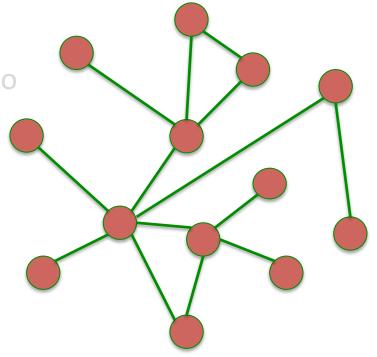
- Size (Nodes, edges)
- Density (Clustering



Shock: Change in price of stock **s** on day **d** % change: (closing – opening) / opening

For each stock *s* and day *d*, generate network *G(s,d)* among employees who mention *s*

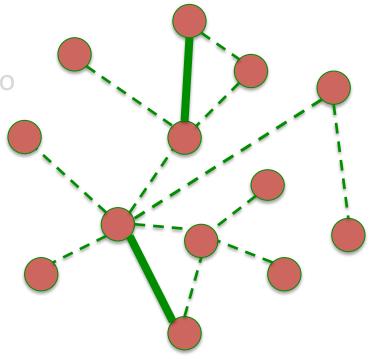
- Size (Nodes, edges)
- Density (Clustering, tie strength)



Shock: Change in price of stock **s** on day **d** % change: (closing – opening) / opening

For each stock *s* and day *d*, generate network *G(s,d)* among employees who mention *s*

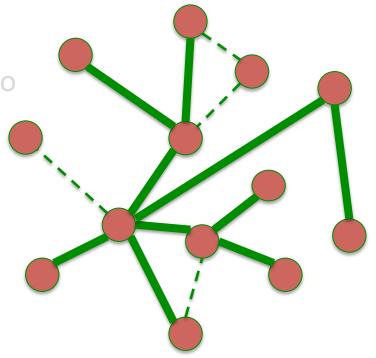
- Size (Nodes, edges)
- Density (Clustering, tie strength)



Shock: Change in price of stock **s** on day **d** % change: (closing – opening) / opening

For each stock *s* and day *d*, generate network *G(s,d)* among employees who mention *s*

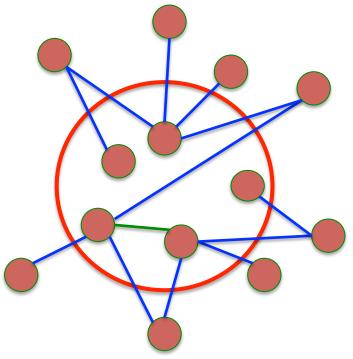
- Size (Nodes, edges)
- Density (Clustering, tie strength)



Shock: Change in price of stock **s** on day **d** % change: (closing – opening) / opening

For each stock *s* and day *d*, generate network *G(s,d)* among employees who mention *s*

- Size (Nodes, edges)
- Density (Clustering, tie strength)
- Openness (Border edges)



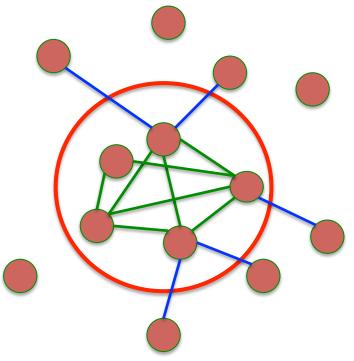
Measures

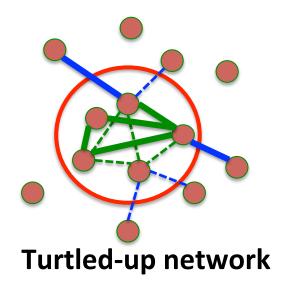
Shock: Change in price of stock **s** on day **d** % change: (closing – opening) / opening

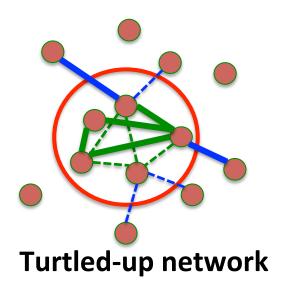
For each stock *s* and day *d*, generate network *G(s,d)* among employees who mention *s*

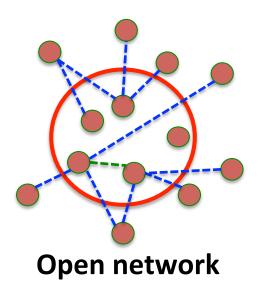
Network's features:

- Size (Nodes, edges)
- Density (Clustering, tie strength)
- Openness (Border edges)





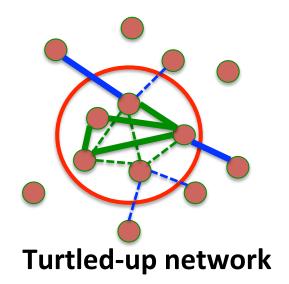


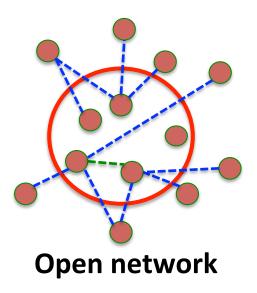


Theoretical Expectations

Networks may turtle-up during shocks:

- Trust (Granovetter 1985, Coleman 1988)
- Expertise knowledge, repeated information channels (Coleman 1990)
- Threat rigidity (Staw 1981)





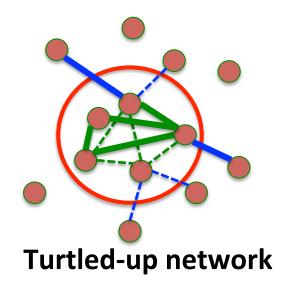
Theoretical Expectations

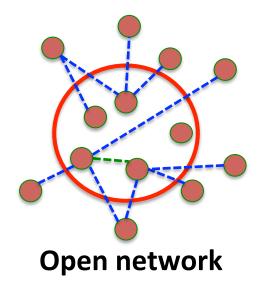
Networks may turtle-up during shocks:

- Trust [Granovetter 1985, Coleman 1988]
- Expertise knowledge, repeated information channels [Coleman 1990]
- Threat rigidity [Staw 1981]

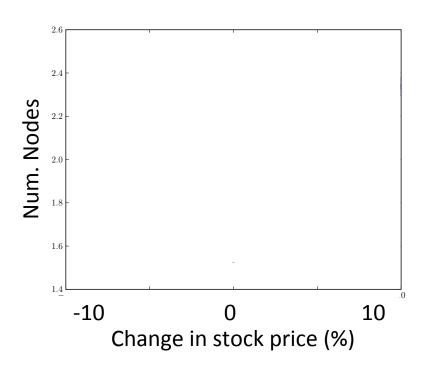
Networks may open-up during shocks:

- New information through weak ties [Granovetter 1973]
- Diverse information from different groups (structural holes) [Burt 92]



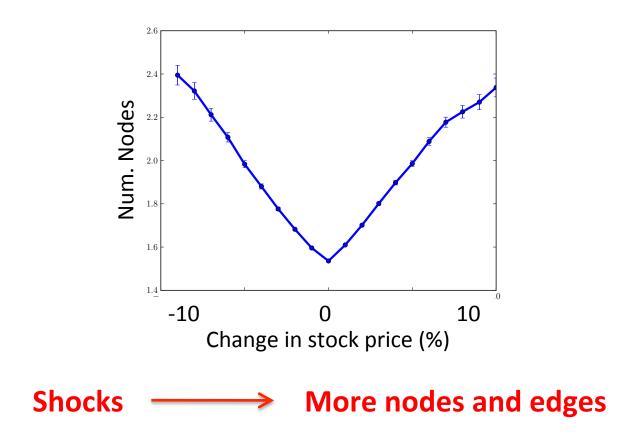


Findings: Size



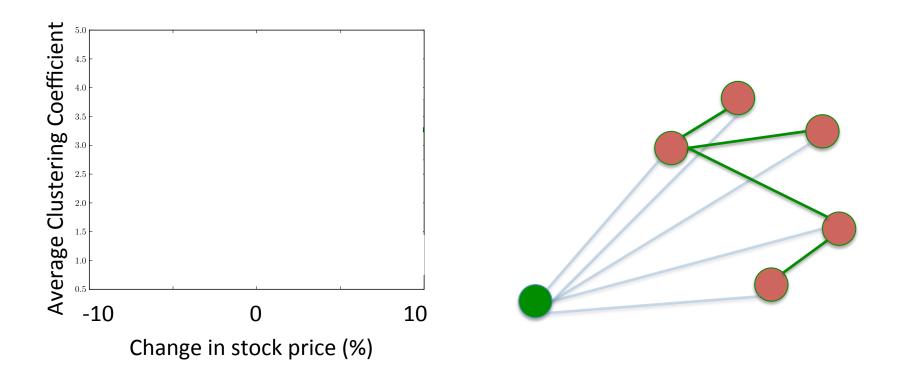
Num of nodes | Past: Ratio of num. nodes in G(s,d) and mean num. nodes in G(s,d') for d' < d.

Findings: Size



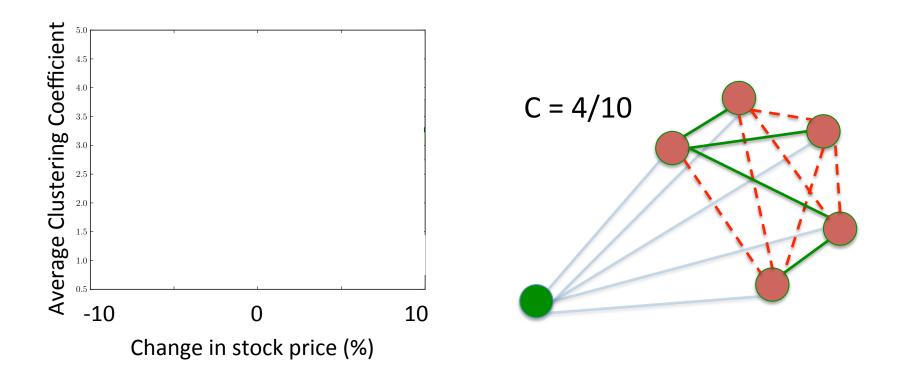
Num of nodes | Past: Ratio of num. nodes in G(s,d) and mean num. nodes in G(s,d') for d' < d.

Findings: Clustering Coefficient



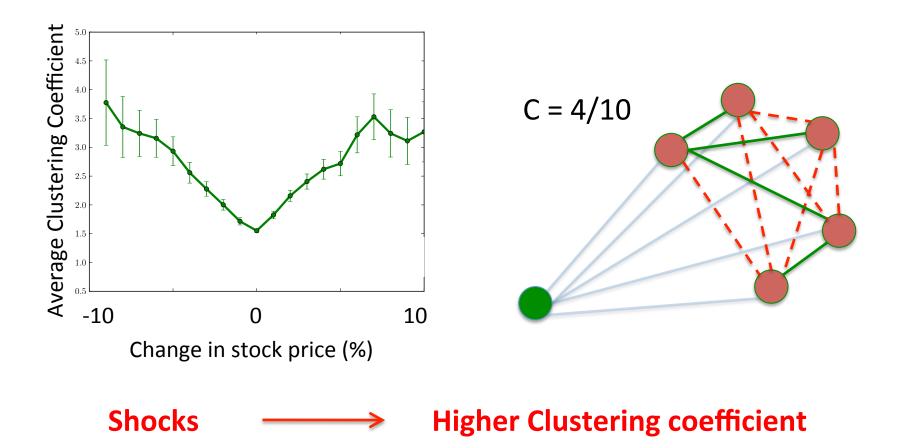
Clustering coefficient of a node *n***:** the ratio of the existing and possible number of edges among the neighbors of *n*.

Findings: Clustering Coefficient



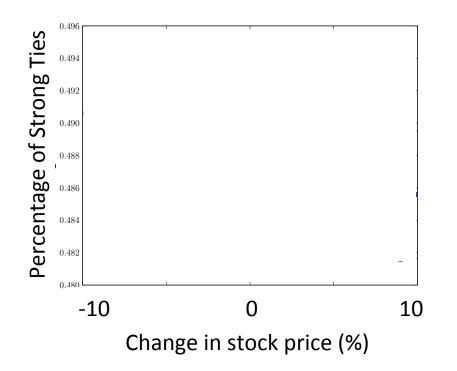
Clustering coefficient of a node *n***:** the ratio of the existing and possible number of edges among the neighbors of *n*.

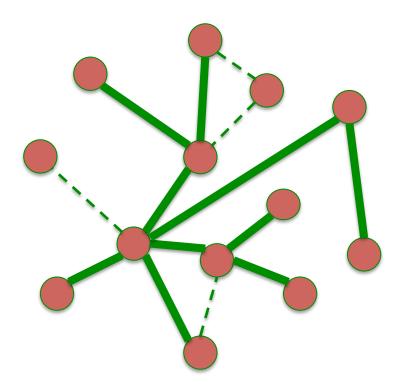
Findings: Clustering Coefficient



Clustering coefficient of a node *n***:** the ratio of the existing and possible number of edges among the neighbors of *n*.

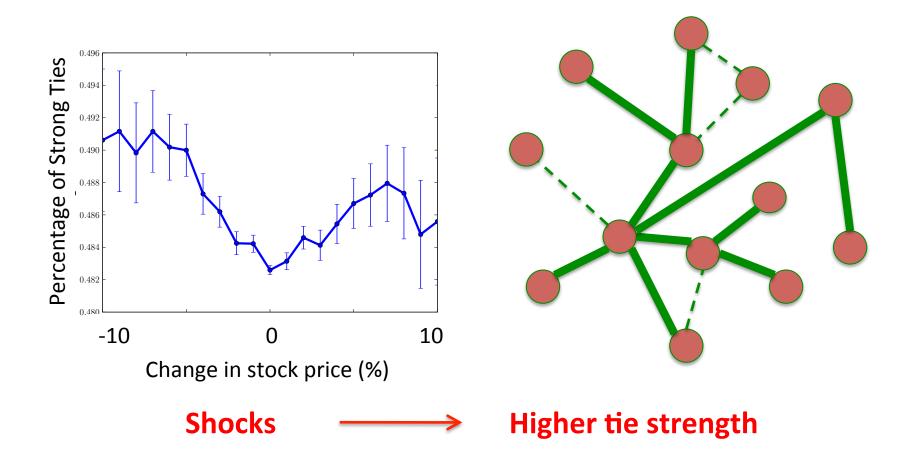
Findings: Tie Strength





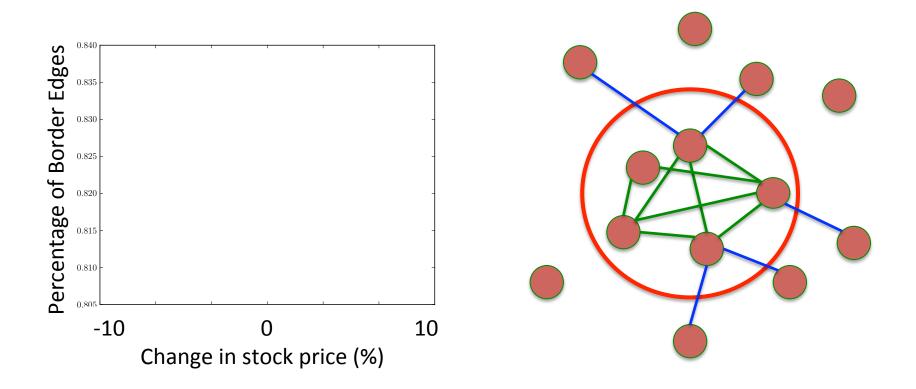
Tie strength: (*x*,*y*) is *k*-*strong*, if *y* is among the top *k*% most frequent connections of *x*

Findings: Tie Strength



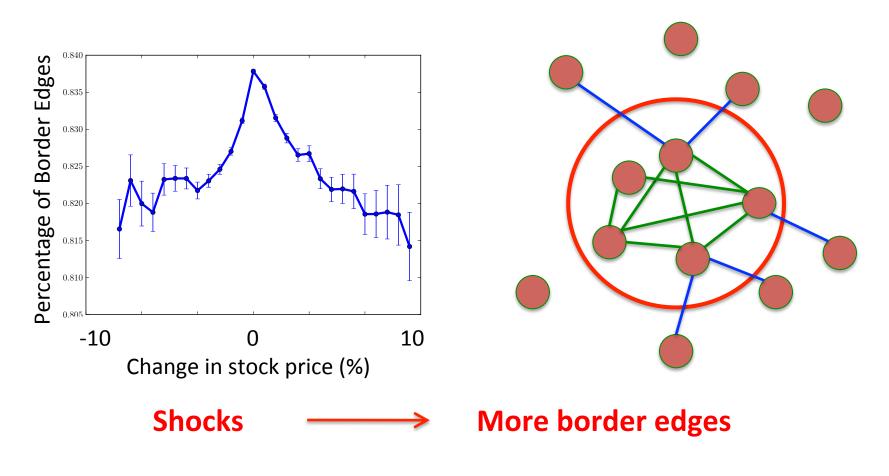
Tie strength: (*x*, *y*) is *k*-*strong*, if *y* is among the top *k*% most frequent connections of *x*

Findings: Openness



Border edges: involve an outside contact

Findings: Openness



Border edges: involve an outside contact

Networks "Turtle-up" During Shocks

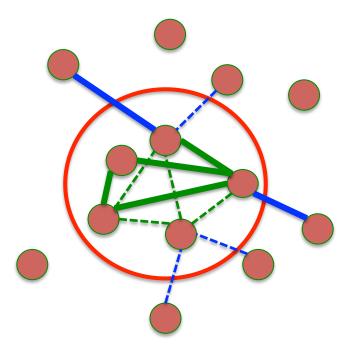
Networks as organisms that breath in and out – they can open and close with shocks.

Price changes are related to the **network "turtle-up"**:

- Higher clustering
- Stronger edges
- More internal communication

Consistent with theories of:

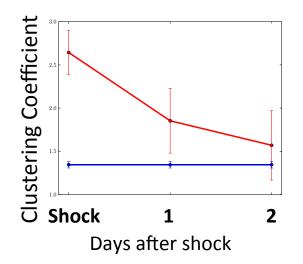
- Trust
- Expertise knowledge, repeated information channels



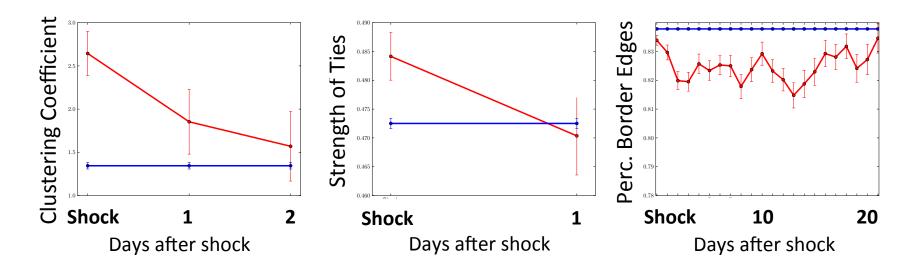
Not all price changes are equally *surprising*.

Not all price changes are equally *surprising*. **shock:** price change > 5% on day d and < 5% on d-1, d-2, d-3

Not all price changes are equally *surprising*. **shock:** price change > 5% on day d and < 5% on d-1, d-2, d-3

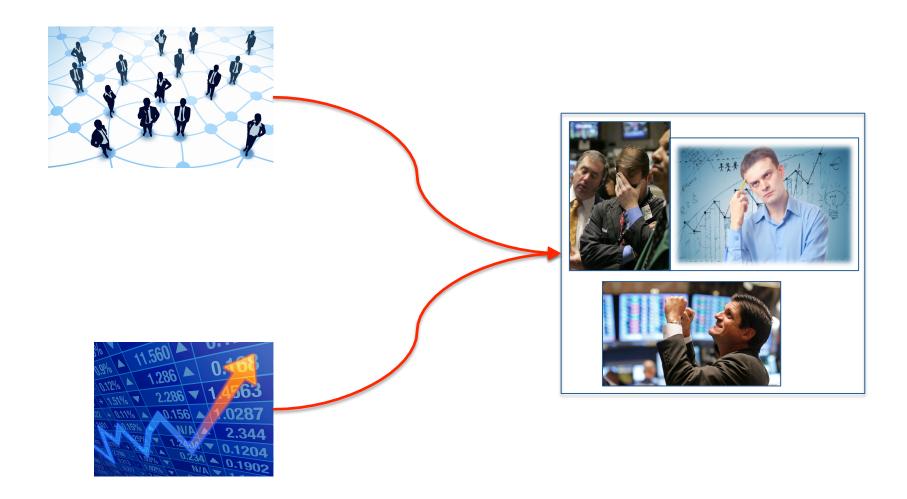


Not all price changes are equally *surprising*. **shock:** price change > 5% on day d and < 5% on d-1, d-2, d-3



Changes in network structure after a shock are consistent. Networks stabilize within several days after a shock.

Emotional and Cognitive Content



LIWC Categories

Linguistic Inquiry Word Count (LIWC): text analysis tool, which identifies words that belong to various categories.

Affective Processes		Cognitive Processes		
Positive	Love, nice	Insight	Think, Consider	
Negative	Hurt, ugly	Causation	Because, Hence	
Anxiety	Worried, fearful	Discrepancy	Should, Could	
Anger	Hate, kill	Tentative	Maybe, Guess	
Sadness	Crying, sad	Certainty	Always, Never	
		Inhibition	Block, Constrain	
		Inclusive	With, Include	

Exclusive

But, Exclude

LIWC Categories

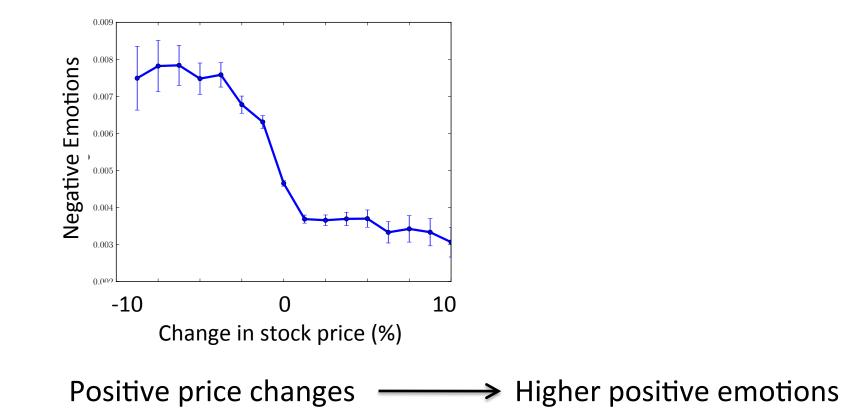
Linguistic Inquiry Word Count (LIWC): text analysis tool, which identifies words that belong to various categories.

Affective Processes		Cognitive Processes		
Positive	Love, nice	Insight	Think, Consider	
Negative	Hurt, ugly	Causation	Because, Hence	
Anxiety	Worried, fearful	Discrepancy	Should, Could	
Anger	Hate, kill	Tentative	Maybe, Guess	
Sadness	Crying, sad	Certainty	Always, Never	
		Inhibition	Block, Constrain	
		Inclusive	With, Include	

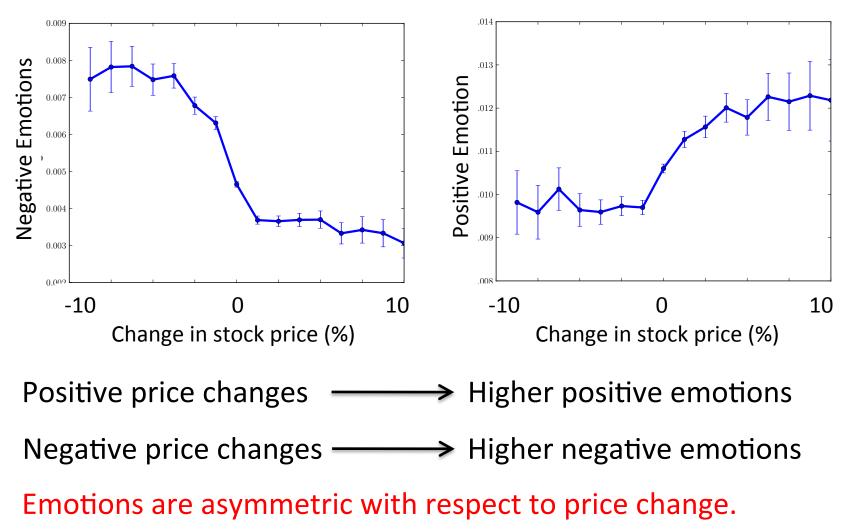
Exclusive

But, Exclude

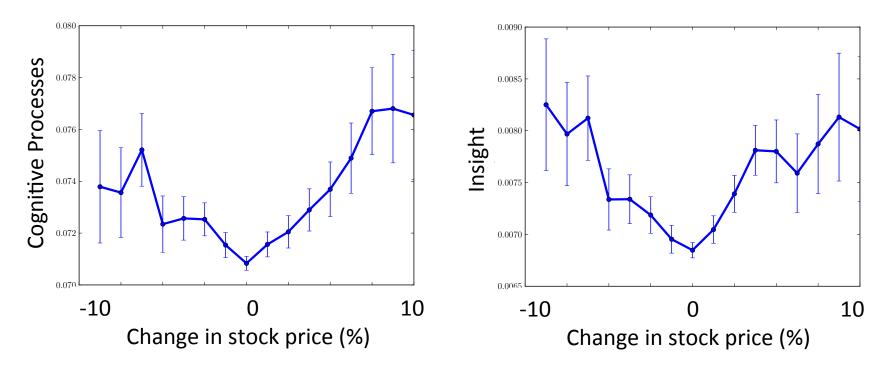
Price Changes vs. Emotions



Price Changes vs. Emotions



Price Changes vs. Cognitive Processes



Price changes — Higher cognitive language

Cognitive processes are asymmetric with respect to price change.

Task: For a fixed stock *s* and day *d*, predict if IMs that mention *s* on day *d* contain more words in the category than average.

Task: For a fixed stock *s* and day *d*, predict if IMs that mention *s* on day *d* contain more words in the category than average.

Features:

- Network (density, size, openness, lagged)
- Price change (signed, absolute, lagged)

Task: For a fixed stock *s* and day *d*, predict if IMs that mention *s* on day *d* contain more words in the category than average.

Features:

- Network (density, size, openness, lagged)
- Price change (signed, absolute, lagged)

Set up: Bin time into 100 day bins. Use each bin for testing and all previous bins for training. Balanced set of positive and negative cases.

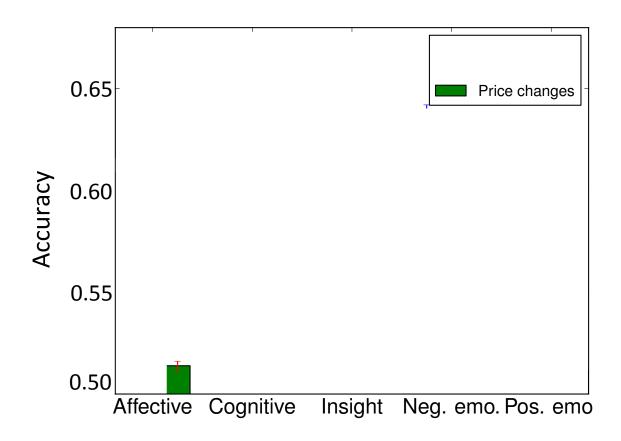
Task: For a fixed stock *s* and day *d*, predict if IMs that mention *s* on day *d* contain more words in the category than average.

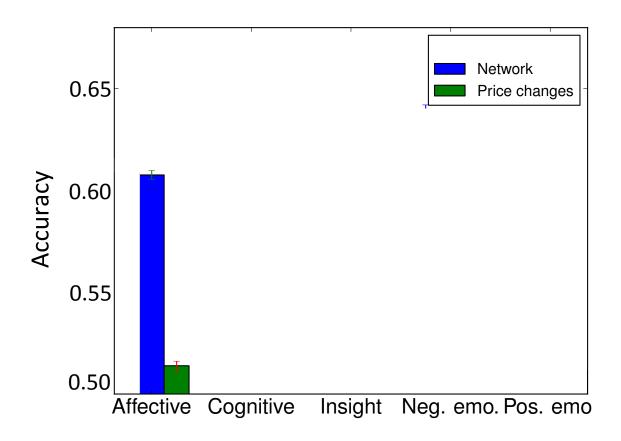
Features:

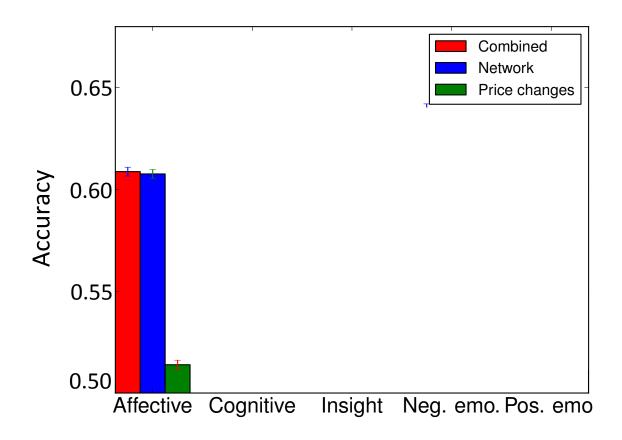
- Network (density, size, openness, lagged)
- Price change (signed, absolute, lagged)

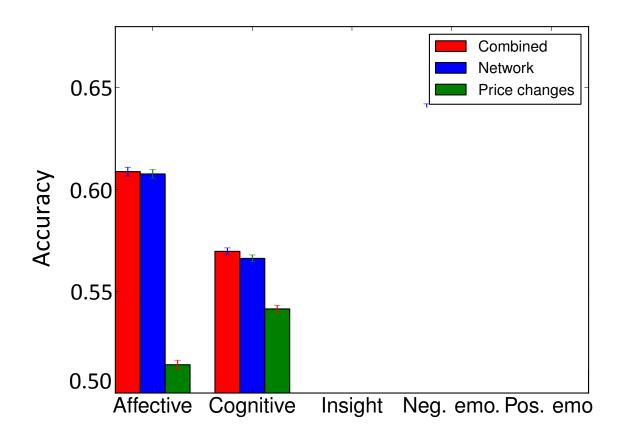
Set up: Bin time into 100 day bins. Use each bin for testing and all previous bins for training. Balanced set of positive and negative cases.

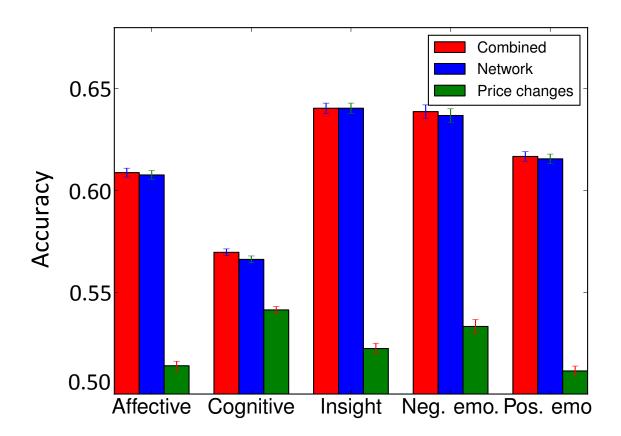
Machine learning classifiers: SVM, Random Forest, Linear Discriminant Analysis, Naive Bayes, Logistic regression.











Network variables are more predictive of type of content than price changes.

Sample Trading Data

Date	Quantity	Time	Symbol	Туре	Price
05/21/2008	100	03:22:00 PM	GOOG	BUY	290.61
05/21/2008	200	03:46:21 PM	GOOG	SELL	288.45
05/21/2008	100	03:55:08 PM	GOOG	BUY	291.98
05/21/2008	200	03:55:52 PM	GOOG	BUY	301.98
05/21/2008	100	03:37:04 PM	GOOG	BUY	288.61
05/21/2008	50	03:50:51 PM	GOOG	SELL	289.80
05/21/2008	100	03:59:09 PM	GOOG	SELL	299.99
05/22/2008	300	10:11:28 AM	AAPL	BUY	27.98
05/22/2008	100	10:31:07 AM	AAPL	BUY	26.76
05/22/2008	300	10:18:35 AM	AAPL	BUY	27.00
05/22/2008	100	10:27:02 AM	AAPL	BUY	27.43
05/22/2008	100	10:07:14 AM	AAPL	SHORT	28.21
05/22/2008	50	10:24:01 AM	AAPL	SELL	27.77
05/22/2008	100	10:14:10 AM	GOOG	SELL	298.61
05/22/2008	50	10:10:39 AM	GOOG	SHORT	301.87
05/22/2008	100	10:25:08 AM	AAPL	SHORT	36.16
05/22/2008	300	10:01:29 AM	APL	BUY	28.50

Prediction of Optimal Trading Time

Suboptimal trade: Traded at less optimal price than the worst price the next day

Prediction of Optimal Trading Time

Suboptimal trade: Traded at less optimal price than the worst price the next day

Task: For a fixed stock *s* traded on day *d*, predict if it's suboptimal

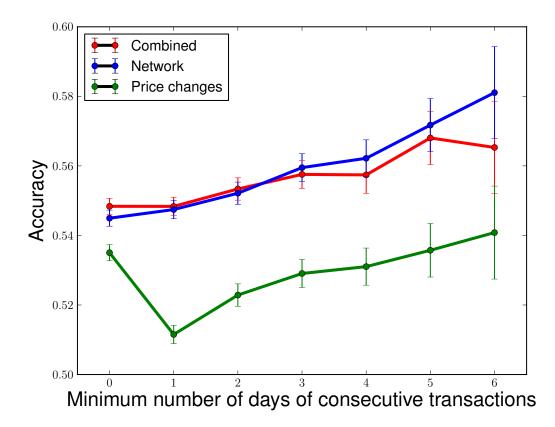
Prediction of Optimal Trading Time

Suboptimal trade: Traded at less optimal price than the worst price the next day

Task: For a fixed stock *s* traded on day *d*, predict if it's suboptimal

N-serial trades: A trade of stock *s* that has occurred for at least N consecutive days

Prediction of Optimal Trading Time



Network variables are more predictive than price changes.

Task: Predict whether a stock *s* will be traded on day *d*.

Task: Predict whether a stock *s* will be traded on day *d*.

Trading history of *s* during past 7 days alone achieves 80% accuracy

Task: Predict whether a stock *s* will be traded on day *d*.

Trading history of *s* during past 7 days alone achieves 80% accuracy

New task: Given that **s** has not been for **k** week before **d**, predict whether **s** will be traded on day **d**.

Task: Predict whether a stock *s* will be traded on day *d*.

Trading history of *s* during past 7 days alone achieves 80% accuracy

New task: Given that **s** has not been for **k** week before **d**, predict whether **s** will be traded on day **d**.

Features:

- Network (density, size, openness, lagged)
- Price change (signed, absolute, lagged)

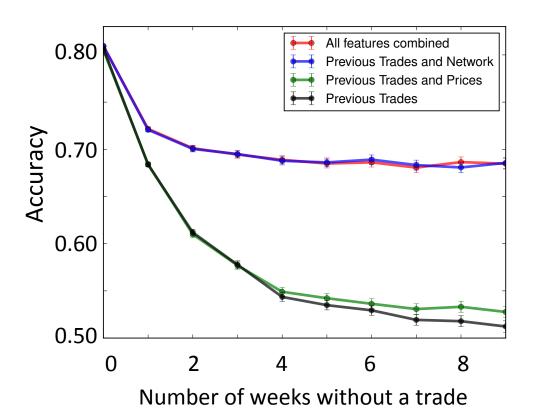
Task: Predict whether a stock *s* will be traded on day *d*.

Trading history of *s* during past 7 days alone achieves 80% accuracy

New task: Given that **s** has not been for **k** week before **d**, predict whether **s** will be traded on day **d**.

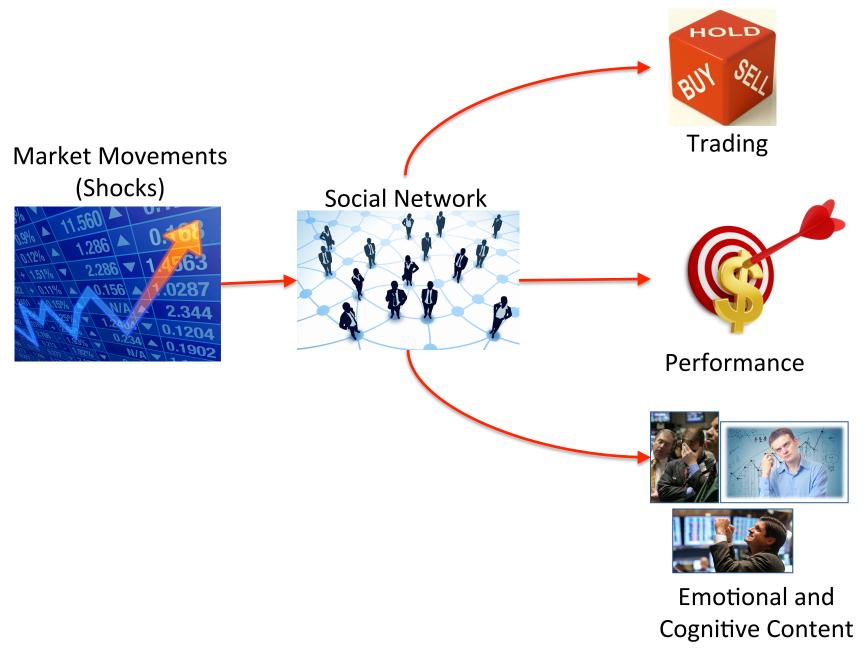
Features:

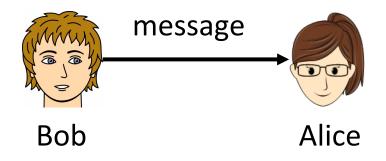
- Network (density, size, openness, lagged)
- Price change (signed, absolute, lagged)
- Indicator of trading during 7 days prior to k weeks of no trading.

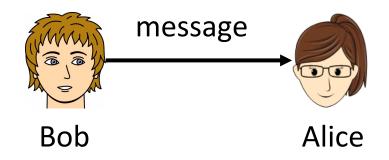


Task: Predict whether a stock that has not been traded for *k* weeks will be traded.

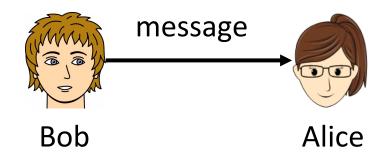
Network variables are more predictive of type of sudden stock trading than price changes.







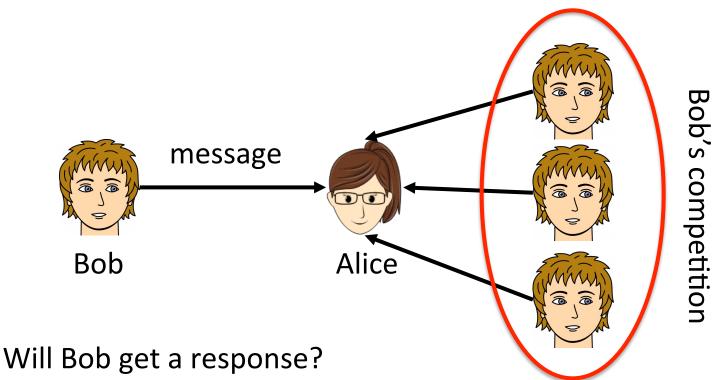
Will Bob get a response?



Will Bob get a response?

Does the probability that Bob gets a response depend on:

1. The text similarity between Bob and Alice?



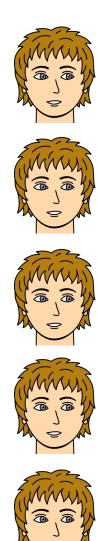
Does the probability that Bob gets a response depend on:

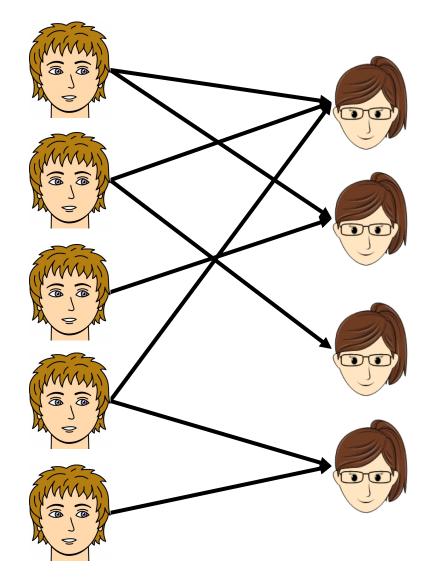
- 1. The text similarity between Bob and Alice?
- 2. The text similarity between Bob and his competition?

Dating Site Data

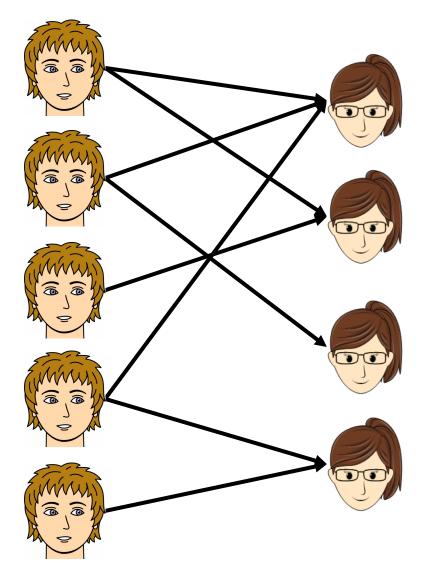
Data from a major online dating site:

- From 9/1/13 to 12/1/13
- 230K males and 180K females (active)
- 25 million exchanges messages
- Full profile data:
 - Demographic information
 - Free text responses

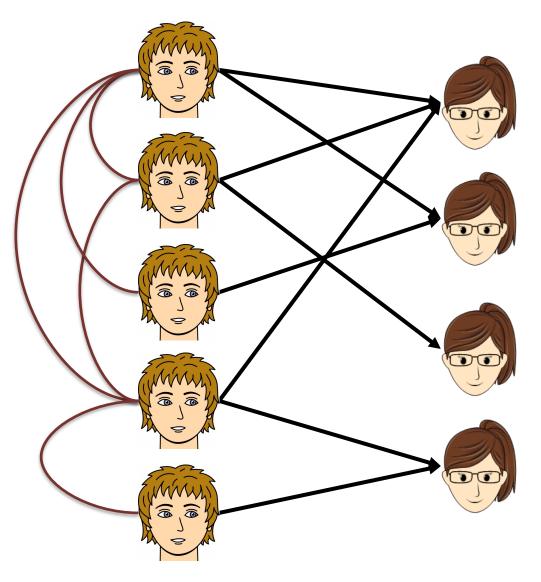




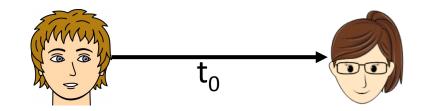
Connect any two males who messaged at least one female in common.



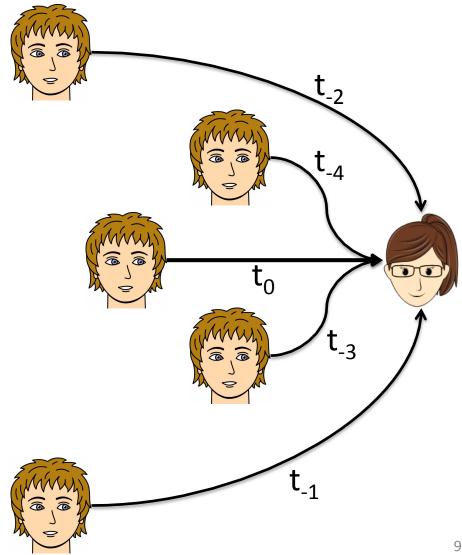
Connect any two males who messaged at least one female in common.



Female-choice Competition Network

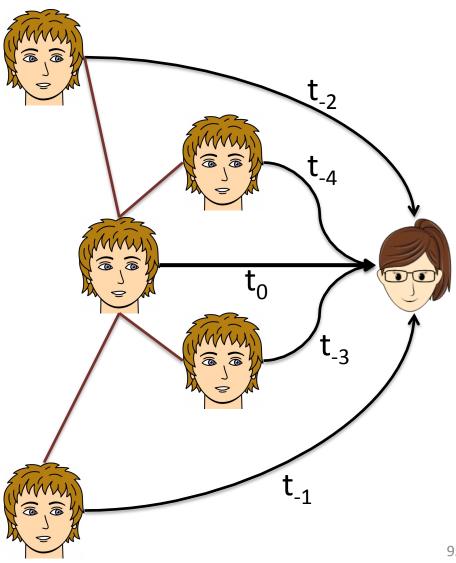


Female-choice Competition Network

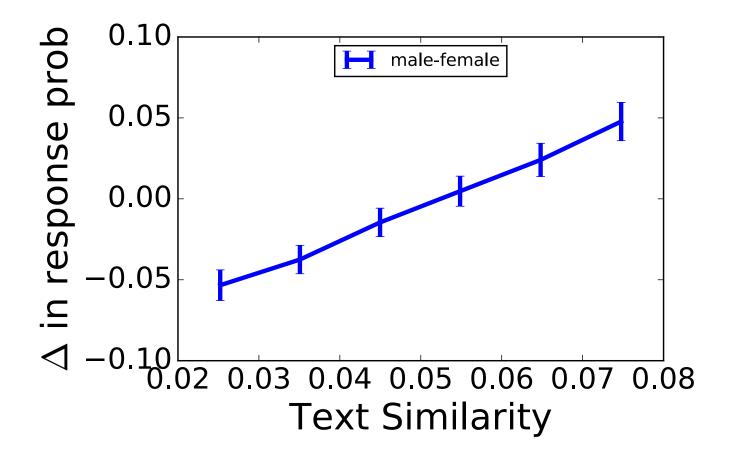


Female-choice Competition Network

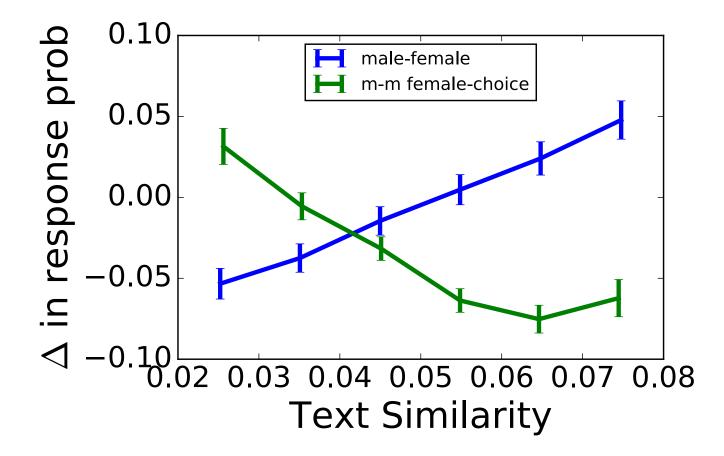
Connect male to other males to messages same female in the past



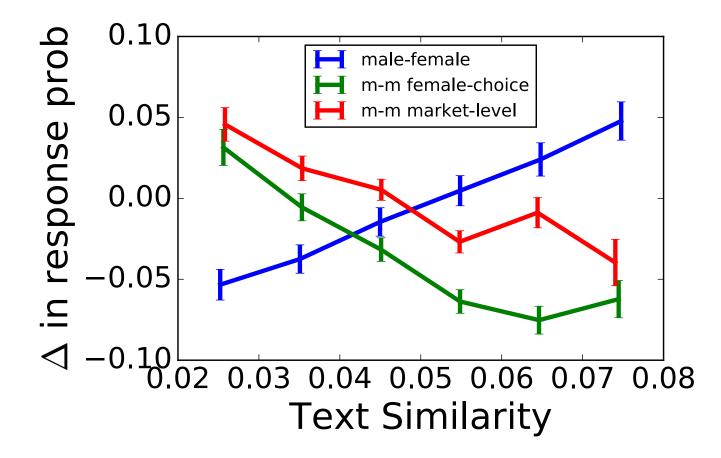
Text Similarity vs. Message Response



Text Similarity vs. Message Response



Text Similarity vs. Message Response



Logistic Regression

	Variable	Coefficient sign/ significance
	Female % response	+/***
Male-female control variables	Age diff	-/***
	Height diff	+/***
	Physical distance	-/*
	Same body type	-/***
	Same ethnicity	+/***
	Ave. vote diff	-/***
Text Similarity variables	Text similarity	+/***
	Competition text sim. (female choice)	-/***

Conclusions

- Relationship between stock market shocks and social network structure
- Competing hypotheses: turtle up vs. open network structure
- Communication "turtles-up" during shocks.
- Network structure is predictive of trading, performance, and emotional and cognitive content.
- Stock market changes do not improve prediction accuracy.

 Differentiating from competition appears to have a positive effect in dating sites.