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Temporal	dynamics	of	networks:	
Short	diameter,	densifica3on,	clustering,	heavy	tail	degree	
distribu3on,	…	[Leskovec	et	al.	2007,	Barabasi	et	al.	1999,	Kossinets	et	
al.	2009,	…]	
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Useful	for:	
•  Link	predic3on	
•  Detec3ng	influen3al	nodes	
•  Finding	communi3es	 4	
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Hedge	Fund	Data	
Instant	Messages	(IM):		
• 	Full	record	of	IMs:	content,	
sender,	recipient,	3mestamp	
• 	182	internal	decision	makers,	
8646	outside	contacts	
• 	22	Million	IMs	
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8646	outside	contacts	
• 	22	Million	IMs	
	
	
	

Stock	Trading:	
• 	Full	record	of	all	transac3ons:	
stock,	price,	number	of	stocks,	
type	of	transac3on	(Buy,	Sell),	
3mestamp		
• 	600K	trades	
• 	2008	–	2012	
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Hedge	Fund	Organiza3onal	Structure	
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Organiza3ons	and	Individuals	Under	Threat	

Ego-networks:		
Individuals	under	threat	ac3vate	different	contacts	in	their	network	
depending	on	the	subject’s	power,	status,	and	iden3ty	consistency	
(Menon	&	Smith	2014,	Smith,	Thompson,	Menon	2012).	
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Groups:	
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Organiza?on	theory:	Reac?ons	to	threat:	
• Threat	rigidity	effect	[Staw	et	al.	1981].	
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Measures	

Shock:	Change	in	price	of	stock	s	on	day	d	
%	change:	(closing	–	opening)	/	opening		
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Network’s	features:	
• 	Size	(Nodes,	edges)	
	
	
	

For	each	stock	s	and	day	d,	generate	
network	G(s,d)	among	employees	who	
men3on	s	

Shock:	Change	in	price	of	stock	s	on	day	d	
%	change:	(closing	–	opening)	/	opening		
	

29	

Measures	



Network’s	features:	
• 	Size	(Nodes,	edges)	
• 	Density	(Clustering	
	
	
	

For	each	stock	s	and	day	d,	generate	
network	G(s,d)	among	employees	who	
men3on	s	

Shock:	Change	in	price	of	stock	s	on	day	d	
%	change:	(closing	–	opening)	/	opening		
	

30	

Measures	



Network’s	features:	
• 	Size	(Nodes,	edges)	
• 	Density	(Clustering	
	

For	each	stock	s	and	day	d,	generate	
network	G(s,d)	among	employees	who	
men3on	s	

Shock:	Change	in	price	of	stock	s	on	day	d	
%	change:	(closing	–	opening)	/	opening		
	

31	

Measures	



Network’s	features:	
• 	Size	(Nodes,	edges)	
• 	Density	(Clustering	
	

For	each	stock	s	and	day	d,	generate	
network	G(s,d)	among	employees	who	
men3on	s	

Shock:	Change	in	price	of	stock	s	on	day	d	
%	change:	(closing	–	opening)	/	opening		
	

32	

Measures	



Network’s	features:	
• 	Size	(Nodes,	edges)	
• 	Density	(Clustering,	3e	strength)	
	

For	each	stock	s	and	day	d,	generate	
network	G(s,d)	among	employees	who	
men3on	s	

Shock:	Change	in	price	of	stock	s	on	day	d	
%	change:	(closing	–	opening)	/	opening		
	

33	

Measures	



Network’s	features:	
• 	Size	(Nodes,	edges)	
• 	Density	(Clustering,	3e	strength)	
	

For	each	stock	s	and	day	d,	generate	
network	G(s,d)	among	employees	who	
men3on	s	

Shock:	Change	in	price	of	stock	s	on	day	d	
%	change:	(closing	–	opening)	/	opening		
	

34	

Measures	



Network’s	features:	
• 	Size	(Nodes,	edges)	
• 	Density	(Clustering,	3e	strength)	
	

For	each	stock	s	and	day	d,	generate	
network	G(s,d)	among	employees	who	
men3on	s	

Shock:	Change	in	price	of	stock	s	on	day	d	
%	change:	(closing	–	opening)	/	opening		
	

35	

Measures	



Network’s	features:	
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Turtled-up	network			
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Turtled-up	network			

Open	network			



Networks	may	turtle-up	during	shocks:	
•  Trust	(Granoveier	1985,	Coleman	1988)	
•  Exper3se	knowledge,	repeated	

informa3on	channels	(Coleman	1990)	
•  Threat	rigidity	(Staw		1981)	
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Theore3cal	Expecta3ons	

						

Turtled-up	network			

Open	network			

Networks	may	open-up	during	shocks:		
•  New	informa3on	through	weak	3es	

[Granoveier	1973]	
•  Diverse	informa3on	from	different	groups	

(structural	holes)	[Burt	92]	



Num	of	nodes	|	Past:	Ra3o	of	num.	nodes	in	G(s,d)	and	mean	num.	
nodes	in	G(s,d’)	for	d’	<	d.				
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Findings:	Size	
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Findings:	Size	



Findings:	Clustering	Coefficient	
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Clustering	coefficient	of	a	node	n:	the	ra3o	of	the	exis3ng	and	
possible	number	of	edges	among	the	neighbors	of	n.		
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Findings:	Clustering	Coefficient	

Clustering	coefficient	of	a	node	n:	the	ra3o	of	the	exis3ng	and	
possible	number	of	edges	among	the	neighbors	of	n.		
	



�10 �5 0 5 10

Change in stock price (%)
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
lu

st
er

in
g

co
ef

f.

Clustering coeff. | Num. Edges
Clustering coeff. | Num. Nodes

Av
er
ag
e	
Cl
us
te
rin

g	
Co

effi
ci
en

t	

Change	in	stock	price	(%)	

Clustering	coefficient	of	a	node	n:	the	ra3o	of	the	exis3ng	and	
possible	number	of	edges	among	the	neighbors	of	n.		
	

Higher	Clustering	coefficient		Shocks		
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Findings:	Clustering	Coefficient	
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Findings:	Tie	Strength	
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Findings:	Tie	Strength	
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Findings:	Openness	



�15 �10 �5 0 5 10 15

Change in stock price (%)
0.805

0.810

0.815

0.820

0.825

0.830

0.835

0.840

Pe
rc

en
ta

ge
of

bo
rd

er
ed

ge
s

Percentage of border edges

Pe
rc
en

ta
ge
	o
f	B

or
de

r	E
dg
es
	

More	border	edges	Shocks		

Border	edges:	involve	an	outside	contact	

Change	in	stock	price	(%)	
-10																									0																										10	

50	

Findings:	Openness	



Networks	“Turtle-up”	During	Shocks	

Consistent	with	theories	of:	
• 	Trust	
• 	Exper3se	knowledge,	repeated	
informa3on	channels	

	
	
	
	
	

•  	Higher	clustering		
•  	Stronger	edges		
•  	More	internal	communica3on		

	

Networks	as	organisms	that	breath	in	and	out	–	they	can	open	
and	close	with	shocks.		
		
Price	changes	are	related	to	the	network	“turtle-up”:	
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Discrete	Shocks	and	Network	Recovery	
Not	all	price	changes	are	equally	surprising.	
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Networks	stabilize	within	several	days	aser	a	shock.			
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Emo3onal	and	Cogni3ve	Content	
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LIWC	Categories		
Linguis?c	Inquiry	Word	Count	(LIWC):		text	analysis	tool,	which	
iden3fies	words	that	belong	to	various	categories.	

	
	
	

Affec?ve	Processes	
Posi3ve	 Love,	nice	
Nega3ve	 Hurt,	ugly	
Anxiety	 Worried,	fearful	
Anger	 Hate,	kill	
Sadness		 Crying,	sad	

Cogni?ve	Processes	
Insight	 Think,	Consider	

Causa3on	 Because,	Hence	
Discrepancy	 Should,	Could	
Tenta3ve	 Maybe,	Guess	
Certainty	 Always,	Never	
Inhibi3on	 Block,	Constrain	
Inclusive	 With,	Include	
Exclusive	 But,	Exclude	
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Price	Changes	vs.	Emo3ons	
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Emo3ons	are	asymmetric	with	respect	to	price	change.	
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Price	Changes	vs.	Cogni3ve	Processes	
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Cogni3ve	processes	are	asymmetric	with	respect	to	price	change.	

Change	in	stock	price	(%)	
-10																									0																										10	

Change	in	stock	price	(%)	
-10																									0																										10	

61	



Task:	For	a	fixed	stock	s	and	day	d,	predict	if	IMs	that	men3on	s	
on	day	d	contain	more	words	in	the	category	than	average.	
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Task:	For	a	fixed	stock	s	and	day	d,	predict	if	IMs	that	men3on	s	
on	day	d	contain	more	words	in	the	category	than	average.	
Features:		
• 	Network	(density,	size,	openness,	lagged)		
• 	Price	change	(signed,	absolute,	lagged)		
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Task:	For	a	fixed	stock	s	and	day	d,	predict	if	IMs	that	men3on	s	
on	day	d	contain	more	words	in	the	category	than	average.	
Features:		
• 	Network	(density,	size,	openness,	lagged)		
• 	Price	change	(signed,	absolute,	lagged)		
	
		
	
Set	up:	Bin	3me	into	100	day	bins.	Use	each	bin	for	tes3ng	and	all	
previous	bins	for	training.	Balanced	set	of	posi3ve	and	nega3ve	cases.	
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Task:	For	a	fixed	stock	s	and	day	d,	predict	if	IMs	that	men3on	s	
on	day	d	contain	more	words	in	the	category	than	average.	
Features:		
• 	Network	(density,	size,	openness,	lagged)		
• 	Price	change	(signed,	absolute,	lagged)		
	
		
	
Set	up:	Bin	3me	into	100	day	bins.	Use	each	bin	for	tes3ng	and	all	
previous	bins	for	training.	Balanced	set	of	posi3ve	and	nega3ve	cases.	
	
Machine	learning	classifiers:	SVM,	Random	Forest,	Linear	
Discriminant	Analysis,	Naive	Bayes,	Logis?c	regression.	
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Network	variables	are	more	predic3ve	of	type	of	content	than	
price	changes.		



Date Quantity Time Symbol Type Price 
05/21/2008 100 03:22:00 PM GOOG BUY 290.61 
05/21/2008 200 03:46:21 PM GOOG SELL 288.45 
05/21/2008 100 03:55:08 PM  GOOG      BUY 291.98 
05/21/2008 200 03:55:52 PM GOOG       BUY 301.98 
05/21/2008 100 03:37:04 PM GOOG       BUY 288.61 
05/21/2008 50 03:50:51 PM GOOG       SELL 289.80 
05/21/2008 100 03:59:09 PM GOOG       SELL 299.99 
05/22/2008 300 10:11:28 AM AAPL BUY 27.98 
05/22/2008 100 10:31:07 AM AAPL       BUY 26.76 
05/22/2008 300 10:18:35 AM  AAPL      BUY 27.00 
05/22/2008 100 10:27:02 AM  AAPL      BUY 27.43 
05/22/2008 100 10:07:14 AM AAPL       SHORT  28.21 
05/22/2008 50 10:24:01 AM AAPL       SELL 27.77 
05/22/2008 100 10:14:10 AM GOOG  SELL 298.61 
05/22/2008 50 10:10:39 AM GOOG  SHORT  301.87 
05/22/2008 100 10:25:08 AM AAPL SHORT 36.16 
05/22/2008 300 10:01:29 AM APL       BUY 28.50 

Sample	Trading	Data	



	
	
		
	

Subop?mal	trade:	Traded	at	less	
op3mal	price	than	the	worst	price	the	
next	day	
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Subop?mal	trade:	Traded	at	less	
op3mal	price	than	the	worst	price	the	
next	day	
	
Task:	For	a	fixed	stock	s	traded	on	day	
d,	predict	if	it’s	subop3mal		
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N-serial	trades:	A	trade	of	stock	s	that	has	occurred	for	at	least	
N	consecu3ve	days			
	
	
		
	

Subop?mal	trade:	Traded	at	less	
op3mal	price	than	the	worst	price	the	
next	day	
	
Task:	For	a	fixed	stock	s	traded	on	day	
d,	predict	if	it’s	subop3mal		
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Network	variables	are	more	predic3ve	than	price	changes.	
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Task:	Predict	whether	a	stock	s	will	
be	traded	on	day	d.	
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Predic3ng	Stock	Trading	

	
	
	
	
		
	

Task:	Predict	whether	a	stock	s	will	
be	traded	on	day	d.	
Trading	history	of	s	during	past	7	
days	alone	achieves	80%	accuracy	
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Predic3ng	Stock	Trading	

	
New	task:	Given	that	s	has	not	been	for	k	week	before	d,	predict	
whether	s	will	be	traded	on	day	d.	
	
	
	
		
	

Task:	Predict	whether	a	stock	s	will	
be	traded	on	day	d.	
Trading	history	of	s	during	past	7	
days	alone	achieves	80%	accuracy	
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Predic3ng	Stock	Trading	

	
New	task:	Given	that	s	has	not	been	for	k	week	before	d,	predict	
whether	s	will	be	traded	on	day	d.	
Features:		
•  Network	(density,	size,	openness,	lagged)		
•  Price	change	(signed,	absolute,	lagged)		
	
	
	
		
	

Task:	Predict	whether	a	stock	s	will	
be	traded	on	day	d.	
Trading	history	of	s	during	past	7	
days	alone	achieves	80%	accuracy	
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Predic3ng	Stock	Trading	

	
New	task:	Given	that	s	has	not	been	for	k	week	before	d,	predict	
whether	s	will	be	traded	on	day	d.	
Features:		
•  Network	(density,	size,	openness,	lagged)		
•  Price	change	(signed,	absolute,	lagged)		
•  Indicator	of	trading	during	7	days	prior	to	k	weeks	of	no	

trading.		
	
	
	
		
	

Task:	Predict	whether	a	stock	s	will	
be	traded	on	day	d.	
Trading	history	of	s	during	past	7	
days	alone	achieves	80%	accuracy	



Network	variables	are	more	predic3ve	of	type	of	sudden	stock	
trading	than	price	changes.		
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Predic3ng	Stock	Trading	

Number	of	weeks	without	a	trade	
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Task:	Predict	whether	a	
stock	that	has	not	been	
traded	for	k	weeks	will	be	
traded.			



Market	Movements	
(Shocks)	 Social	Network	

Emo3onal	and		
Cogni3ve	Content	

Performance	
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Differen3a3on	in	Da3ng	Sites	
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Differen3a3on	in	Da3ng	Sites	

message	

Bob	 Alice	
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Differen3a3on	in	Da3ng	Sites	

Will	Bob	get	a	response?	
	

message	

Bob	 Alice	
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Differen3a3on	in	Da3ng	Sites	

Will	Bob	get	a	response?	
	
Does	the	probability	that	Bob	gets	a	response	depend	on:	
1.  The	text	similarity	between	Bob	and	Alice?	

message	

Bob	 Alice	



87	

Differen3a3on	in	Da3ng	Sites	

Will	Bob	get	a	response?	
	
Does	the	probability	that	Bob	gets	a	response	depend	on:	
1.  The	text	similarity	between	Bob	and	Alice?	
2.  The	text	similarity	between	Bob	and	his	compe33on?	

message	

Bob	 Alice	

Bob’s	com
pe33on	



Da3ng	Site	Data	
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Data	from	a	major	online	da3ng	site:	
•  From	9/1/13	to	12/1/13	
•  230K	males	and	180K	females	

(ac3ve)	
•  25	million	exchanges	messages		
•  Full	profile	data:	

§  Demographic	informa3on		
§  Free	text	responses		
	



Market-level	Compe33on	Network	
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Market-level	Compe33on	Network	
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Market-level	Compe33on	Network	
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Connect	any	two	
males	who	messaged	
at	least	one	female	in	
common.	



Market-level	Compe33on	Network	
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Connect	any	two	
males	who	messaged	
at	least	one	female	in	
common.	



Female-choice	Compe33on	Network	
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t0	



Female-choice	Compe33on	Network	
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t0	

t-1	

t-2	

t-3	

t-4	



Female-choice	Compe33on	Network	

95	

t0	

t-1	

t-2	

t-3	

t-4	
Connect	male	to	
other	males	to	
messages	same	
female	in	the	past	



Text	Similarity	vs.	Message	Response		
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Text	Similarity	vs.	Message	Response		
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Text	Similarity	vs.	Message	Response		
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Logis3c	Regression	
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Variable		
Coefficient	

sign/
significance	

Female	%	response		 +/***	

Male-female	control	
variables		

Age	diff	 -/***	
Height	diff	 +/***	

Physical	distance	 -/*	
Same	body	type	 -/***	
Same	ethnicity	 +/***	
Ave.	vote	diff	 -/***	

Text	Similarity	
variables	

Text	similarity	 +/***	
Compe33on	text	sim.	

(female	choice)	 -/***	



Conclusions	
•  Rela3onship	between	stock	market	shocks	and	social	network	

structure	
•  Compe3ng	hypotheses:	turtle	up	vs.	open	network	structure	
•  Communica3on	“turtles-up”	during	shocks.	
•  Network	structure	is	predic3ve	of	trading,	performance,	and	

emo3onal	and	cogni3ve	content.		
•  Stock	market	changes	do	not	improve	predic3on	accuracy.	
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•  Differen3a3ng	from	compe33on	appears	to	have	a	posi3ve	
effect	in	da3ng	sites.	

	


