Understanding cultural norms via evolutionary game theory
A new approach

Don Saari
Institute for Mathematical Behavioral Sciences
UC Irvine
dsaari@uci.edu
Understanding cultural norms via evolutionary game theory
A new approach

Don Saari
Institute for Mathematical Behavioral Sciences
UC Irvine
dsaari@uci.edu

Common comment during this workshop:
Understanding cultural norms via evolutionary game theory
A new approach

Don Saari
Institute for Mathematical Behavioral Sciences
UC Irvine
daari@uci.edu

Common comment during this workshop:
“How do we make the social sciences into a science?”
Understanding cultural norms via evolutionary game theory
A new approach

Don Saari
Institute for Mathematical Behavioral Sciences
UC Irvine
dsaari@uci.edu

Common comment during this workshop:
“How do we make the social sciences into a science?”
We are at IPAM, so how to we incorporate mathematics?
Understanding cultural norms via evolutionary game theory
A new approach

Don Saari
Institute for Mathematical Behavioral Sciences
UC Irvine
dsaari@uci.edu

Common comment during this workshop:
“How do we make the social sciences into a science?”
We are at IPAM, so how to we incorporate mathematics?
Understanding cultural norms via evolutionary game theory
A new approach

Don Saari
Institute for Mathematical Behavioral Sciences
UC Irvine
dsaari@uci.edu

Common comment during this workshop:
“How do we make the social sciences into a science?”
We are at IPAM, so how to we incorporate mathematics?
Lesson learned:
Understanding cultural norms via evolutionary game theory
A new approach

Don Saari
Institute for Mathematical Behavioral Sciences
UC Irvine
dsaari@uci.edu

Common comment during this workshop:
“How do we make the social sciences into a science?”
We are at IPAM, so how to we incorporate mathematics?

Lesson learned:
Exercise Caution!
Understanding cultural norms via evolutionary game theory
A new approach

Don Saari
Institute for Mathematical Behavioral Sciences
UC Irvine
dsaari@uci.edu

Common comment during this workshop:
“How do we make the social sciences into a science?”
We are at IPAM, so how to we incorporate mathematics?

Lesson learned:
Exercise Caution!
Much of mathematics reflects symbiotic relationship between
mathematics and physical sciences
Understanding cultural norms via evolutionary game theory
A new approach

Don Saari
Institute for Mathematical Behavioral Sciences
UC Irvine
dsaari@uci.edu

Common comment during this workshop:
“How do we make the social sciences into a science?”
We are at IPAM, so how to we incorporate mathematics?

Lesson learned:
Exercise Caution!
Much of mathematics reflects symbiotic relationship between mathematics and physical sciences
Social and behavioral sciences may require rethinking what mathematical tools are appropriate
Understanding cultural norms via evolutionary game theory
A new approach

Don Saari
Institute for Mathematical Behavioral Sciences
UC Irvine
dsaari@uci.edu

Common comment during this workshop:
“How do we make the social sciences into a science?”
We are at IPAM, so how to we incorporate mathematics?

Lesson learned:
Exercise Caution!
Much of mathematics reflects symbiotic relationship between mathematics and physical sciences
Social and behavioral sciences may require rethinking what mathematical tools are appropriate
Toward being able to get sharper equations and make predictions — models are evidence based
Common comment during this workshop:
“How do we make the social sciences into a science?”
We are at IPAM, so how to we incorporate mathematics?

Lesson learned:
Exercise Caution!

Much of mathematics reflects symbiotic relationship between mathematics and physical sciences
Social and behavioral sciences may require rethinking what mathematical tools are appropriate
Toward being able to get sharper equations and make predictions — models are evidence based
Differences between physical and social sciences
Differences between physical and social sciences

Physical sciences and mathematics enjoyed a symbiotic relationship for millennia, which influenced the kind of resulting mathematics—precision.
Differences between physical and social sciences

Physical sciences and mathematics enjoyed a symbiotic relationship for millennia, which influenced the kind of resulting mathematics—precision.
Differences between physical and social sciences

Physical sciences and mathematics enjoyed a symbiotic relationship for millennia, which influenced the kind of resulting mathematics—precision.
Differences between physical and social sciences

Physical sciences and mathematics enjoyed a symbiotic relationship for millennia, which influenced the kind of resulting mathematics—precision.
Differences between physical and social sciences

Physical sciences and mathematics enjoyed a symbiotic relationship for millennia, which influenced the kind of resulting mathematics—precision.
Differences between physical and social sciences

Physical sciences and mathematics enjoyed a symbiotic relationship for millennia, which influenced the kind of resulting mathematics—precision.

1859

Cannot explain
Mercury’s behavior

Le Verrier
Differences between physical and social sciences

Physical sciences and mathematics enjoyed a symbiotic relationship for millennia, which influenced the kind of resulting mathematics—precision.

1859

Cannot explain Mercury’s behavior off 43 seconds of arc/century

Le Verrier
Differences between physical and social sciences

Physical sciences and mathematics enjoyed a symbiotic relationship for millennia, which influenced the kind of resulting mathematics—precision.

1859

Cannot explain Mercury’s behavior off 43 seconds of arc/century

Le Verrier
Differences between physical and social sciences

Physical sciences and mathematics enjoyed a symbiotic relationship for millennia, which influenced the kind of resulting mathematics—precision.

1859
Cannot explain Mercury’s behavior off 43 seconds of arc/century

Le Verrier
Differences between physical and social sciences

Physical sciences and mathematics enjoyed a symbiotic relationship for millennia, which influenced the kind of resulting mathematics—precision.

1859
Cannot explain Mercury’s behavior off 43 seconds of arc/century
June 2008

Le Verrier
Physical sciences and mathematics enjoyed a symbiotic relationship for millennia, which influenced the kind of resulting mathematics—precision. Problem: no such symbiotic relationship currently exists for mathematics and the social/behavioral sciences.
Differences between physical and social sciences

1859
Cannot explain
Mercury’s behavior
off 43 seconds of
arc/century
June 2008

Physical sciences and mathematics enjoyed a symbiotic
relationship for millennia, which influenced the kind of
resulting mathematics—precision
Problem: no such symbiotic relationship currently exists for
mathematics and the social/behavioral sciences
Must be created — qualitative!
Differences between physical and social sciences

1859
Cannot explain
Mercury’s behavior
off 43 seconds of
arc/century
June 2008

Physical sciences and mathematics enjoyed a symbiotic relationship for millennia, which influenced the kind of resulting mathematics—precision
Problem: no such symbiotic relationship currently exists for mathematics and the social/behavioral sciences
Must be created — qualitative!
But, what is needed?
Simple example: Ultimatum Game
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else

1. You are given $1000, with the following condition:
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else
1. You are given $1000, with the following condition:
2. You must offer the other player $X
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else

1. You are given $1000, with the following condition:
2. You must offer the other player $X
3. If the other player accepts, that player gets $X and you get the rest, $(1000-X)
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else
1. You are given $1000, with the following condition:
2. You must offer the other player $X
3. If the other player accepts, that player gets $X and you get the rest, $(1000-X)
4. But if the other player rejects your offer, you both go home with NOTHING!
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else

1. You are given $1000, with the following condition:
2. You must offer the other player $X
3. If the other player accepts, that player gets $X and you get the rest, $(1000-X)
4. But if the other player rejects your offer, you both go home with NOTHING!

What will you do?
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else

1. You are given $1000, with the following condition:
2. You must offer the other player $X
3. If the other player accepts, that player gets $X and you get the rest, $(1000-X)
4. But if the other player rejects your offer, you both go home with NOTHING!

What will you do?

Game theory:
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else
1. You are given $1000, with the following condition:
2. You must offer the other player $X
3. If the other player accepts, that player gets $X and you get the rest, $(1000-X)
4. But if the other player rejects your offer, you both go home with NOTHING!

What will you do?

Game theory:
If X=0, other person has nothing to lose by rejecting
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else
1. You are given $1000, with the following condition:
2. You must offer the other player $X
3. If the other player accepts, that player gets $X and you get the rest, $(1000-X)
4. But if the other player rejects your offer, you both go home with NOTHING!

What will you do?

Game theory:
If X=0, other person has nothing to lose by rejecting
If X=1, the other player gets at least one dollar, so X=1
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else
1. You are given $1000, with the following condition:
2. You must offer the other player $X
3. If the other player accepts, that player gets $X and you get the rest, $(1000-X)
4. But if the other player rejects your offer, you both go home with NOTHING!

What will you do?

Game theory:
If $X=0$, other person has nothing to lose by rejecting
If $X=1$, the other player gets at least one dollar, so $X=1

Problem:
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else

1. You are given $1000, with the following condition:
2. You must offer the other player $X
3. If the other player accepts, that player gets $X and you get the rest, $(1000-X)
4. But if the other player rejects your offer, you both go home with NOTHING!

What will you do?

Game theory:
If X=0, other person has nothing to lose by rejecting
If X=1, the other player gets at least one dollar, so X=1

Problem:
People do not behave like this!
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else
1. You are given $1000, with the following condition:
2. You must offer the other player $X
3. If the other player accepts, that player gets $X and you get the rest, $(1000-X)
4. But if the other player rejects your offer, you both go home with NOTHING!
 What will you do?

 Game theory:
 If X=0, other person has nothing to lose by rejecting
 If X=1, the other player gets at least one dollar, so X=1

 Problem:
 People do not behave like this!
 How do we develop a tentative theory to explain?
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else

1. You are given $1000, with the following condition:
2. You must offer the other player $X
3. If the other player accepts, that player gets $X and you get the rest, $(1000-X)
4. But if the other player rejects your offer, you both go home with NOTHING!

What will you do?

Game theory:
If $X=0$, other person has nothing to lose by rejecting
If $X=1$, the other player gets at least one dollar, so $X=1$

Problem:
People do not behave like this!
How do we develop a tentative theory to explain?
Perhaps people learn by feedback; trial-and-error and, in process, create a cultural norm
Simple example: Ultimatum Game

Two players; neither knows the identity of the other but both know everything else
1. You are given $1000, with the following condition:
2. You must offer the other player $X
3. If the other player accepts, that player gets $X and you get the rest, $(1000-X)
4. But if the other player rejects your offer, you both go home with NOTHING!
 What will you do?

Game theory:
If $X=0$, other person has nothing to lose by rejecting
If $X=1$, the other player gets at least one dollar, so $X=1$

Problem:
People do not behave like this!
How do we develop a tentative theory to explain?
Perhaps people learn by feedback; trial-and-error and, in process, create a cultural norm
Evolutionary game theory.
Standard approach
Standard approach

Two types, x_1 always wants $2/3$ of what is offered, x_2 wants $1/3$
Standard approach

Two types, x_1 always wants $2/3$ of what is offered, x_2 wants $1/3$

\[
\begin{align*}
\frac{dx_1}{dt} &= \frac{1}{3} x_1 (1 - x_1 - 2x_1 x_2) \\
\frac{dx_2}{dt} &= \frac{1}{3} x_2 x_1 (1 - 2x_2)
\end{align*}
\]
Standard approach

Two types, x_1 always wants $2/3$ of what is offered, x_2 wants $1/3$

\[
\frac{dx_1}{dt} = \frac{1}{3} x_1 (1 - x_1 - 2x_1 x_2) \\
\frac{dx_2}{dt} = \frac{1}{3} x_2 x_1 (1 - 2x_2)
\]

Approach borrowed from the physical sciences
Standard approach

Two types, x_1 always wants $2/3$ of what is offered, x_2 wants $1/3$

\[
\frac{dx_1}{dt} = \frac{1}{3} x_1 (1 - x_1 - 2x_1 x_2) \\
\frac{dx_2}{dt} = \frac{1}{3} x_2 x_1 (1 - 2x_2)
\]

Approach borrowed from the physical sciences
\[x' = f(x)\]
Standard approach

Two types, x_1 always wants $2/3$ of what is offered, x_2 wants $1/3$

\[
\frac{dx_1}{dt} = \frac{1}{3} x_1 (1 - x_1 - 2x_1 x_2)
\]

\[
\frac{dx_2}{dt} = \frac{1}{3} x_2 x_1 (1 - 2x_2)
\]

Approach borrowed from the physical sciences

$x' = f(x)$

Such an approach causes problems with social sciences:
Standard approach

Two types, \(x_1 \) always wants \(\frac{2}{3} \) of what is offered, \(x_2 \) wants \(\frac{1}{3} \)

\[
\begin{align*}
\frac{dx_1}{dt} &= \frac{1}{3} x_1 (1 - x_1 - 2x_1 x_2) \\
\frac{dx_2}{dt} &= \frac{1}{3} x_2 x_1 (1 - 2x_2)
\end{align*}
\]

Approach borrowed from the physical sciences

\(x' = f(x) \)

Such an approach causes problems with social sciences:

1. Requires math background not common in these areas.
Standard approach

Two types, x_1 always wants $2/3$ of what is offered, x_2 wants $1/3$

\[
\frac{dx_1}{dt} = \frac{1}{3} x_1 (1 - x_1 - 2x_1 x_2) \\
\frac{dx_2}{dt} = \frac{1}{3} x_2 x_1 (1 - 2x_2)
\]

Approach borrowed from the physical sciences

\[x' = f(x)\]

Such an approach causes problems with social sciences:
1. Requires math background not common in these areas.
2. Lack of information; usually only local information.
Standard approach

Two types, x_1 always wants $2/3$ of what is offered, x_2 wants $1/3$

$$\frac{dx_1}{dt} = \frac{1}{3} x_1 (1 - x_1 - 2x_1 x_2)$$
$$\frac{dx_2}{dt} = \frac{1}{3} x_2 x_1 (1 - 2x_2)$$

Approach borrowed from the physical sciences

$x' = f(x)$

Such an approach causes problems with social sciences:
1. Requires math background not common in these areas.
2. Lack of information; usually only local information.
3. While $f(x)$ is known in from experiments, etc. in physical sciences, not known in social sciences.
Standard approach

Two types, \(x_1 \) always wants \(2/3 \) of what is offered, \(x_2 \) wants \(1/3 \)

\[
\begin{align*}
\frac{dx_1}{dt} &= \frac{1}{3} x_1 (1 - x_1 - 2x_1 x_2) \\
\frac{dx_2}{dt} &= \frac{1}{3} x_2 x_1 (1 - 2x_2)
\end{align*}
\]

Approach borrowed from the physical sciences
\[x' = f(x) \]

Such an approach causes problems with social sciences:
1. Requires math background not common in these areas.
2. Lack of information; usually only local information.
3. While \(f(x) \) is known in from experiments, etc. in physical sciences, not known in social sciences.

So, this approach is posing the \textit{unknown} behavior \(f(x) \)
Standard approach

Two types, x_1 always wants $2/3$ of what is offered, x_2 wants $1/3$

\[
\begin{align*}
\frac{dx_1}{dt} &= \frac{1}{3}x_1(1 - x_1 - 2x_1x_2) \\
\frac{dx_2}{dt} &= \frac{1}{3}x_2x_1(1 - 2x_2)
\end{align*}
\]

Approach borrowed from the physical sciences

\[x' = f(x)\]

Such an approach causes problems with social sciences:

1. Requires math background not common in these areas.
2. Lack of information; usually only local information.
3. While $f(x)$ is known in from experiments, etc. in physical sciences, not known in social sciences.

So, this approach is posing the \textit{unknown} behavior $f(x)$ to discover the \textit{unknown} behavior
Standard approach

Two types, x_1 always wants $2/3$ of what is offered, x_2 wants $1/3$

$$\frac{dx_1}{dt} = \frac{1}{3} x_1 (1 - x_1 - 2x_1x_2)$$

$$\frac{dx_2}{dt} = \frac{1}{3} x_2 x_1 (1 - 2x_2)$$

Approach borrowed from the physical sciences

$x' = f(x)$

Such an approach causes problems with social sciences:
1. Requires math background not common in these areas.
2. Lack of information; usually only local information.
3. While $f(x)$ is known in from experiments, etc. in physical sciences, not known in social sciences.

So, this approach is posing the *unknown* behavior $f(x)$ to discover the *unknown* behavior

Serious part of goal toward creating a science is to learn how to discover an appropriate $f(x)$, i.e., the unknown behavior
Standard approach

Two types, x_1 always wants $2/3$ of what is offered, x_2 wants $1/3$

\[
\begin{align*}
\frac{dx_1}{dt} &= \frac{1}{3}x_1(1 - x_1 - 2x_1x_2) \\
\frac{dx_2}{dt} &= \frac{1}{3}x_2x_1(1 - 2x_2)
\end{align*}
\]

Approach borrowed from the physical sciences

\[x' = f(x)\]

Such an approach causes problems with social sciences:
1. Requires math background not common in these areas.
2. Lack of information; usually only local information.
3. While $f(x)$ is known in from experiments, etc. in physical sciences, not known in social sciences.

So, this approach is posing the \textit{unknown} behavior $f(x)$ to discover the \textit{unknown} behavior

Serious part of goal toward creating a science is to learn how to discover an appropriate $f(x)$, i.e., the unknown behavior

Data vs. Theory
What can be done?
What can be done?

\[x' = f(x) \text{ (i.e., accepting “change”) } \]
What can be done?

\[x' = f(x) \text{ (i.e., accepting "change")} \]

\[f \text{ is continuous, but not known} \]
What can be done?

$x' = f(x)$ (i.e., accepting "change")

f is continuous, but not known
What can be done?

\[x' = f(x) \text{ (i.e., accepting “change”)} \]

\(f \) is continuous, but not known
What can be done?

\[x' = f(x) \text{ (i.e., accepting “change”) } \]

\[f \text{ is continuous, but not known} \]
What can be done?

$x' = f(x)$ (i.e., accepting “change”)

f is continuous, but not known
What can be done?

$x' = f(x)$ (i.e., accepting “change”)

f is continuous, but not known

So, if local information points inward at ends, then the simplest model has a stable equilibrium.
What can be done?

\[x' = f(x) \text{ (i.e., accepting “change”) } \]

\(f \) is continuous, but not known

So, if local information points inward at ends, then the simplest model has a stable equilibrium.

\[
\frac{dx_1}{dt} = \frac{1}{3} x_1 (1 - x_1 - 2x_1x_2) \\
\frac{dx_2}{dt} = \frac{1}{3} x_2 x_1 (1 - 2x_2)
\]
What can be done?

\[x' = f(x) \text{ (i.e., accepting “change”) } \]
\[f \text{ is continuous, but not known} \]

So, if local information points inward at ends, then the simplest model has a stable equilibrium.

\[\frac{dx_1}{dt} = \frac{1}{3} x_1(1 - x_1 - 2x_1x_2) \]
\[\frac{dx_2}{dt} = \frac{1}{3} x_2x_1(1 - 2x_2) \]
What can be done?

$x' = f(x)$ (i.e., accepting “change”)

f is continuous, but not known

So, if local information points inward at ends, then the simplest model has a stable equilibrium.

Model is robust

\[
\begin{align*}
\frac{dx_1}{dt} &= \frac{1}{3} x_1 (1 - x_1 - 2x_1 x_2) \\
\frac{dx_2}{dt} &= \frac{1}{3} x_2 x_1 (1 - 2x_2)
\end{align*}
\]
What can be done?

$x' = f(x)$ (i.e., accepting “change”)
f is continuous, but not known

So, if local information points inward at ends, then the simplest model has a stable equilibrium. Model is robust

Location of stable point?

\[
\frac{dx_1}{dt} = \frac{1}{3} x_1(1 - x_1 - 2x_1x_2) \\
\frac{dx_2}{dt} = \frac{1}{3} x_2x_1(1 - 2x_2)
\]
What can be done?

\[x' = f(x) \text{ (i.e., accepting “change”) } \]

\[f \text{ is continuous, but not known} \]

\[\text{So, if local information points inward at ends, then the simplest model has a stable equilibrium.} \]
\[\text{Model is robust} \]
\[\text{Location of stable point? Comes from field and data.} \]

\[\frac{dx_1}{dt} = \frac{1}{3} x_1 (1 - x_1 - 2x_1x_2) \]
\[\frac{dx_2}{dt} = \frac{1}{3} x_2 x_1 (1 - 2x_2) \]
What can be done?

\[x' = f(x) \text{ (i.e., accepting “change”) } \]

\[f \text{ is continuous, but not known} \]

So, if local information points inward at ends, then the simplest model has a stable equilibrium.

Model is robust

Location of stable point?

Comes from field and data.

If evidence proves simplest model not appropriate?

\[
\frac{dx_1}{dt} = \frac{1}{3} x_1 (1 - x_1 - 2x_1 x_2) \\
\frac{dx_2}{dt} = \frac{1}{3} x_2 x_1 (1 - 2x_2)
\]
What can be done?

$x' = f(x)$ (i.e., accepting “change”)

f is continuous, but not known

So, if local information points inward at ends, then the simplest model has a stable equilibrium.

Model is robust

Location of stable point?

Comes from field and data.

If evidence proves simplest model not appropriate?

Try next level of a model

\[
\frac{dx_1}{dt} = \frac{1}{3} x_1 (1 - x_1 - 2x_1x_2)
\]

\[
\frac{dx_2}{dt} = \frac{1}{3} x_2 x_1 (1 - 2x_2)
\]
What can be done?

\[x' = f(x) \] (i.e., accepting “change”)
f is continuous, but not known

So, if local information points inward at ends, then the simplest model has a stable equilibrium.
Model is robust
Location of stable point?
Comes from field and data.
If evidence proves simplest model not appropriate?
Try next level of a model

\[
\begin{align*}
\frac{dx_1}{dt} &= \frac{1}{3}x_1(1 - x_1 - 2x_1x_2) \\
\frac{dx_2}{dt} &= \frac{1}{3}x_2x_1(1 - 2x_2)
\end{align*}
\]
What can be done?

\[x' = f(x) \] (i.e., accepting “change”)

\(f \) is continuous, but not known

So, if local information points inward at ends, then the simplest model has a stable equilibrium.

Model is robust

Location of stable point?

Comes from field and data.

If evidence proves simplest model not appropriate?

Try next level of a model

It crosses the x-axis three times.

\[
\frac{dx_1}{dt} = \frac{1}{3} x_1 (1 - x_1 - 2x_1x_2) \\
\frac{dx_2}{dt} = \frac{1}{3} x_2 x_1 (1 - 2x_2)
\]
Gangs!!
$x' = f(x)$

Gangs!!
\[x' = f(x) \]

f is continuous, but not known

Gangs!!
$x' = f(x)$

\[f \] is continuous, but not known

Local information:
\[x' = f(x) \]

- \(f \) is continuous, but not known
- Local information:
 - If sufficiently dominant, each gang will eliminate the other one
\[x' = f(x) \]

f is continuous, but not known

Local information:
If sufficiently dominant, each gang will eliminate the other one
x' = f(x)

f is continuous, but not known

Local information:
If sufficiently dominant, each gang will eliminate the other one
$x' = f(x)$

f is continuous, but not known

Local information:
If sufficiently dominant, each gang will eliminate the other one

So, if local information has each endpoint as a stable equilibrium, then simplest model has a “tipping point equilibrium”
\[x' = f(x) \]

f is continuous, but not known

Local information:
If sufficiently dominant, each
gang will eliminate the other one

Gangs!!

So, if local information has each
endpoint as a stable
equilibrium, then simplest model
has a “tipping point equilibrium”
Location is based on data,
evidence.
x’ = f(x)

f is continuous, but not known

Local information:

If sufficiently dominant, each gang will eliminate the other one

So, if local information has each endpoint as a stable equilibrium, then simplest model has a “tipping point equilibrium”

Location is based on data, evidence.

If evidence shows not applicable, try next level
\[x' = f(x) \]

If sufficiently dominant, each gang will eliminate the other one.

So, if local information has each endpoint as a stable equilibrium, then simplest model has a “tipping point equilibrium”

Location is based on data, evidence.

If evidence shows not applicable, try next level

E.g., let A be Apple and B be Microsoft.
\[x' = f(x) \]

f is continuous, but not known

Local information:
If sufficiently dominant, each gang will eliminate the other one

So, if local information has each endpoint as a stable equilibrium, then simplest model has a “tipping point equilibrium”
Location is based on data, evidence.
If evidence shows not applicable, try next level
E.g., let A be Apple and B be Microsoft
\[x' = f(x) \]

f is continuous, but not known

Local information:

If sufficiently dominant, each gang will eliminate the other one

So, if local information has each endpoint as a stable equilibrium, then simplest model has a “tipping point equilibrium”

Location is based on data, evidence.

If evidence shows not applicable, try next level

E.g., let A be Apple and B be Microsoft

Pocket of co-existence, stability.
\[x' = f(x) \]
f is continuous, but not known
Local information:
If sufficiently dominant, each gang will eliminate the other one

So, if local information has each endpoint as a stable equilibrium, then simplest model has a “tipping point equilibrium”
Location is based on data, evidence.
If evidence shows not applicable, try next level
E.g., let A be Apple and B be Microsoft
Pocket of co-existence, stability.
Predictions are consistent with models—without difficulties
Back to the Ultimatum game
Back to the Ultimatum game

$x' = f(x)$
Back to the Ultimatum game

\[x' = f(x) \]

f is continuous, but not known
Back to the Ultimatum game

\[x' = f(x) \]

f is continuous, but not known
Three types: 2/3, 1/3 plus 1/2
Back to the Ultimatum game

\[x' = f(x) \]

f is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?
Back to the Ultimatum game

\[x' = f(x) \]
\[f \text{ is continuous, but not known} \]
Three types: 2/3, 1/3 plus 1/2
What will happen?

\[
\begin{align*}
\frac{dx_1}{dt} &= x_1 \left[\frac{1}{3} (1 - x_1 - 2x_1x_2) - \frac{1}{2} x_3 (1 - x_2) \right] \\
\frac{dx_2}{dt} &= x_2 \left[\frac{1}{3} x_1 (1 - 2x_2) - \frac{1}{2} x_3 (1 - x_2) \right] \\
\frac{dx_3}{dt} &= x_3 \left[\frac{1}{3} (-x_1 - 2x_1x_2) + \frac{1}{2} (1 - x_3)(1 - x_2) \right]
\end{align*}
\]
Back to the Ultimatum game

\[x' = f(x) \]

f is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work
Back to the Ultimatum game

$x' = f(x)$

f is continuous, but not known

Three types: $2/3, 1/3$ plus $1/2$

What will happen?

Same simple graph approach does not work
Back to the Ultimatum game

\[x' = f(x) \]

f is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work
Back to the Ultimatum game

\[x' = f(x) \]

\(f \) is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work
Back to the Ultimatum game

\[x' = f(x) \]

f is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work
Back to the Ultimatum game

\[x' = f(x) \]

\(f \) is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work
Back to the Ultimatum game

\[x' = f(x) \]

- \(f \) is continuous, but not known
- Three types: 2/3, 1/3 plus 1/2
- What will happen?
- Same simple graph approach does not work

\[
\begin{align*}
\frac{dx_1}{dt} &= x_1 \left[\frac{1}{3} (1 - x_1 - 2x_1x_2) - \frac{1}{2} x_3 (1 - x_2) \right] \\
\frac{dx_2}{dt} &= x_2 \left[\frac{1}{3} x_1 (1 - 2x_2) - \frac{1}{2} x_3 (1 - x_2) \right] \\
\frac{dx_3}{dt} &= x_3 \left[\frac{1}{3} (-x_1 - 2x_1x_2) + \frac{1}{2} (1 - x_3) (1 - x_2) \right]
\end{align*}
\]
Back to the Ultimatum game

\[x' = f(x) \]

f is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work
Back to the Ultimatum game

\[x' = f(x) \]

\(f \) is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work
Back to the Ultimatum game

\[x' = f(x) \]

\(f \) is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work
Back to the Ultimatum game

\[x' = f(x) \]

f is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work

Local indices add up to four
Back to the Ultimatum game

$x' = f(x)$

f is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work

\[
\begin{align*}
\frac{dx_1}{dt} &= x_1\left[\frac{1}{3}(1 - x_1 - 2x_1x_2) - \frac{1}{2}x_3(1 - x_2)\right] \\
\frac{dx_2}{dt} &= x_2\left[\frac{1}{3}x_1(1 - 2x_2) - \frac{1}{2}x_3(1 - x_2)\right] \\
\frac{dx_3}{dt} &= x_3\left[\frac{1}{3}(-x_1 - 2x_1x_2) + \frac{1}{2}(1 - x_3)(1 - x_2)\right]
\end{align*}
\]

Local indices add up to four

Sum of local indices equals global index
Back to the Ultimatum game

\[x' = f(x) \]

f is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work

Local indices add up to four

Sum of local indices equals global index
Back to the Ultimatum game

\[x' = f(x) \]

\(f \) is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work

The type:

\[\frac{dx_1}{dt} = x_1 \left[\frac{1}{3}(1 - x_1 - 2x_1x_2) - \frac{1}{2}x_3(1 - x_2) \right] \]

\[\frac{dx_2}{dt} = x_2 \left[\frac{1}{3}x_1(1 - 2x_2) - \frac{1}{2}x_3(1 - x_2) \right] \]

\[\frac{dx_3}{dt} = x_3 \left[\frac{1}{3}(-x_1 - 2x_1x_2) + \frac{1}{2}(1 - x_3)(1 - x_2) \right] \]

Local indices add up to four

Sum of local indices equals global index

Global index equal 3

One more equilibrium of index -1
Back to the Ultimatum game

\[x' = f(x) \]

\(f \) is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work

\[
\begin{align*}
\frac{dx_1}{dt} &= x_1\left[\frac{1}{3}(1-x_1-2x_1x_2) - \frac{1}{2}x_3(1-x_2)\right] \\
\frac{dx_2}{dt} &= x_2\left[\frac{1}{3}x_1(1-2x_2) - \frac{1}{2}x_3(1-x_2)\right] \\
\frac{dx_3}{dt} &= x_3\left[\frac{1}{3}(-x_1-2x_1x_2) + \frac{1}{2}(1-x_3)(1-x_2)\right]
\end{align*}
\]

Local indices add up to four

Sum of local indices equals global index

Global index equal 3

One more equilibrium of index -1
Back to the Ultimatum game

\[x' = f(x) \]

\(f \) is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work
Back to the Ultimatum game

\[x' = f(x) \]

\(f \) is continuous, but not known

Three types: 2/3, 1/3 plus 1/2

What will happen?

Same simple graph approach does not work

Local indices add up to four

Sum of local indices equals global index

Global index equal 3

One more equilibrium of index -1
What if the middle equilibrium differed?

Key is wedding between local information, basic assumption of change ($x' = f(x)$) and data, data, data leading to predictions.
What if the middle equilibrium differed?

Key is wedding between local information, basic assumption of change (\(x' = f(x)\)) and data, data, data leading to predictions

One approach, but provides new insights and conclusions
What if the middle equilibrium differed?

Key is wedding between local information, basic assumption of change ($x'=f(x)$) and data, data, data leading to predictions.

One approach, but provides new insights and conclusions offers way to narrow down on choice of $f(x)$.