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ABSTRACT

Many of the world’s most popular websites catalyze their growth
through invitations from existing members. New members can then
in turn issue invitations, and so on, creating cascades of member
signups that can spread on a global scale. Although these diffu-
sive invitation processes are critical to the popularity and growth of
many websites, they have rarely been studied, and their properties
remain elusive. For instance, it is not known how viral these cas-
cades structures are, how cascades grow over time, or how diffusive
growth affects the resulting distribution of member characteristics
present on the site.

In this paper, we study the diffusion of LinkedIn, an online pro-
fessional network comprising over 332 million members, a large
fraction of whom joined the site as part of a signup cascade. First
we analyze the structural patterns of these signup cascades, and
find them to be qualitatively different from previously studied in-
formation diffusion cascades. We also examine how signup cas-
cades grow over time, and observe that diffusion via invitations on
LinkedIn occurs over much longer timescales than are typically as-
sociated with other types of online diffusion. Finally, we connect
the cascade structures with rich individual-level attribute data to
investigate the interplay between the two. Using novel techniques
to study the role of homophily in diffusion, we find striking dif-
ferences between the local, edge-wise homophily and the global,
cascade-level homophily we observe in our data, suggesting that
signup cascades form surprisingly coherent groups of members.

Categories and Subject Descriptors: H.2.8 [Database manage-
ment]: Database applications—Data mining.
Keywords: cascades; product diffusion; social networks.

1. INTRODUCTION

One of the central dynamics on the Web is the tremendous growth
of new sites and services that expand from small sets of early adopt-
ers to huge user populations. There are several mechanisms through
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which this can occur, and here we consider one that has been crucial
for a number of the world’s largest websites: attracting participants
through a cascade of signups, where current users invite others to
join the site. In this process, users have the option of issuing in-
vitations to people not yet on the site. When these invitations are
accepted, the resulting new users can issue further invitations, and
the process continues, potentially diffusing through multiple levels.
Several large sites (including Gmail) began with a period where
this type of diffusive growth was the exclusive path for new sign-
ups; other sites (including LinkedIn and many others) have grown
through a mix of cascading signups and direct signups at the site.

Since many of the most popular sites acquire their large audi-
ences in part through invitations mechanisms like this, Web users
experience the effects of these diffusive growth processes on a daily
basis. Despite this, however, we have very little understanding of
what these processes look like at a global level, nor what conse-
quences they have for the makeup of a site’s user population.

In this paper we address questions about cascading adoption pro-
cesses using a dataset that represents the complete diffusion of
LinkedIn, an online professional network that contains over 332
million users. To our knowledge, this is the largest structural anal-
ysis of a cascading adoption event ever undertaken. In addition
its global scale, a significant fraction of LinkedIn’s growth came
through invitations, making it an ideal domain for addressing core
questions about successful cascading processes. We note that while
the particular numerical results presented here are of course spe-
cific to LinkedIn, they clearly illustrate certain patterns that are
markedly different from what has been found in earlier diffusion
studies, and they point to properties that may be characteristic of
other large product diffusions as well.

The Present Work: Structure and Growth of Cascading Sign-
ups. We first analyze the underlying structure and growth dynamics
of the LinkedIn cascades. The cascading signups can be naturally
organized into a collection of trees: each time a user signs up di-
rectly, without an invitation, she forms the root of a new tree, and
every user B who accepts an invitation from a user A joins the tree
containing A, as the child of A.

We contrast these trees with the kinds of trees that arise in in-
formation-sharing cascades, in which users pass small information
units (e.g., links, photos, or other memes) to their friends. Like
our cascading signups here, information-sharing cascades are also a
form of online diffusion, but we discover that the properties of these
two types of cascades are quite different. The work on information-
sharing cascades has suggested that their temporal dynamics unfold



very quickly, that most of their adoptions occur very close to the
root, and that their size and their structural virality are essentially
uncorrelated [8, 14, 13].

Our analysis of diffusion patterns in LinkedIn signups provides
evidence that signup cascades, in contrast, are significantly more
viral than previously-studied online diffusion datasets in a number
of dimensions. Additionally, we find that size and structural viral-
ity are strongly correlated, suggesting that the largest signup cas-
cades grow almost exclusively through viral, multi-step diffusion.
Moreover, cascade growth plays out over much longer periods of
time: users in a cascade remain active in spreading LinkedIn to new
users months or even years after their own registration. The result
is an approximately /inear rate of tree growth for the large trees,
and with a growth rate over time that is remarkably uniform across
different trees. The commonality across trees suggests that there is
a characteristic growth pattern for these signups that seems to be
truly independent of the tree in which it occurs.

The Present Work: Homophily in Cascades. In addition to ex-
amining the architecture of the cascading adoption process itself,
we also connect cascade structure with attributes of the users in the
trees and investigate the interplay between the two. We find that
attributes such as geography and industry play a substantial role in
the cascades, exhibiting a pattern of homophily in which people
share characteristics with those who invited them. But our investi-
gations strongly suggest that this is a deeper process, arising from
something more than just similarity between the inviter and invitee.

In particular, our fine-grained view of the invitation process sug-
gests that we can think about the basic issue of homophily at two
fundamental levels of scale: locally, in which users invite friends
with similar characteristics, and globally, in which entire trees may
or may not exhibit certain levels of homogeneity. One way to ap-
proach the connection between local and global patterns of simi-
larity is through the following question: Is the direct similarity be-
tween inviters and invitees, when propagated through the structure
of an entire tree, sufficient to account for the level of user homo-
geneity that we see in the full trees?

We find that, surprisingly, the local similarity between inviters
and invitees is in fact not sufficient to produce the global levels
of homophily we observe. This gap between the local and global
properties of the trees raises the question of what other factors are
playing a role in the global patterns of similarity that we observe.

To address this question, we ask what happens if the distribution
of user attributes were based on a Markov process defined on the
cascade trees, with the attributes of each node in the tree arising
probabilistically from the attributes of its parent node. Such mod-
els have been considered in a very different context, in work that
studies genetic inheritance with mutation on evolutionary trees [12,
31, 32, 35]. A way to summarize the disconnect between the local
and global properties of our cascade trees is to say that this first-
order Markov process gives rise to less homogeneity among a tree’s
nodes than we find in the real data. However, we find that higher-
order Markov models, in which a node’s attributes can depend not
just on its parent but on its earlier ancestors as well, produce a level
of homogeneity that more closely matches the data. This suggests
that LinkedIn signup cascades are coherent, in that they are com-
prised of users who are more uniform than pairwise similarities can
account for. The alignment with this higher-order Markov models
suggests new ways of thinking about how user characteristics be-
come correlated in these types of cascading processes.

The paper is outlined as follows: we discuss our structural anal-
yses in Section 2, then investigate local and global homophily in
Section 3 and cascade growth in Section 4, and finally we summa-
rize related work in Section 5 and conclude in Section 6.

Figure 1: Example LinkedIn signup cascade.

2. STRUCTURAL CHARACTERISTICS

We begin with a structural analysis of the LinkedIn signup cas-
cades. First we describe the invitation process and how sets of
signups form cascades.

2.1 LinkedIn Signup Cascades

There are two ways in which a user B can join LinkedIn: she can ei-
ther sign up directly at the site (a cold signup), or she can accept an
invitation from an existing LinkedIn member (a warm signup). To
count as a warm signup, it is not sufficient for B to simply have re-
ceived an invitation from a member—she must also click on such an
invitation and sign up through the resulting interface. The member
A who sent the invitation that B used to register is then recorded,
and we consider this an accepted invitation A — B. At most one
edge is created per signup.

We construct an accepted-invitation graph F' where every mem-
ber of LinkedIn is a node, and there is an edge between A and B if
B joined LinkedIn by accepting an invitation from A. Note that F’
is a forest (a set of trees): every cold signup is the root of its own
(potentially trivial) tree, every warm signup has exactly one parent,
and cycles are impossible because edge sources always join earlier
than their destinations. Studying the structural properties of this
signup forest is the focus of this section (see Fig. 1 for an example
cascade).

Before examining the data and discussing our results, we note
that the LinkedIn signup forest is particularly well-suited to our
goals. First, as is typical of data derived from an online platform,
it is very fine-grained: every member signup is recorded and time-
stamped, and the identity of the inviter (if any) is known. This
allows us to perfectly reconstruct the massive LinkedIn registration
process as it unfolded over time. Second, the diffusion of LinkedIn
from one member to another is unambiguous: every warm signup
has a unique parent. People can receive multiple invitations to join
LinkedIn, but they can only use one of them to sign up—therefore,
there is no ambiguity in which member is the parent. It is certainly
true that there will often be other factors in an individual’s deci-
sion to join beyond just the accepted invitation, including receiving
other invitations, but it is also the case that the edges in our graph
correspond to precisely the invitations that were actually accepted.
Third, with over 332 million users, LinkedIn is one of the most suc-
cessful membership-based sites on the Web, and a large fraction of
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Figure 2: Distribution over adoption depth, excluding root
nodes. LinkedIn adoptions occur much further from the root.

its members registered via invitations, which makes it an ideal sub-
ject for a case study investigating the structure of a massive online
product diffusion event.

Our analyses demonstrate the contrast between the structural prop-
erties of the cascades studied in the past [14, 22, 26] and the struc-
ture of the signup cascades from a large popular website as we
study here. We compare structural properties of the diffusion of
LinkedIn with the diffusion of news stories, videos, online applica-
tions, and services reported in [14].

A recurring theme in our analysis is that the viral structure of
LinkedIn’s signup forest isn’t necessarily due to its large size. In
particular, many of the measures we consider can be relatively con-
stant for cascades of widely varying sizes; the fact that the LinkedIn
forest is so different for a number of these measures thus does not
follow from pure scale, but instead is indicative of the nature of its
propagation.

2.2 Quantifying Virality of LinkedIn Adoption

Adoptions as a function of depth. A natural way to measure the
extent to which viral propagation accounts for adoption is to ex-
amine the distribution over tree depths (number of steps from the
root) where adoptions occur. Since we are interested in quanti-
fying person-to-person transmission, or warm signups, we restrict
our attention to nodes at depth at least 1; the normalized distribu-
tion is shown in Fig. 2. We observe that a substantial fraction of
warm signups occur far from the root: for example, 30% of warm
signups on LinkedIn occur at depth 5 or greater. Comparing this
distribution with those reported in the previous work of [14], the
difference is quite striking; for instance, less than 1% of adoptions
in the distributions from this earlier work are at depth 5 or greater.
(Note that our results are qualitatively the same whether or not we
include root nodes, as was done in the original analysis of [14].)

Adoptions by cascade type. Another way to gauge the virality of
diffusion events is by measuring what fraction of adoptions reside
in deep or large cascades.

In Fig. 3(top), we show the fraction of non-singleton members
that reside in trees of increasing sizes. The differences between
LinkedIn signup cascades and the previously studied cascades are
again substantial. For example, 40% of non-singleton members are
part of cascades with over 100 nodes, whereas the same ratio is
at most around 20% in the previous datasets. Furthermore, 10%
of non-singleton members reside in cascades with at least 10,000
members, whereas the largest cascades in many previous studies
only have around few hundred nodes [14, 22, 26]. A similarly large
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Figure 3: Fraction of non-singleton members in trees of spe-
cific size and depth. A greater portion of the LinkedIn signup
forest is concentrated in large and deep cascades compared to
previously studied diffusion datasets.

gap exists when we consider tree depth: on LinkedIn 36% of non-
singleton members reside in trees with maximum depth 6 or greater,
whereas the fraction in previous datasets varies between 0.1% and
6% (Fig. 3(bottom)). As before, the comparisons with the previous
datasets are qualitatively unchanged if we instead consider all trees
(including singletons).

It is important to note that there are two distinct ways in which
the LinkedIn signup forest is more viral than previously studied
adoption structures. First, the unnormalized versions of the mea-
sures we considered above—the proportions of nodes that adopt
far from root nodes, and that reside in large and deep trees—are
much higher on LinkedIn. Second, even when we restrict attention
to nodes explicitly involved in diffusion (either non-root nodes or
nodes in non-singleton trees, depending on the analysis), the pro-
portions are still significantly higher, often by an order of magni-
tude or more. This second difference does not necessarily follow
from the first. It would have been possible for LinkedIn to be “more
viral” in the sense of a larger proportion of nodes being involved in
member-to-member transmission, with the transmission itself be-
ing as it was in the previous datasets. Yet this is not the case, as the
conditional distributions in Figs. 2 and 3 indicate.

2.3 Structural Virality of Signup Cascades

In addition to quantifying the virality of the signup forest as a
whole, we also quantify the shape of signup cascades by mea-
suring their structural virality. The goal of structural virality, in-
troduced in [13], is to numerically disambiguate between shallow,
broadcast-like diffusion and the deep branching structures called
to mind by the biological “viral” metaphor. The structural virality



Figure 4: Two LinkedIn signup cascades, one with (left) low
structural virality (Wiener index = 1.99), and one with (right)
high structural virality (Wiener index = 9.5).

measure, called the Wiener index, is equal to the average path dis-
tance between two nodes in the tree. Pure broadcast diffusion (i.e.,
a star-like cascade) results in very low scores on this measure (just
under 2), while deep narrowly branching structures will have very
high scores as the paths between nodes get very long (see Fig. 4
for examples of what real cascades with low and high Wiener in-
dices look like). Low structural virality corresponds to broadcast-
dominated diffusion, whereas high structural virality corresponds
to multi-step transmission. In this section, we restrict our analysis
to cascades with over 100 nodes, as was done in [13].

Interestingly, the distribution of structural virality over LinkedIn
cascades with more than 100 nodes is qualitatively similar to the
distributions reported for Twitter cascades with more than 100 nodes
in [13]. Thus, although our analyses above show that the LinkedIn
signup forest as a whole is significantly more viral than previously
analyzed datasets, large LinkedIn signup cascades are roughly as
viral as large Twitter information-sharing cascades. It’s possible
that LinkedIn’s overall virality stems from the preponderance of
large cascades, rather than the structural virality of the individual
large cascades themselves, but more direct comparisons are needed
to validate this hypothesis.

However, there remains an important sense in which the struc-
tural virality of LinkedIn trees follows different properties from
the structural virality of the Twitter cascades in earlier work. A
central finding in earlier analysis is that, for cascades across all
major domains on Twitter, the correlation between structural viral-
ity and size is surprisingly low, ranging between O and 0.2 [13].
This implies that an information cascade’s size does not reveal
much about the structural mechanism by which it spread. In con-
trast, for LinkedIn signup cascades the correlation is a strikingly
high 0.72, implying that the largest LinkedIn signup cascades truly
spread through a viral process that is both deep and relatively nar-
row (Fig. 5 visualizes the structural virality of LinkedIn signup cas-
cades as a function of their size). This high correlation appears
to be related to the relative lack of broadcasts in LinkedIn: there
are very few examples of a member “broadcasting” LinkedIn to
hundreds or thousands of others, whereas on sites like Twitter this
type of mass adoption from a single influential member is far more
prevalent. As far fewer broadcast channels are available to drive
adoption, sigup cascades on LinkedIn must therefore, by this defi-
nition, be more structurally viral if they are to spread to large popu-
lations. This departure from previously-studied cascades is a good
example of how these differences do not follow purely from size.

Taken together, these analyses indicate that multi-step diffusion
has played a much larger role in the adoption of LinkedIn than it
did for the variety of domains considered in previous work. This
result complements those found in previous work on information
sharing cascades [13, 14, 22, 26]. Whereas they found a surprising
general lack of viral propagation across a wide variety of domains,

25-

3

-

2 20- 1
= .

[

C

2

< 15-

2

©

= .

> 10-

g

=

o

: —

B 5 !

2 3 4 5 6
Cascade size (log base 10)

Figure 5: Structural virality as a function of cascade size (log
base 10). The correlation is remarkably high, in contrast with
previous findings on information-sharing cascades.

here we show that in the important case of a major global website,
large-scale viral propagation does occur. We emphasize that this
outcome was not preordained by size; merely because an adoption
event was huge does not necessarily imply that it achieved its pop-
ularity through viral growth.

3. LOCAL AND GLOBAL HOMOPHILY

We have established that person-to-person transmission is an im-
portant mechanism through which LinkedIn has spread around the
world. But what is the interplay between the diffusion structures
we observe and the attributes of people involved in the diffusion
process? Previous large-scale diffusion studies have largely treated
users alike and concentrated on determining how—and whether—
information, products, and services spread, just as we have in the
previous section. As a consequence, our understanding of who is
transmitting to whom (in terms of underlying user attributes) in
large-scale diffusion events is very limited. Here, we connect our
global signup cascades with the rich individual-level attribute data
available on LinkedIn to investigate this question.

Since virtually all interpersonal networks display homophily, the
tendency of people to associate with others like themselves, it is
natural to expect that much of LinkedIn’s diffusion is homophily-
driven. What is less clear is how this homophily manifests itself in
the composition of user attributes in the cascades, an effect that in
principle can be substantial. By investigating this empirical com-
position, we seek to shed light on a fundamental question: are cas-
cades more homogeneous—more coherent—than one would ex-
pect simply from the local level of homophily between inviters and
invitees? Or is the level of homophily between inviters and invitees,
when propagated over entire cascade trees, sufficient to account for
the global level of homogeneity that we see in the trees as a whole?

LinkedIn is an ideal domain to study this question for two rea-
sons: first, we have observed a high prevalence of multi-step diffu-
sion; and second, there is a wealth of individual-level attribute data
available, since most members fill in impressively detailed profiles.
‘We have high coverage for a diversity of individual traits, such as
country of residence, geographic sub-region, professional industry
of employment, age, job type, job seniority level, and others.
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Figure 6: Within-tree and between-tree similarity on country,
region, industry, engagement, and maximum job seniority.

3.1 Homophily in LinkedIn Signups

First we conduct an observational analysis of homophily in signups
along various member attribute dimensions.

Edge homophily. Since homophily is such a pervasive phenomenon
in interpersonal networks, we expect to see members inviting (and
having their invitations accepted by) people like themselves. We
can check this straightforwardly by computing, for every pair of
attribute values A; and As, the conditional probability P(A2|A1)
that a warm signup has attribute value A2 given that their inviter
has attribute value A;. This is simply equal to the empirical frac-
tion N(A; — Az) / N(A1), where N(A;) is the number of
signup edges originating from members with attribute value A,
and N(A; — A») is the number of signup edges where the source
and destination have attribute values A; and As, respectively.
Examining these probabilities reveals that there is indeed a sig-
nificant amount of edge homophily present in our data. The “self-
loop” probabilities P(A1|A1), where members accept invitations
from others like themselves to join, are much higher than the tran-
sition probabilities P(A2| A1) between different values A1 # As.
For example, for the country attribute, the conditional probabilities
P(Brazil, Brazil) and P(India, India) are both greater than 0.80.
Comparing these probabilities to a randomized baseline where
the attribute of each node is simply drawn from the overall distri-
bution of the LinkedIn population confirms that the real self-loop
probabilities are much higher than they would be if there were no
edge homophily. Thus, members invite others like themselves, be-
yond what we would expect from the underlying group populations.

Cascade homophily. Now we investigate the extent to which the
signup cascades display homophily along various dimensions.

Our main object of analysis in this section is the distribution over
various attributes among members within the same cascade tree. To
ensure the distributions are not skewed by small-sample effects, we
restrict our attention to cascades comprising at least 100 members.
There are over 100,000 such cascades in our dataset.

Given a distribution over member attributes, we would like a
way to quantify how similar or diverse it is. We also wish to com-
pare two distributions, and measure how similar they are. Ideally,
these two quantities should be directly comparable. We fulfill these
desiderata by adopting the population diversity measure used in so-
ciology [28]. We define:

e The within-similarity W (T) of a group T on a particular at-
tribute A is the probability that two randomly selected mem-
bers match on attribute A.

e The between-similarity Ba(T1,T») of two groups T and T»
is the probability that a randomly selected member from the
first population and a randomly selected member from the
second population match on attribute A.

These metrics have the advantages of being easily interpretable
and directly comparable, and are not affected by the size of the
populations being considered.

For every “large” tree T' (over 100 members) and attribute A, we
compute the within-tree similarity W4 (T") of the members in the
tree. Then we can examine the distribution over W4 (T') for every
attribute A. However, as was the case with edge homophily, a large
amount of cascade similarity is insufficient to conclude that cas-
cade homophily is present. Thus, we also take a random sample of
pairs of trees and calculate the between-tree similarity Ba (71, 12)
of the two member attribute distributions. The distribution over
these between-tree similarities then provides a baseline to compare
against. If there were no cascade homophily on A at all, then the
within-tree and between-tree similarity distributions would be ex-
actly the same. The extent to which they differ, then, is a direct
measure of cascade homophily in our data.

In Fig. 6, we show the distributions W4 and B4 over all large
trees for the following attributes: country, region, industry, engage-
ment, and maximum seniority (top job level over one’s career, as
reflected by the job title). There are several important points to ob-
serve. First, there is a striking amount of homophily along some
dimensions. The signup cascades are extremely homophilous on
the geographical attributes, especially on country: many trees have
within-tree similarity values close to 1, whereas the between-tree
overlap is almost always below 0.25. Industry also displays signifi-
cant homophily, in that Windqustry and Bindustry are almost non-
overlapping. Second, the extent to which homophily is present
varies widely across the attributes, since there is little to no ho-
mophily on engagement or maximum seniority. Finally, the ge-
ographic attributes display an intriguing pattern: their within-tree
similarity distributions are bimodal. This suggests that there are
two distinct ways in which signups cascade through countries and
regions, with little interpolation between the two. We will return to
this fact later in this Section.

Homophily by root country. Even in the absence of homophily,
members with popular attributes are more likely to be associated
with each other than members with rare attributes simply because
there are more of them. Thus cascades that start in the United States
are more likely to display high similarity than those that start in
Belgium. Here we explore how similarity and homophily change
with the specific value of the root attribute, focusing on country
since it displays the highest within-tree similarity.

In Fig. 7, we plot the distribution of within-tree similarity W4
for large trees rooted in Brazil, Canada, France, India, and the
United States. All five countries show a high degree of similarity,
the exact magnitude of which correlates with the size of country’s
membership on LinkedIn. The fact that a single attribute value re-
sults in such high and homogeneous similarity distributions demon-
strates the remarkably strong homophily we observe on country.
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Figure 7: Within-tree similarity for trees rooted in Brazil,
Canada, France, India, and the US.

Also, the similarity distribution is unimodal for almost every coun-
try in our dataset. A few countries, such as France in Fig. 7, have
strong bimodality on their own, but most do not; the overall bi-
modality we observed in Fig. 6 is related to the diversity in country
size, with the resulting cascade similarity depending on where the
cascade is rooted.

3.2 Levels of Homophily

We have established that there are strong edge homophily effects
present in LinkedIn signups, and there are also strong cascade-level
homophily effects present in the signup cascades. Already, these
empirical facts have important ramifications for how the site pop-
ulation will evolve: given that many new members are invited to
join by existing ones, and that cascades display strong homophily
effects, it follows that the warm signups of tomorrow will look like
the inviters of today.

However, it is unclear whether the homophily effects present in
the signup cascades are different from the homophily present at
a local level. Do the distributions over country of residence in
cascades simply follow from the basic level of edge homophily
present?

Modeling edge homophily. To explore this, we simulate a warm
signup process with the same cascade topologies we observe in
the data, but where member countries are drawn according to a
first-order Markov chain derived from empirical data. This first-
order Markov chain M is defined with the conditional probabili-
ties P(A2| A1) computed in the previous section as transition prob-
abilities. In our synthetic model, the member country at a given
node is determined by applying one step of the empirical Markov
chain transition to the country of the parent. Hence the first-order
Markov chain models edge homophily, and the question is whether
such a model of local edge homophily is able to reproduce the ob-
served global homophily patterns of cascades.

We proceed as follows. For each cascade, the country of the
root node is kept the same as it is in the data. Then the countries
of each of the root’s children are drawn independently from the
Markov chain. The same is done for their children, and so on down

First-order Markov Second-order Markov Empirical
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Figure 8: Within-tree similarity on real tree topologies with
countries drawn from: (left) first-order Markov transitions
M, and (middle) second-order Markov transitions M>; (right)
empirical within-tree similarity.

the cascade. This induces a distribution over countries in the tree,
from which we compute within-tree similarity for each cascade as
before. We can then compare the distribution over within-tree sim-
ilarity induced by this simple first-order Markov process with the
actual distribution observed in empirical data.

From edge to cascade homophily: First-order effects. The out-
come of the above process for the country attribute is shown in
Fig. 8(left), in which two important patterns are immediately ap-
parent. First, the distribution of similarity across trees is bimodal,
just as it is in the empirical data (shown in Fig. 8(right)). This im-
plies that edge homophily is sufficient to explain the bimodality in
within-cascade similarity. In fact, edge homophily on a star topol-
ogy (instead of the real cascade topologies) recovers the bimodality
as well—thus it results from the combination of edge homophily on
country and insufficient tree-depth to allow mixing to the overall
country distribution.

Second, the absolute level of within-tree similarity in the Markov
simulation, while still high, is significantly lower than what we ob-
serve in empirical data. A direct consequence of this is that the
type of member who joins a specific invitation cascade is, on av-
erage, not entirely determined by the type of member who invites
him (were that the case, the similarity patterns produced by a first-
order Markov simulation would reproduce those we find empiri-
cally). For example, if a particular cascade has been spreading
among members based in India, and a new member from Kuwait
joins the cascade, it is more likely that this member’s invitees will
be from India than we would expect on average from someone from
Kuwait.

Therefore, despite the strong presence of country homophily at
the local (edge) level, it is insufficient to explain the country ho-
mophily we observe at the cascade level. Member attributes in cas-
cades, then, are determined by some process above and beyond lo-
cal, homophilous interactions alone, which we already found to be
powerful. A new member’s attributes are not governed only by her
parent, but by the rest of the cascade she is a part of as well. This
result illuminates a crucial point about the user composition of cas-
cades, and answers the central question posed at the beginning of
this Section: cascades are not simply arbitrary subsets of members
Sfollowing global demographic correlations—they are more coher-
ent than this simple characterization would suggest.



From edge to cascade homophily: Second-order effects. To in-
vestigate the higher-order effects between new members and the
cascades they join, we repeat the simulation above using a second-
order Markov chain M5 to generate node countries. Mo is defined
by a process analogous to the first-order case: the conditional prob-
ability that a new member with attribute value As joins, given that
her inviter has value A» and her inviter’s inviter has value A1, is
P(A3|A1, AQ) = N(A1 — A2 — Ag)/N(Al — AQ), where
N (-) again refers to the number of signup paths connecting nodes
with particular attributes. If N(A; — As) is too small, then we ig-
nore the grandparent and use the first-order probability P(Asz|Az2).
Using a second-order Markov chain allows us to capture effects
such as in the India and Kuwait example described above.

The resulting distribution of within-tree similarity, shown in
Fig. 8(middle), is shifted remarkably far to the right compared to
the outcome of the first-order simulation—in this case, the “second-
order effects” are actually quite large. The magnitude of the dis-
crepancy between the first-order and second-order models shows
how much more homophily structure there is at the cascade level.
Furthermore, note that there is still the mode of cascades with
near-perfect country similarity in empirical data that remains un-
accounted for by the second-order Markov simulation, which fur-
ther reinforces the coherency of signup cascades beyond local edge
homophily effects.

3.3 Guessing the Root of a Cascade

The fact that the observed cascade homophily effects are not ex-
plainable via local edge homophily effects alone suggests that cas-
cades tend to retain some “memory” of their starting point. Here
we ask: how quickly does a cascade “lose” the attribute of the root
node (its country, say) as the cascade grows and relaxes to the back-
ground distribution?

The process by which this happens is the subject of a well-known
probabilistic model originating in the study of evolutionary trees—
we imagine an attribute at the root of a tree and then this attribute is
passed on to the children with some probability of mutation [12, 31,
32, 35]. In the genetic application, this attribute would be an allele
of a gene, while in our case it would be some homophilous property
of users, such as their country. The question is then whether, deep
enough into the tree, the node attributes have mixed to some back-
ground distribution for the full population, or whether arbitrarily
deep in the tree we can still infer something about the value at the
root. Notice that if the tree were simply a path (i.e., if each node
had exactly one child), then we would expect the process to mix
to the background distribution. However, on a tree with non-trivial
branching factor, there are competing forces: the process tends to
mix on each path, but there are many overlapping paths on which
to preserve information about the value at the root.

To address this issue, we consider the following concrete “root-
guessing” question for the trees in our cascade, and for the values
of a particular attribute: for each depth d, how often does the plural-
ity attribute among members at depth d match the root’s attribute?
Asking how often this plurality guess correctly predicts the root’s
value allows us to further elucidate the extent to which global ho-
mophily is present in the trees, by seeing how often the root’s char-
acteristics can be detected deep into the tree. We will also compare
the results of the root-guessing experiment on the real LinkedIn
data to the results when attribute values are generated by the natu-
ral first-order or second-order Markov chains defined as above.

The results of this computation using the country attribute are
shown in Fig. 9. There are a number of interesting conclusions
from this experiment. First, it takes a surprisingly long time for
the attributes to fully relax to the background distribution: the em-
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Figure 9: Fraction of time plurality attribute at depth d
matches root attribute in root-guessing experiment. Empirical
data retains “memory’’ of the root longer than baselines.

pirical curve only intersects the global prior at depth 18, which is
far beyond the maximum depth that most cascades reach. Sec-
ond, the first-order Markov simulation relaxes to the global prior
much faster than the empirical data does. Finally, the second-order
Markov chain fares significantly better, again showing the strong
higher-order homophily interactions present in signup cascades.

It is interesting to think about the role of the second-order
Markov chain in light of the analogy to the genetic applications of
the model. In genetic contexts, the process is a first-order Markov
chain by the definition of genetic inheritance: conditional on know-
ing the true complete genotypes of an individuals’ parents, there is
in essence no additional information contained in the genotypes
of the grandparents. But in our social setting, the country of a
node’s parent in the tree no longer serves as a sufficiently complete
description—for example, if the parent is someone who moved
from India to the US and simply lists the US as their country, then
there may be information in the fact that the grandparent lists India
as their country. In effect, a small amount of profile information
may be serving more as a kind of “social phenotype” rather than a
“social genotype,” displaying only observable characteristics rather
than deeper internal ones, and the use of the higher-order Markov
chains may help fill in some of the missing information that results.

3.4 Status Gradients

Throughout this section, we’ve discussed how signup cascades
show strong patterns of homophily along certain attributes like
country and industry, whereas along other attributes signups aren’t
homophilous. However, some of these other attributes, such as age
and job seniority, show other structure.

As in offline realms of professional life, status is an important
part of one’s identity on LinkedIn. Signup edges are inherently
directed: one member issues an invitation and the other member
joins a community through that person. Thus it is possible that on
attributes with natural orderings, like age and job seniority, signups
follow a status gradient, meaning people have a tendency to accept
invitations from higher-status members.

We check the extent to which this effect occurs empirically. In
Fig. 10(a), the color of the cell (z, y) shows how much more likely
amember of type z is to send an accepted invitation to a member of
type y than to receive and accept one (i.e., it is equal to P(y|z) —
P(zx|y), where P(u|v) means the probability that a member of type
u accepts an invitation, given that it originated from a member of
type v). There is a clear effect on age: the grey below the x = y
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Figure 10: Status gradients on age and maximum seniority.

diagonal indicates that younger members are more likely to accept
invitations from older members than vice versa, indicating there is
a status effect on age governing who invites whom and who accepts
whom’s invitations. In Fig. 10(b), we show that an even stronger
status gradient exists on job seniority (since members may have
been employed in more than one job, and thus at more than one job
seniority level, we define a member’s seniority to be the highest
level they’ve ever worked at).

Thus there are two fundamental ways signups flow through net-
works: along certain attributes, members tend to act homophilously
and invite others like themselves, and along others, signups tend to
progress down status gradients, flowing from higher-status users to
lower-status users.

4. CASCADE GROWTH

Having considered the signup cascades as static objects, we now
trace their development over time and investigate various aspects
of their temporal evolution.

4.1 Timescales of transmission

A key characteristic of any diffusion process is how much time
elapses between adjacent adoptions. In the biology-inspired ter-
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Figure 11: Complementary cumulative distribution function
(CCDF) of elapsed times between inviter and invitee signup
times. Adoptions are usually very separated in time.

minology often employed in diffusion models, when does an “in-
fected” node transmit the contagion (i.e., the signup) to another?

To answer this question, we consider a cohort of members who
joined LinkedIn at roughly the same time, and collect all signup
edges (A, B) where A is a member of the cohort. Then we exam-
ine the distribution of elapsed times between when A joined and
when B accepted the invitation from A. Fig. 12 shows this distri-
bution for members who joined in 2006 (all time frames are qual-
itatively similar). It is immediately apparent that adjacent adop-
tions of LinkedIn are widely separated in time: around 40% of
members who joined did so at least a year later than their in-
viters did. This is in contrast with other diffusion settings, such
as information-sharing on Facebook or Twitter, where the majority
of transmissions have been observed to occur within a few days of
adoption [11, 39].

Long time spans between inviter and invitee signups could be
caused by two different mechanisms: members could be sending
out invitations long after they register, or invitees could be accept-
ing invitations long after they receive them. We check this directly:
Fig. 12 shows the fraction of invitations sent as a function of time
for users who joined in March 2012 (other times were qualitatively
similar). We find that the former explanation is the case: invitations
are sent months or years after members join, and invitees accept
them usually within a few days after they receive them (this latter
fact is illustrated in Fig. 13).

Based on these results, we conclude that members of LinkedIn
remain “infectious”—able to participate in member-to-member
diffusion—over very long periods of time; it is not the case that
the majority of transmissions occur in some narrow time frame rel-
ative to adoption. Extremely long infectious periods can clearly
contribute to the success of a cascade, since members can invite
others to the network during a wide range of times.

4.2 Cascade growth trajectories

This fact has a simple but important consequence: if individual
edges often take months or years to form, then the cascades they
make up must persist for long periods of time as well. In the
faster-paced context of online social media, the adoption of popular
pieces of online content is often concentrated within a narrow time
frame [23, 39], and sharing cascades consequently achieve much of
their growth during this small interval. But this is unlikely in our
setting given how much longer signup cascades persist. Thus, we
ask: How do LinkedIn cascades grow in size over time?
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To answer this question, we plot the growth trajectory of the
1,000 biggest cascades on LinkedIn in Fig. 14(a). For each cas-
cade, we normalize both time and size to be between 0 and 1, and
show the fraction of the cascade’s eventual size at various points in
time between the root’s registration and the present day. A surpris-
ingly robust linear growth pattern is apparent. Although in princi-
ple cascades could have reached their eventual size in very different
ways, this doesn’t happen in practice. There is very little varia-
tion in how big cascades became big on LinkedIn; virtually all of
them gradually accumulated members at a constant rate over time.
Thus, LinkedIn’s rapid growth is not accounted for by individual
cascades alone—it is the number of distinct cascades growing in
parallel, each of which is growing relatively linearly, that increases
so dramatically. In Fig. 14(b), the same type of plot is shown for
1,000 medium-sized cascades. Much more variation is present, but
it is still around the same basic linear trend.

We conclude that, in contrast with the intuitive (and largely ac-
curate) picture of viral videos, pictures, and news stories quickly
spreading through online media and interpersonal networks before
mostly burning out, the picture of diffusion that emerges from our
study of LinkedIn is one of persistent, parallel accumulation of sub-
populations at a much more deliberate pace.
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Figure 14: Patterns of cascade growth over time for (top) large
cascades (over 4,000 members) and (bottom) medium cascades
(500 members). Cascades grow relatively linearly over time,
bigger cascades more consistently so than smaller ones.

Comparison with random baseline. The global picture of
LinkedIn’s growth involves many trees accumulating nodes in par-
allel at a notably linear rate. It’s natural to ask whether a simple
generative process of tree growth can reproduce the basic proper-
ties we’ve observed: the distribution over tree sizes, as well as the
linear growth rate pattern.

Arguably the simplest such baseline model is to have nodes ar-
rive sequentially, each identified as a cold or warm signup; a cold
signup becomes the root of a new tree, while a warm signup at-
taches to a parent chosen uniformly at random from existing nodes.
The choice of how nodes are assigned to be warm or cold is thus
the only parameter in the process, and for this purpose we use the
real exact ordering of warm and cold signups over the history of
LinkedIn. The resulting distribution of cascade sizes is remarkably
robust: 30 runs of this process are plotted in color in Fig. 15, and
the empirical distribution of cascade sizes is shown in black (we
only show non-trivial cascades, as in Section 2).

Relative to the real distribution, the slopes of the distribution for
draws from the randomized baseline are roughly the same, but they
are consistently shifted left: the individual trees are larger in the
real distribution from LinkedIn.

To determine if this process gives linear growth trajectories for
individual trees, we add timestamps to this model. We consider
the same simple process as above, in which each node arrives with
its true warm/cold status and now also its true arrival time, and
randomly draws its parent uniformly at random from all existing
nodes. We find that the rates of tree growth follow a linear trend
very close to the real empirical distribution shown in Fig. 14, and
with a variance across trees that is even smaller than in the real data.
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S. RELATED WORK

There are three lines of research related to our work here: the dy-
namics of cascades; the growth and evolution of online social net-
works; and analyses of homophily, the tendency of people to con-
nect to others who are similar to them.

Cascades. Our work builds on the rich literature that studies diffu-
sion and adoption of new ideas, products, and behaviors [33]. Early
cascade research in the social science literature was based on fo-
cused empirical studies [9] as well as mathematical models [6, 16,
38]; only relatively recently have scientists have able to observe and
measure large-scale diffusion events. Online cascades served as
sources of detailed data about such events; studies drawing on this
type of data have considered settings such as blogging [1, 17, 26],
e-mail [15, 27], product recommendations [22], and the sharing of
information in social sites such as Facebook, Flickr, and Twitter [7,
8, 11, 13, 14, 19, 21]. In work that aligns more closely with our
focus on signup cascades, researchers have also studied cascades
of group formation [4] and adoption of online services [3, 5, 34,
36]. Much of this previous work has the property that even the suc-
cessful cascade events in the data were much smaller in scale [8,
22] than the signup cascades we consider here.

We compare the structure of LinkedIn’s signup cascades with
several datasets from [14]. In that work, Goel et al. characterized
the structure of online diffusion networks in several domains, and
observed that most cascades on the Web are shallow and small. In
contrast, we find that LinkedIn signup cascades tend to be deeper
and larger, and grow steadily over long periods of time. Our case
study of the LinkedIn signups forest, an extreme example of on-
line adoption, complements the general picture of online diffusion
structures drawn in [14] by filling in what one of the largest online
diffusion structures looks like. In addition, we apply the structural
virality measure introduced in [13] and find that the correlation be-
tween size and structural virality is very high for LinkedIn sign-
ups, in contrast to the very low correlations found for information-
sharing cascades in [13].

Growth and evolution of social networks. A second line of re-
lated work is on mechanisms for the evolution of online social net-
works, using data covering the growth of social networking ser-
vices including Facebook [37], Flickr, [20, 30], LinkedIn [24], and
others [25]. This line of work investigates the evolution of network
structure assuming an underlying arrival process for new nodes.
Our work, on the other hand, focuses on the mechanisms that un-

derpins this arrival process, through the new members who join the
network and the ways in which cascades of invitations spread.

Homophily in social networks. Homophily—the tendency of peo-
ple to associate with others like themselves—is one of the most
important forces shaping the structure of social networks [29]. Re-
cent work using online data has considered the challenges in dif-
ferentiating homophily from influence [2, 10, 34], and has estab-
lished links between the evolution of social network structure and
the emergence of homophily [18]. We focus here on a distinct is-
sue that is particularly well-suited to analysis via our signup cas-
cade data—the ways in which local patterns of homophily between
pairs of individuals translate into more global forms of homophily
at the level of an entire cascade, and how cascade-level homophily
can transcend homophily observed at local levels.

As we discuss in Section ??, part of our analysis of this local-
global link involves developing an intriguing connection with a
body of mathematical work that has developed separately from the
homophily literature—namely, research on phylogenetic tree re-
construction [12, 31]. That problem is formulated in terms of a
process in which information (e.g., a binary attribute) is recursively
transmitted from a root node down a tree. At every step the attribute
can mutate with some given probability, and the goal is to recon-
struct the attribute of the root given the values of the attributes of all
the children at depth d [32, 35]. The connection we develop begins
with the observation that a homophilous attribute in a cascade can
be thought of as analogous with a genetic trait that propagates down
an evolutionary tree, changing to a new value with some probabil-
ity. The extent to which genetic information can be reconstructed
about ancestors then turns into the question of inferring proper-
ties of a cascade’s initial starter from the properties of its eventual
adopters. We show how this inference depends intimately on the
structure of the cascade tree and the homophily of the attribute, and
we argue that the type of Markov modeling assumption needed in
the social context appears to differ from what is relevant in the ge-
netic context.

6. CONCLUSION

By analyzing the global spread of LinkedIn, we have been able
to formulate and address a broad set of questions about signup
cascades—Ilarge diffusion events in which users become members
of a Web site and invite friends to join as well. We found that the
trees of signups arising from this process have characteristic struc-
ture and growth dynamics that look very different from the large
information-sharing cascades that have been studied extensively in
recent work. We also provide a new framework for analyzing ho-
mophily in these types of processes, identifying connections be-
tween the way homophily operates at multiple levels of scale.
Several points from our earlier discussions are worth drawing out
in greater detail. First, while the cascading adoption of LinkedIn
has reached a very large user population, it is important to empha-
size that the structural properties of its spread are not due to scale
alone. Indeed, recent work demonstrated that the virality of the
cascade trees can be roughly independent of their size [13]. The
massive signup cascades we study here show that very different
kinds of diffusion are possible—in which virality increases with
tree size, coupled with persistent linear tree growth over time.
Second, the interaction between local and global similarity in
the cascade trees points to deeper issues about the nature of ho-
mophily. While we tend to think of homophily patterns as arising
from the accumulation of local similarity along the links of a social
network, our Markov-chain analysis shows that the cascade trees
exhibit a higher level of global similarity than would follow from



these purely local effects—members of signups cascades have a
certain coherence to them that is not explainable via simple models
of pairwise interaction. One possibility, suggested by the analogies
to genetic models and the corresponding limitations we identify in
these analogies, is that one needs a richer type of “social genome”
to characterize each individual in the cascade—in essence, a profile
detailed enough that knowing the profile of an individual’s parent
provides sufficient information to estimate properties of the indi-
vidual. Identifying the bases for such profiles, and for the mecha-
nisms by which these characteristics propagate through social net-
works, could provide a new way of reasoning about the processes
by which large groups on the Web come together and adopt new
products and innovations.
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