
Geometric design by principles and random sampling

Luis Alvarez and Jean-Michel Morel

Cueva de las manos, Argentina , 9.000 years ago

Formalization of the Prehistoric Composition

- Choice of basic shapes used to create the composition.

We use Delauny triangulation to manage shapes

New shape generation using geometric transform and composition rules

Random Euclidean transformation with exclusion principle

Colour assignment

Color Palette

Simulation

Random Euclidean transformation with exclusion principle changing the shape size

Euclidean transformation with exclusion principle and a one given shape orientation

Euclidean transformation with exclusion principle and a two shape orientations

Euclidean transformation with exclusion principle and one vanishing point

Random Euclidean transformation with oclussion principle

Random Euclidean transformation with oclussion principle and transparency.

Tessellation : Image domain partition using random Euclidean transformation with oclussion principle

Tessellation rendering : Different colors are associated to each connected component of the tessellation.

Tessellation rendering with a large number of shapes.

Tessellation rendering with a large number of shapes.

Tessellation rendering with a large number of shapes.

Abstract geometric designs created by leading painters

Malevich

Malevich

Mondrian

Van Doesburg

Mondrian

Buchheister

Kandisky

Arp

Piet Mondrian (1921) Composition with Large Red Plane, Yellow, Black, Gray and Blue

Mondrian 1921

Sonia Delaunay, 1931

van Doesburg

Leger 1924

Seuphor, 1929

Torres 1929

Helion 1930

Domela 1926 Design in the style of Mondrian

Jean Arp 1917. Collage with Squares Arranged According to the Laws of Chance.

What is the Law of Chance?

Arp writes : "the law of chance can only be experienced through complete devotion to the unconscious". "Using this process 'according to the law of chance', isn't per se, using chance." "I further developed the collage by arranging the pieces automatically, without will." "We do not want to copy nature. We do not want to reproduce, we want to produce".
"I wanted to find another order, another value of man in nature. I wanted to create new appearances, extract of man new forms"

Collage with Squares Arranged According to the Laws of Chance

Original

Simulation 4

Simulation 1

Simulation 5

Simulation 2

Simulation 6

Simulation 3

Simulation 7

Collage with Squares Arranged According to the Laws of Chance

Original

Simulation 4

Simulation 1

Simulation 5

Simulation 2

Simulation 6

Simulation 3

Simulation 7

Nonlinear deformation

Jean Arp 1917. Collage with Squares Arranged According to the Laws of Chance

Wassily Kandinsky 1913 . Color Study: Squares with Concentric Circles

Nonlinear deformation transforms

Let $(x, y) \in R^{2}$ and $\left(x_{c}, y_{c}\right)$ the deformation center. We define the following transformation

$$
\begin{gathered}
\varphi=\operatorname{atan} 2\left(y-y_{c}, x-x_{c}\right) \\
\varphi^{\prime}=\varphi_{0}+k_{0} \beta_{0}(\varphi)
\end{gathered}
$$

$\binom{\boxed{x_{c}}}{$\hline$y_{c}}+\left(\begin{array}{|c|c|}\hline \cos \left(\varphi^{\prime}\right) & -\sin \left(\varphi^{\prime}\right) \\ \hline \sin \left(\varphi^{\prime}\right) & \cos \left(\varphi^{\prime}\right) \\ \hline\end{array}\right)\left(\begin{array}{|c|c|c|}\hline 1 & 0 \\ \hline 0 & 1-k_{1} \beta_{1}\left(\varphi-\varphi_{1}\right)\end{array}\right)\left(\begin{array}{|c|c|}\hline \cos \left(\varphi^{\prime}\right) & \sin \left(\varphi^{\prime}\right) \\ \hline-\sin \left(\varphi^{\prime}\right) & \cos \left(\varphi^{\prime}\right)\end{array}\right)\left(\begin{array}{|l|}\hline x-x_{c} \\ \hline y-y_{c} \\ \hline\end{array}\right)$
where $k_{0}, k_{1} \geq 0, \varphi_{0}, \varphi_{1} \in[0,2 \pi], \beta_{0}, \beta_{1} \in W^{1, \infty}(R)$ are 2π periodic functions.

Wassily Kandinsky 1913 . Color Study: Squares with Concentric Circles

Original

Simulation 2

Simulation 1

Simulation 3

Wassily Kandinsky 1913 . Color Study: Squares with Concentric Circles

Original

Simulation 2

Simulation 1

Simulation 3

Shape generation

Wassily Kandinsky 1937. Thirty

Henri Matisse (1952) The Parakeet and the Mermaid.

Simulation 2

Simulation 3

Collaboration with the professional painter José Antonio García

Symmetry and Periodicity

Rossete (Egypt)

Mandala (Tibet)

Persian carpet

Baschet (Hermes)

Van der Leck

Daphnis

Downing

Boto

Weak Symmetry versus Strong Symmetry

Catherine Baschet (Hermes Silk Twill Scarf)

Simulation of 45o strong symmetry

Designs inspired in Persian Carpets

Simulation 1

Simulation 2

Designs inspired in Persian Carpets

Simulation 1

Simulation 2

Designs inspired in Persian Carpets

Simulation 1

Simulation 2

Designs inspired in Persian Carpets and Kandisky circles

Simulation 1

Simulation 2

Shape connectivity

Gustav Klimt, 1909, The Tree of Life

Simulation 2

Simulation 3

Shape connectivity

Simulation 1

Simulation 3

Simulation 2

Simulation 4

Tesselations

Freundlich

Klee

Robert Delauny

Ackerman

Asis

Gray

Gray

Tessellations

Simulation 1

Simulation 2

A Multilayer Approach to Geometric design

A Multilayer Approach to Geometric design

!! THANK YOU !!

http://www.ctim.es/ImageSynthesis/

