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How are real networks organized? 
How can we reveal them?
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Finding and evaluating community structure in networks
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We propose and study a set of algorithms for discovering community structure in networks—
natural divisions of network nodes into densely connected subgroups. Our algorithms all share two
definitive features: first, they involve iterative removal of edges from the network to split it into
communities, the edges removed being identified using one of a number of possible “betweenness”
measures, and second, these measures are, crucially, recalculated after each removal. We also propose
a measure for the strength of the community structure found by our algorithms, which gives us an
objective metric for choosing the number of communities into which a network should be divided.
We demonstrate that our algorithms are highly effective at discovering community structure in both
computer-generated and real-world network data, and show how they can be used to shed light on
the sometimes dauntingly complex structure of networked systems.

I. INTRODUCTION

Empirical studies and theoretical modeling of networks
have been the subject of a large body of recent research in
statistical physics and applied mathematics [1, 2, 3, 4].
Network ideas have been applied with great success to
topics as diverse as the Internet and the world wide
web [5, 6, 7], epidemiology [8, 9, 10, 11], scientific ci-
tation and collaboration [12, 13], metabolism [14, 15],
and ecosystems [16, 17], to name but a few. A property
that seems to be common to many networks is commu-
nity structure, the division of network nodes into groups
within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to
find and analyze such groups can provide invaluable help
in understanding and visualizing the structure of net-
works. In this paper we show how this can be achieved.

The study of community structure in networks has a
long history. It is closely related to the ideas of graph
partitioning in graph theory and computer science, and

FIG. 1: A small network with community structure of the
type considered in this paper. In this case there are three
communities, denoted by the dashed circles, which have dense
internal links but between which there are only a lower density
of external links.

hierarchical clustering in sociology [18, 19]. Before pre-
senting our own findings, it is worth reviewing some of
this preceding work, to understand its achievements and
where it falls short.

Graph partitioning is a problem that arises in, for ex-
ample, parallel computing. Suppose we have a num-
ber n of intercommunicating computer processes, which
we wish to distribute over a number g of computer proces-
sors. Processes do not necessarily need to communicate
with all others, and the pattern of required communica-
tions can be represented by a graph or network in which
the vertices represent processes and edges join process
pairs that need to communicate. The problem is to allo-
cate the processes to processors in such a way as roughly
to balance the load on each processor, while at the same
time minimizing the number of edges that run between
processors, so that the amount of interprocessor commu-
nication (which is normally slow) is minimized. In gen-
eral, finding an exact solution to a partitioning task of
this kind is believed to be an NP-complete problem, mak-
ing it prohibitively difficult to solve for large graphs, but
a wide variety of heuristic algorithms have been devel-
oped that give acceptably good solutions in many cases,
the best known being perhaps the Kernighan–Lin algo-
rithm [20], which runs in time O(n3) on sparse graphs.

A solution to the graph partitioning problem is how-
ever not particularly helpful for analyzing and under-
standing networks in general. If we merely want to find
if and how a given network breaks down into commu-
nities, we probably don’t know how many such com-
munities there are going to be, and there is no reason
why they should be roughly the same size. Furthermore,
the number of inter-community edges needn’t be strictly
minimized either, since more such edges are admissible
between large communities than between small ones.

As far as our goals in this paper are concerned, a more
useful approach is that taken by social network analysis
with the set of techniques known as hierarchical cluster-
ing. These techniques are aimed at discovering natural
divisions of (social) networks into groups, based on var-

“a group of densely interconnected 
nodes”

“Network Community”
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within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to
find and analyze such groups can provide invaluable help
in understanding and visualizing the structure of net-
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hierarchical clustering in sociology [18, 19]. Before pre-
senting our own findings, it is worth reviewing some of
this preceding work, to understand its achievements and
where it falls short.

Graph partitioning is a problem that arises in, for ex-
ample, parallel computing. Suppose we have a num-
ber n of intercommunicating computer processes, which
we wish to distribute over a number g of computer proces-
sors. Processes do not necessarily need to communicate
with all others, and the pattern of required communica-
tions can be represented by a graph or network in which
the vertices represent processes and edges join process
pairs that need to communicate. The problem is to allo-
cate the processes to processors in such a way as roughly
to balance the load on each processor, while at the same
time minimizing the number of edges that run between
processors, so that the amount of interprocessor commu-
nication (which is normally slow) is minimized. In gen-
eral, finding an exact solution to a partitioning task of
this kind is believed to be an NP-complete problem, mak-
ing it prohibitively difficult to solve for large graphs, but
a wide variety of heuristic algorithms have been devel-
oped that give acceptably good solutions in many cases,
the best known being perhaps the Kernighan–Lin algo-
rithm [20], which runs in time O(n3) on sparse graphs.

A solution to the graph partitioning problem is how-
ever not particularly helpful for analyzing and under-
standing networks in general. If we merely want to find
if and how a given network breaks down into commu-
nities, we probably don’t know how many such com-
munities there are going to be, and there is no reason
why they should be roughly the same size. Furthermore,
the number of inter-community edges needn’t be strictly
minimized either, since more such edges are admissible
between large communities than between small ones.

As far as our goals in this paper are concerned, a more
useful approach is that taken by social network analysis
with the set of techniques known as hierarchical cluster-
ing. These techniques are aimed at discovering natural
divisions of (social) networks into groups, based on var-
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Hierarchical structure and the prediction of missing links in networks∗
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Networks have in recent years emerged as an invalu-

able tool for describing and quantifying complex systems

in many branches of science [1, 2, 3]. Recent studies sug-

gest that networks often exhibit hierarchical organization,

where vertices divide into groups that further subdivide

into groups of groups, and so forth over multiple scales.

In many cases these groups are found to correspond to

known functional units, such as ecological niches in food

webs, modules in biochemical networks (protein interac-

tion networks, metabolic networks, or genetic regulatory

networks), or communities in social networks [4, 5, 6, 7].

Here we present a general technique for inferring hierar-

chical structure from network data and demonstrate that

the existence of hierarchy can simultaneously explain and

quantitatively reproduce many commonly observed topo-

logical properties of networks, such as right-skewed de-

gree distributions, high clustering coefficients, and short

path lengths. We further show that knowledge of hier-

archical structure can be used to predict missing connec-

tions in partially known networks with high accuracy, and

for more general network structures than competing tech-

niques [8]. Taken together, our results suggest that hierar-

chy is a central organizing principle of complex networks,

capable of offering insight into many network phenom-

ena.

A great deal of recent work has been devoted to the study

of clustering and community structure in networks [5, 6, 9,

10, 11]. Hierarchical structure goes beyond simple clustering,

however, by explicitly including organization at all scales in

a network simultaneously. Conventionally, hierarchical struc-

ture is represented by a tree or dendrogram in which closely

related pairs of vertices have lowest common ancestors that

are lower in the tree than those of more distantly related

pairs—see Fig. 1. We expect the probability of a connec-

tion between two vertices to depend on their degree of relat-

edness. Structure of this type can be modelled mathematically

using a probabilistic approach in which we endow each inter-

nal node r of the dendrogram with a probability pr and then

connect each pair of vertices for whom r is the lowest com-

mon ancestor independently with probability pr (Fig. 1).

This model, which we call a hierarchical random graph, is

similar in spirit (although different in realization) to the tree-

based models used in some studies of network search and nav-

igation [12, 13]. Like most work on community structure, it

∗This paper was published as Nature 453, 98 – 101 (2008);

doi:10.1038/nature06830.

assumes that communities at each level of organization are

disjoint. Overlapping communities have occasionally been

studied (see, for example [14]) and could be represented using

a more elaborate probabilistic model, but as we discuss below

the present model already captures many of the structural fea-

tures of interest.

Given a dendrogram and a set of probabilities pr, the hi-

erarchical random graph model allows us to generate artifi-

cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-

lyze the hierarchical structure, if any, of networks in the real

world. We accomplish this by fitting the hierarchical model

to observed network data using the tools of statistical infer-

ence, combining a maximum likelihood approach [15] with

a Monte Carlo sampling algorithm [16] on the space of all

 

FIG. 1: A hierarchical network with structure on many scales and

the corresponding hierarchical random graph. Each internal node r
of the dendrogram is associated with a probability pr that a pair of

vertices in the left and right subtrees of that node are connected. (The

shades of the internal nodes in the figure represent the probabilities.)

A. Clauset, C. Moore, and M. E. J. Newman, Nature (2008)

Hierarchical Random Graph model
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Uncovering the overlapping community structure of
complex networks in nature and society
Gergely Palla1,2, Imre Derényi2, Illés Farkas1 & Tamás Vicsek1,2

Many complex systems in nature and society can be described in
terms of networks capturing the intricate web of connections
among the units they are made of1–4. A key question is how to
interpret the global organization of such networks as the co-
existence of their structural subunits (communities) associated
with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins5,6,
industrial sectors7 and groups of people8,9) is crucial to the
understanding of the structural and functional properties of
networks. The existing deterministic methods used for large net-
works find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of
nodes. Here we introduce an approach to analysing the main
statistical features of the interwoven sets of overlapping commu-
nities that makes a step towards uncovering the modular structure
of complex systems. After defining a set of new characteristic
quantities for the statistics of communities, we apply an efficient
technique for exploring overlapping communities on a large scale.
We find that overlaps are significant, and the distributions we
introduce reveal universal features of networks. Our studies of
collaboration, word-association and protein interaction graphs
show that the web of communities has non-trivial correlations and
specific scaling properties.
Most real networks typically contain parts in which the nodes

(units) are more highly connected to each other than to the rest of
the network. The sets of such nodes are usually called clusters,
communities, cohesive groups or modules8,10,11–13; they have no
widely accepted, unique definition. In spite of this ambiguity,
the presence of communities in networks is a signature of the
hierarchical nature of complex systems5,14. The existing methods
for finding communities in large networks are useful if the commu-
nity structure is such that it can be interpreted in terms of separated
sets of communities (see Fig. 1b and refs 10, 15, 16–18). However,
most real networks are characterized by well-defined statistics of
overlapping and nested communities. This can be illustrated by the
numerous communities that each of us belongs to, including those
related to our scientific activities or personal life (school, hobby,
family) and so on, as shown in Fig. 1a. Furthermore, members of our
communities have their own communities, resulting in an extremely
complicated web of the communities themselves. This has long been
understood by sociologists19 but has never been studied system-
atically for large networks. Another, biological, example is that a
large fraction of proteins belong to several protein complexes
simultaneously20.
In general, each node i of a network can be characterized by a

membership number mi, which is the number of communities that
the node belongs to. In turn, any two communities a and b can share
sova;b nodes, which we define as the overlap size between these
communities. Naturally, the communities also constitute a network,

with the overlaps being their links. The number of such links of
community a can be called its community degree, dcoma : Finally, the
size scoma of any community a can most naturally be defined as the
number of its nodes. To characterize the community structure of a
large network we introduce the distributions of these four basic
quantities. In particular we focus on their cumulative distribution

LETTERS

Figure 1 | Illustration of the concept of overlapping communities. a, The
black dot in the middle represents either of the authors of this paper, with
several of his communities around. Zooming in on the scientific community
demonstrates the nested and overlapping structure of the communities, and
depicting the cascades of communities starting from some members
exemplifies the interwoven structure of the network of communities.
b, Divisive and agglomerative methods grossly fail to identify the
communities when overlaps are significant. c, An example of overlapping
k-clique communities at k ¼ 4. The yellow community overlaps the blue one
in a single node, whereas it shares two nodes and a link with the green one.
These overlapping regions are emphasized in red. Notice that any k-clique
(complete subgraph of size k) can be reached only from the k-cliques of the
same community through a series of adjacent k-cliques. Two k-cliques are
adjacent if they share k 2 1 nodes.

1Biological Physics Research Group of the Hungarian Academy of Sciences, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Department of Biological Physics, Eötvös University,
Pázmány P. stny. 1A, H-1117 Budapest, Hungary.

Vol 435|9 June 2005|doi:10.1038/nature03607

814
© 2005 Nature Publishing Group 
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Arnold Perey, Social organization of Oksapmin, Papua New Guinea (1973)
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Figure 1: Overlapping communities lead to dense networks and prevent the discovery of a sin-
gle node hierarchy. (A) Locally, structure in social networks is simple: an individual node sees
the communities it belongs to. (B) Complex global structure emerges when every node is in the
situation displayed in (A). (C) Strong overlap hinders the discovery of hierarchical organization
since nodes exist simultaneously in many leaves throughout the dendrogram, preventing a sin-
gle tree from encoding the full hierarchy. Bottom Panel, Hierarchical Link Clustering (HLC):
shown is an example network with (D) node communities and (E) link communities. (F) The
link similarity matrix (darker matrix elements show more similar pairs of links) and resulting
dendrogram. See SOM for additional examples.
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The Alice-Bob link was placed in family but both 
home and work relationships are identified

Word Association examples

Figure S4: Overlapping links. In the link community framework, a link may be assigned to only one community. By deriving
node communities, however, the problem of effectively discovering multiple relationships between nodes is effectively solved.
Two nodes can belong to many communities together regardless of the membership of the link between them. Left: illustration
of the situation. Right: real examples from word association network. In the upper example, Blend and blender belong to both
‘fruit juice’ community and ‘mix’ community. In the bottom example, the link between appear and reappear does not even
belong to any of the other communities, but they belong to several communities together.

link can simultaneously belong to multiple communities even though the link itself belongs to only one
community. Here, we let the examples in Fig. S4 provide further illumination of this point.

The simplistic cases in Fig. S4, however, do not address the complex community structure that arises
in real life, where the multiple relationships may include more groups of many nodes and more than one
link. Consider a high school with classes of about 30 students. These classes form clusters/communities
and are likely to be located by the link community method. Now, students from these classes typically
form a number of further communities: Some go to the same class to learn a foreign language, others
play on the school’s basketball team, etc. Thus, there will be further overlapping communities in such
a way that the members in these new communities are in touch with each other in two distinct ways:
through going to the same regular class and through playing basketball together. Figure S5 show that
the link communities do, in fact, extract these subtle relationships.

It is true that if a group is completely subsumed inside another group, and there are no structural
differences distinguishing this group, such as different connectivity patterns, then link communities
will not find the internal group. No method will find it, because it’s completely invisible (Fig. S5a).
However, if the school’s social network is weighted based on the time students spend together, or if
basketball players are slightly more likely to become friends with other basketball players than with
students not on the team, or if the team has slightly different external connectivity, these will be identified
(Fig. S5b). Notice that the link communities shown in Fig. S5b only separate the player-coach links. This
is sufficient to completely identify the basketball team. Figure S5c shows a further example. We also
identify these sub-communities in practice; note the ‘clever/wit’ community inside the ‘smart/intelligent’
community in main text Fig. 1f.

What about in practice? Are multiple relationships between nodes rare or abundant in link commu-
nities? To answer this, we study the network of communities, where each node is now a community
in the original network, and the weights on each link are the number of shared members. The distribu-
tion of link weights sov in this network, studied by Palla et al. [11] (we use their notation), explicitly
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a way that the members in these new communities are in touch with each other in two distinct ways:
through going to the same regular class and through playing basketball together. Figure S5 show that
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It is true that if a group is completely subsumed inside another group, and there are no structural
differences distinguishing this group, such as different connectivity patterns, then link communities
will not find the internal group. No method will find it, because it’s completely invisible (Fig. S5a).
However, if the school’s social network is weighted based on the time students spend together, or if
basketball players are slightly more likely to become friends with other basketball players than with
students not on the team, or if the team has slightly different external connectivity, these will be identified
(Fig. S5b). Notice that the link communities shown in Fig. S5b only separate the player-coach links. This
is sufficient to completely identify the basketball team. Figure S5c shows a further example. We also
identify these sub-communities in practice; note the ‘clever/wit’ community inside the ‘smart/intelligent’
community in main text Fig. 1f.

What about in practice? Are multiple relationships between nodes rare or abundant in link commu-
nities? To answer this, we study the network of communities, where each node is now a community
in the original network, and the weights on each link are the number of shared members. The distribu-
tion of link weights sov in this network, studied by Palla et al. [11] (we use their notation), explicitly
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Figure S16: Overlapping community structure around Acetyl-CoA in the E. coli metabolic network. Acetyl-CoA plays several
different and important roles in metabolism. Shown are only communities with homogeneity score equal to 1 (all compounds
inside each community share at least one pathway annotation); all other links, including those that contribute to community
structure, are omitted. Pathway annotations shared by all community members are displayed with corresponding colors. The
two communities to the right of Acetyl-CoA are grouped since they share the same exact pathway annotations.
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Figure S17: More link community examples in the word association network. Top: link communities successfully captures
various meanings of the word BRUSH. Bottom: Link communities captures diverse associations of the word pair SUNRISE-
SUNSET. The translated node communities are listed.
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Hierarchical structure
exists.



Hierarchy implies  
disjoint communities.
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Hierarchical structure and the prediction of missing links in networks∗

Aaron Clauset,1, 2 Cristopher Moore,1, 2, 3 and M. E. J. Newman2, 4

1Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM, 87501, USA

3Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
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Networks have in recent years emerged as an invalu-

able tool for describing and quantifying complex systems

in many branches of science [1, 2, 3]. Recent studies sug-

gest that networks often exhibit hierarchical organization,

where vertices divide into groups that further subdivide

into groups of groups, and so forth over multiple scales.

In many cases these groups are found to correspond to

known functional units, such as ecological niches in food

webs, modules in biochemical networks (protein interac-

tion networks, metabolic networks, or genetic regulatory

networks), or communities in social networks [4, 5, 6, 7].

Here we present a general technique for inferring hierar-

chical structure from network data and demonstrate that

the existence of hierarchy can simultaneously explain and

quantitatively reproduce many commonly observed topo-

logical properties of networks, such as right-skewed de-

gree distributions, high clustering coefficients, and short

path lengths. We further show that knowledge of hier-

archical structure can be used to predict missing connec-

tions in partially known networks with high accuracy, and

for more general network structures than competing tech-

niques [8]. Taken together, our results suggest that hierar-

chy is a central organizing principle of complex networks,

capable of offering insight into many network phenom-

ena.

A great deal of recent work has been devoted to the study

of clustering and community structure in networks [5, 6, 9,

10, 11]. Hierarchical structure goes beyond simple clustering,

however, by explicitly including organization at all scales in

a network simultaneously. Conventionally, hierarchical struc-

ture is represented by a tree or dendrogram in which closely

related pairs of vertices have lowest common ancestors that

are lower in the tree than those of more distantly related

pairs—see Fig. 1. We expect the probability of a connec-

tion between two vertices to depend on their degree of relat-

edness. Structure of this type can be modelled mathematically

using a probabilistic approach in which we endow each inter-

nal node r of the dendrogram with a probability pr and then

connect each pair of vertices for whom r is the lowest com-

mon ancestor independently with probability pr (Fig. 1).

This model, which we call a hierarchical random graph, is

similar in spirit (although different in realization) to the tree-

based models used in some studies of network search and nav-

igation [12, 13]. Like most work on community structure, it

∗This paper was published as Nature 453, 98 – 101 (2008);

doi:10.1038/nature06830.

assumes that communities at each level of organization are

disjoint. Overlapping communities have occasionally been

studied (see, for example [14]) and could be represented using

a more elaborate probabilistic model, but as we discuss below

the present model already captures many of the structural fea-

tures of interest.

Given a dendrogram and a set of probabilities pr, the hi-

erarchical random graph model allows us to generate artifi-

cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-

lyze the hierarchical structure, if any, of networks in the real

world. We accomplish this by fitting the hierarchical model

to observed network data using the tools of statistical infer-

ence, combining a maximum likelihood approach [15] with

a Monte Carlo sampling algorithm [16] on the space of all

 

FIG. 1: A hierarchical network with structure on many scales and

the corresponding hierarchical random graph. Each internal node r
of the dendrogram is associated with a probability pr that a pair of

vertices in the left and right subtrees of that node are connected. (The

shades of the internal nodes in the figure represent the probabilities.)
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Links: unique membership

Then, why don’t we define communities in 
terms of links (edges)?
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Figure S1: (A) The similarity measure S(eik, ejk) between edges eik and ejk sharing node k.
For this example, |n+(i) ⇤ n+(j)| = 12 and |n+(i) ⌅ n+(j)| = 4, giving S = 1/3. Two simple
cases: (B) an isolated (ka = kb = 1), connected triple (a,c,b) has S = 1/3, while (C) an isolated
triangle has S = 1.

structure can become radically different.) Thus, we neglect the neighbors of the keystone. We

first define the inclusive neighbors of a node i as:

n+(i) � {x | d(i, x) ⇥ 1} (S1)

where d(i, x) is the length of the shortest path between nodes i and x. The set simply contains

the node itself and its neighbors. From this, the similarity S between links can be given by, e.g.,

the Jaccard index (1):

S(eik, ejk) =
|n+(i) ⌅ n+(j)|
|n+(i) ⇤ n+(j)| (S2)

An example illustration of this similarity measure is shown in Fig. S1 (See Sec. S2.1 for gener-

alizations of the similarity).

With this similarity, we use single-linkage hierarchical clustering to find hierarchical com-

munity structures. We use single-linkage mainly due to simplicity and efficiency, which enables

us to apply HLC to large-scale networks. However, it is also possible to use other options such

as complete-linkage or average-linkage clustering. Each link is initially assigned to its own

community; then, at each time step, the pair of links with the largest similarity are chosen and

3
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Figure S12: Overlapping community structure around Acetyl-CoA in the E. coli metabolic network. Acetyl-CoA plays several
different and important roles in metabolism. Shown are only communities with homogeneity score equal to 1 (all compounds
inside each community share at least one pathway annotation); all other links, including those that contribute to community
structure, are omitted. Pathway annotations shared by all community members are displayed with corresponding colors. The
two communities to the right of Acetyl-CoA are grouped since they share the same exact pathway annotations.
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Figure S13: More link community examples in the word-association network. Top: link communities successfully captures
various meanings of the word BRUSH. Bottom: Link communities captures diverse associations of a word pair SUNRISE-
SUNSET The translated node communities are listed.
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Link communities reveal multiscale complexity in

networks
Yong-Yeol Ahn

1,2*, James P. Bagrow
1,2* & Sune Lehmann3,4*

Networks have become a key approach to understanding systems

of interacting objects, unifying the study of diverse phenomena

including biological organisms and human society1–3. One crucial

step when studying the structure and dynamics of networks is to

identify communities4,5: groups of related nodes that correspond

to functional subunits such as protein complexes6,7 or social

spheres8–1
0. Communities in networks often overlap9,10 such that

nodes simultaneously belong to several groups.
Meanwhile, many

networks are known to possess hierarchical organization, w
here

communities are recursively grouped into a hierarchical struc-

ture11–13. However, the fact that many real networks have com-

munities with pervasive overlap, where each and every node

belongs to more than one group, has the conseque
nce that a global

hierarchy of nodes cannot capture the
relationships between over-

lapping groups. Here we reinvent communities as groups of links

rather than nodes and show that this unorthodox approach suc-

cessfully reconciles the antagonistic o
rganizing principles of over-

lapping communities and hierarchy. In contrast to the existing

literature, which has entirely focused on grouping nodes, link

communities naturally incorporate overlap while revealing hier-

archical organization. We find relevant link communities in many

networks, including major biological networks such as protein–

protein interaction
6,7,14 and metabolic networks

11,15,16, and show

that a large social network
10,17,18 contains hierarchically organized

community structures spanning inner-city t
o regional scales while

maintaining pervasive overlap. Our results imply that link com-

munities are fundamental building blocks that reveal over
lap and

hierarchical organization in networks to be two aspects of the

same phenomenon.

Although no common definition has been agreed upon, it i
s widely

accepted that a community should have more internal than external

connections
19–24. Counterintuitively, highly overlapping

communities

can have many more external than internal connections (Fig. 1a, b).

Because pervasive overlap breaks even th
is fundamental assumption, a

new approach is needed.

The discovery of hierarchy and community organization has always

been considered a problem of determining the correct membership

(ormemberships) of each node. Notice that, wh
ereas nodes belong to

multiple groups (individuals have families, co-workers and friends;

Fig. 1c), links often exist for one dominant reason (two people are in

the same family, work together or have common interests). Instead of

assuming that a community is a set of nodes withmany links between

them,we consider a community to be a set of closely interrelated lin
ks.

Placing each link in a single context allo
ws us to reveal hierarchical

and overlapping relationships simultaneously. We use hierarchical

clustering with a similarity between links to build a dendrogram

where each leaf is a link from the original network and branches

represent link communities (Fig. 1d, e and Methods). In this den-

drogram, links occupy unique positions whereas nodes naturally

occupy multiple positions, owing to their links. W
e extract link com-

munities at multiple levels by cutting this dendrogram at various

thresholds. Each node inherits all memberships of its links and can

thus belong to multiple, overlapping communities. Even though we

assign only a single membership per link, link communities can also

capture multiple relationships between nodes, because multiple

nodes can simultaneously belong to several communities together.

The link dendrogram provides a rich hierarchy of structure, b
ut to

obtain themost relevant communities it is necessary to determine the

best level at which to cut the tree. For this purpose, we intr
oduce a

natural objective function, the partition density, D, based on link

density inside communities; unlike modularity2
0, D does not suffer

from a resolution limit25 (Methods). ComputingD at each level of the

link dendrogram allows us to pick the best level to cut (although

meaningful structure exists above and below that threshold). It is

also possible to optimize D directly. We can now formulate overlap-

ping community discovery as a well-posed optimization problem,

accounting for overlap at every node without penalizing that
nodes

participate in multiple communities.

As an illustrative example, Fig. 1f shows link communities around

the word ‘Newton’ in a network of commonly associated English

words. (See Supplementary Information, section 6, for details on

networks used throughout the text.) The ‘clever, wit’
community is

correctly identified inside the ‘smart/intellect’ community. The

words ‘Newton’ and ‘Gravity’ both belong to the ‘smart/intellect’,

‘weight’ and ‘apple’ communities, illustrating that link communities

capture multiple relationships between nodes. See Supplementary

Information, section 3.6, for further visualizations.

Having unified hierarchy and overlap, we provide quantitative,

real-world evidence that a link-based approach is superior to exist-

ing, node-based approaches. Using data-driven performance mea-

sures, we analyse link communities found at the maximum partition

density in real-world networks, compared with node communities

found by three widely used and successful methods: clique percola-

tion9, greedy modularity optimization26 and Infomap21. Clique per-

colation is the most prominent overlapping community algorithm,

greedy modularity optimization is the most popular modularity-

based20 technique and Infomap is often considered the most accurate

method available27.

We compiled a test group of 11 networks covering many domains

of active research and representing the wide body of available data

(Supplementary Table 2). These networks vary
from small to large,

from sparse to dense, and from those withmodular structure to those

with highly overlapping structure. We highlight a few data sets of

particular scientific importance: The mobile phone network is the

*These authors contributed equally to this work.
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Tree Like Approximation (TL)

derived in Secs. IV and V, and examples of time-dependent
infection in community-structure networks and k-core sizes
in correlated graphs demonstrate the excellent agreement of
theory with numerical simulations. Appendixes A and B ad-
dress the effects of single-seed activations, and the simplifi-
cation of the equations under special assumptions.

II. GENERALIZED MODEL

In this section we briefly review our earlier work on
Watts’ model, and then demonstrate how analytical results
for the mean cascade size may also be found for a variety of
other cases of interest. The response functions introduced
here form the basis for extending the theory to time-
dependent cases on modular or correlated networks in Secs.
III–V.

A. Watts’ model

In our recent paper !26" we derived analytical expressions
for the mean avalanche size in Watts’ model of threshold
dynamics !13". In this model, each node of the network is
assigned a random #frozen$ threshold r from a specified dis-
tribution, and when updated, the node #of degree k, say$ be-
comes active if the fraction m /k of its neighbors which are
active exceeds r. Cascades are initiated by randomly activat-
ing a seed fraction !0 of the nodes.

By approximating the random network by a tree structure
and then defining the probability qn that a random node at
level n of the tree is active, conditional on its parent in the
tree being inactive, we derived the following iteration equa-
tion:

qn+1 = !0 + #1 − !0$%
k=1

"
k

z
pk%

m=0

k−1 &k − 1

m
'qn

m#1 − qn$k−1−mF#m,k$

( g#qn$ . #1$

Here pk is the degree distribution #probability that a node has
k neighbors$ of the configuration-model network, z is the
mean degree %kkpk, and the response function is

F#m,k$ = C&m

k
' , #2$

where C is the cumulative distribution function #cdf$ of the
thresholds. If, for example, all nodes have the same threshold
R, the response function is

F#m,k$ = )0 if m # Rk ,

1 if m $ Rk .
* #3$

The derivation of Eq. #1$ uses the fact that the
degree distribution of nearest neighbors on a tree is
kpk /z, and also that a node with k−1 n-level children of
which m are active becomes active itself with probability
# k−1

m $qn
m#1−qn$k−1−mF#m ,k$. As discussed in detail in !26", it

is crucial that the state of each node may be altered at most
once—it is this property that allows us to ignore propagation
of activity away from the central node of the tree and treat
each node as activated from its children.

Given an initial random fraction !0 of active nodes, we
iterate Eq. #1$ from q0=!0 to convergence to determine q"

=limn→" qn, and then find the expected steady-state density
of active nodes in the network as

! = !0 + #1 − !0$%
k=0

"

pk%
m=0

k & k

m
'q"

m#1 − q"$k−mF#m,k$ ( h#q"$ .

#4$

To derive Eq. #4$ we examine the central node of the tree,
which has k children with probability pk !26". The quantity !
is the average #over an ensemble of realizations$ of the
steady-state cascade size in networks characterized by pk,
with dynamics specified by F#m ,k$.

The only feature of the response function F that is crucial
to our derivations is that it is a nondecreasing function of m
for any fixed k. It is therefore straightforward to generalize
our approach to calculate the expected cascade size in a va-
riety of dynamical problems which also obey this condition
#and in which nodes, once activated, remain permanently
active$. Note that the use of the tree structure in this deriva-
tion assumes that the fraction !0 of seed nodes is nonvanish-
ing. Cases where cascades are initialized by single-node
seeds #i.e., !0=1 /N$ require further consideration; see Ap-
pendix A.

B. Other models

1. Absolute number of active neighbors

In their recent paper !27", Galstyan and Cohen examine a
version of Watts’ model in which the absolute number of
active neighbors, rather than the fraction of the total number
as in !13", is compared with the nodes’ thresholds to deter-
mine the subsequent states. The corresponding response
function for Eqs. #1$ and #4$ is thus

F#m,k$ = C#m$ , #5$

with C being the cdf of thresholds as before. We consider
this example in some detail in Sec. IV below, where the fact
that the response function is independent of the nodal degree
k will lead to significant simplification.

2. Site and bond percolation

Percolation on random networks has been extensively
studied !20,28–30" and formulas for the size of the giant
connected component have been determined using generat-
ing function methods !20" and applied to study network re-
silience and epidemic thresholds. Here we point out that
these are special cases of our general approach, correspond-
ing to suitable choices for the response function in Eqs. #1$
and #4$.

In the bond percolation problem, network edges are occu-
pied with probability p and nodes become infected #active$ if
they are linked to an infected node by an occupied edge.
Thus with m active neighbors, a node has probability
#1− p$m of not becoming infected, so the response function
for this case is
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derived in Secs. IV and V, and examples of time-dependent
infection in community-structure networks and k-core sizes
in correlated graphs demonstrate the excellent agreement of
theory with numerical simulations. Appendixes A and B ad-
dress the effects of single-seed activations, and the simplifi-
cation of the equations under special assumptions.

II. GENERALIZED MODEL

In this section we briefly review our earlier work on
Watts’ model, and then demonstrate how analytical results
for the mean cascade size may also be found for a variety of
other cases of interest. The response functions introduced
here form the basis for extending the theory to time-
dependent cases on modular or correlated networks in Secs.
III–V.

A. Watts’ model

In our recent paper !26" we derived analytical expressions
for the mean avalanche size in Watts’ model of threshold
dynamics !13". In this model, each node of the network is
assigned a random #frozen$ threshold r from a specified dis-
tribution, and when updated, the node #of degree k, say$ be-
comes active if the fraction m /k of its neighbors which are
active exceeds r. Cascades are initiated by randomly activat-
ing a seed fraction !0 of the nodes.

By approximating the random network by a tree structure
and then defining the probability qn that a random node at
level n of the tree is active, conditional on its parent in the
tree being inactive, we derived the following iteration equa-
tion:

qn+1 = !0 + #1 − !0$%
k=1

"
k

z
pk%

m=0

k−1 &k − 1

m
'qn

m#1 − qn$k−1−mF#m,k$

( g#qn$ . #1$

Here pk is the degree distribution #probability that a node has
k neighbors$ of the configuration-model network, z is the
mean degree %kkpk, and the response function is

F#m,k$ = C&m

k
' , #2$

where C is the cumulative distribution function #cdf$ of the
thresholds. If, for example, all nodes have the same threshold
R, the response function is

F#m,k$ = )0 if m # Rk ,

1 if m $ Rk .
* #3$

The derivation of Eq. #1$ uses the fact that the
degree distribution of nearest neighbors on a tree is
kpk /z, and also that a node with k−1 n-level children of
which m are active becomes active itself with probability
# k−1

m $qn
m#1−qn$k−1−mF#m ,k$. As discussed in detail in !26", it

is crucial that the state of each node may be altered at most
once—it is this property that allows us to ignore propagation
of activity away from the central node of the tree and treat
each node as activated from its children.

Given an initial random fraction !0 of active nodes, we
iterate Eq. #1$ from q0=!0 to convergence to determine q"

=limn→" qn, and then find the expected steady-state density
of active nodes in the network as

! = !0 + #1 − !0$%
k=0

"

pk%
m=0

k & k

m
'q"

m#1 − q"$k−mF#m,k$ ( h#q"$ .

#4$

To derive Eq. #4$ we examine the central node of the tree,
which has k children with probability pk !26". The quantity !
is the average #over an ensemble of realizations$ of the
steady-state cascade size in networks characterized by pk,
with dynamics specified by F#m ,k$.

The only feature of the response function F that is crucial
to our derivations is that it is a nondecreasing function of m
for any fixed k. It is therefore straightforward to generalize
our approach to calculate the expected cascade size in a va-
riety of dynamical problems which also obey this condition
#and in which nodes, once activated, remain permanently
active$. Note that the use of the tree structure in this deriva-
tion assumes that the fraction !0 of seed nodes is nonvanish-
ing. Cases where cascades are initialized by single-node
seeds #i.e., !0=1 /N$ require further consideration; see Ap-
pendix A.

B. Other models

1. Absolute number of active neighbors

In their recent paper !27", Galstyan and Cohen examine a
version of Watts’ model in which the absolute number of
active neighbors, rather than the fraction of the total number
as in !13", is compared with the nodes’ thresholds to deter-
mine the subsequent states. The corresponding response
function for Eqs. #1$ and #4$ is thus

F#m,k$ = C#m$ , #5$

with C being the cdf of thresholds as before. We consider
this example in some detail in Sec. IV below, where the fact
that the response function is independent of the nodal degree
k will lead to significant simplification.

2. Site and bond percolation

Percolation on random networks has been extensively
studied !20,28–30" and formulas for the size of the giant
connected component have been determined using generat-
ing function methods !20" and applied to study network re-
silience and epidemic thresholds. Here we point out that
these are special cases of our general approach, correspond-
ing to suitable choices for the response function in Eqs. #1$
and #4$.

In the bond percolation problem, network edges are occu-
pied with probability p and nodes become infected #active$ if
they are linked to an infected node by an occupied edge.
Thus with m active neighbors, a node has probability
#1− p$m of not becoming infected, so the response function
for this case is
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derived in Secs. IV and V, and examples of time-dependent
infection in community-structure networks and k-core sizes
in correlated graphs demonstrate the excellent agreement of
theory with numerical simulations. Appendixes A and B ad-
dress the effects of single-seed activations, and the simplifi-
cation of the equations under special assumptions.

II. GENERALIZED MODEL

In this section we briefly review our earlier work on
Watts’ model, and then demonstrate how analytical results
for the mean cascade size may also be found for a variety of
other cases of interest. The response functions introduced
here form the basis for extending the theory to time-
dependent cases on modular or correlated networks in Secs.
III–V.

A. Watts’ model

In our recent paper !26" we derived analytical expressions
for the mean avalanche size in Watts’ model of threshold
dynamics !13". In this model, each node of the network is
assigned a random #frozen$ threshold r from a specified dis-
tribution, and when updated, the node #of degree k, say$ be-
comes active if the fraction m /k of its neighbors which are
active exceeds r. Cascades are initiated by randomly activat-
ing a seed fraction !0 of the nodes.

By approximating the random network by a tree structure
and then defining the probability qn that a random node at
level n of the tree is active, conditional on its parent in the
tree being inactive, we derived the following iteration equa-
tion:

qn+1 = !0 + #1 − !0$%
k=1

"
k

z
pk%

m=0

k−1 &k − 1

m
'qn

m#1 − qn$k−1−mF#m,k$

( g#qn$ . #1$

Here pk is the degree distribution #probability that a node has
k neighbors$ of the configuration-model network, z is the
mean degree %kkpk, and the response function is

F#m,k$ = C&m

k
' , #2$

where C is the cumulative distribution function #cdf$ of the
thresholds. If, for example, all nodes have the same threshold
R, the response function is

F#m,k$ = )0 if m # Rk ,

1 if m $ Rk .
* #3$

The derivation of Eq. #1$ uses the fact that the
degree distribution of nearest neighbors on a tree is
kpk /z, and also that a node with k−1 n-level children of
which m are active becomes active itself with probability
# k−1

m $qn
m#1−qn$k−1−mF#m ,k$. As discussed in detail in !26", it

is crucial that the state of each node may be altered at most
once—it is this property that allows us to ignore propagation
of activity away from the central node of the tree and treat
each node as activated from its children.

Given an initial random fraction !0 of active nodes, we
iterate Eq. #1$ from q0=!0 to convergence to determine q"

=limn→" qn, and then find the expected steady-state density
of active nodes in the network as

! = !0 + #1 − !0$%
k=0

"

pk%
m=0

k & k

m
'q"

m#1 − q"$k−mF#m,k$ ( h#q"$ .

#4$

To derive Eq. #4$ we examine the central node of the tree,
which has k children with probability pk !26". The quantity !
is the average #over an ensemble of realizations$ of the
steady-state cascade size in networks characterized by pk,
with dynamics specified by F#m ,k$.

The only feature of the response function F that is crucial
to our derivations is that it is a nondecreasing function of m
for any fixed k. It is therefore straightforward to generalize
our approach to calculate the expected cascade size in a va-
riety of dynamical problems which also obey this condition
#and in which nodes, once activated, remain permanently
active$. Note that the use of the tree structure in this deriva-
tion assumes that the fraction !0 of seed nodes is nonvanish-
ing. Cases where cascades are initialized by single-node
seeds #i.e., !0=1 /N$ require further consideration; see Ap-
pendix A.

B. Other models

1. Absolute number of active neighbors

In their recent paper !27", Galstyan and Cohen examine a
version of Watts’ model in which the absolute number of
active neighbors, rather than the fraction of the total number
as in !13", is compared with the nodes’ thresholds to deter-
mine the subsequent states. The corresponding response
function for Eqs. #1$ and #4$ is thus

F#m,k$ = C#m$ , #5$

with C being the cdf of thresholds as before. We consider
this example in some detail in Sec. IV below, where the fact
that the response function is independent of the nodal degree
k will lead to significant simplification.

2. Site and bond percolation

Percolation on random networks has been extensively
studied !20,28–30" and formulas for the size of the giant
connected component have been determined using generat-
ing function methods !20" and applied to study network re-
silience and epidemic thresholds. Here we point out that
these are special cases of our general approach, correspond-
ing to suitable choices for the response function in Eqs. #1$
and #4$.

In the bond percolation problem, network edges are occu-
pied with probability p and nodes become infected #active$ if
they are linked to an infected node by an occupied edge.
Thus with m active neighbors, a node has probability
#1− p$m of not becoming infected, so the response function
for this case is
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derived in Secs. IV and V, and examples of time-dependent
infection in community-structure networks and k-core sizes
in correlated graphs demonstrate the excellent agreement of
theory with numerical simulations. Appendixes A and B ad-
dress the effects of single-seed activations, and the simplifi-
cation of the equations under special assumptions.

II. GENERALIZED MODEL

In this section we briefly review our earlier work on
Watts’ model, and then demonstrate how analytical results
for the mean cascade size may also be found for a variety of
other cases of interest. The response functions introduced
here form the basis for extending the theory to time-
dependent cases on modular or correlated networks in Secs.
III–V.

A. Watts’ model

In our recent paper !26" we derived analytical expressions
for the mean avalanche size in Watts’ model of threshold
dynamics !13". In this model, each node of the network is
assigned a random #frozen$ threshold r from a specified dis-
tribution, and when updated, the node #of degree k, say$ be-
comes active if the fraction m /k of its neighbors which are
active exceeds r. Cascades are initiated by randomly activat-
ing a seed fraction !0 of the nodes.

By approximating the random network by a tree structure
and then defining the probability qn that a random node at
level n of the tree is active, conditional on its parent in the
tree being inactive, we derived the following iteration equa-
tion:

qn+1 = !0 + #1 − !0$%
k=1

"
k

z
pk%

m=0

k−1 &k − 1

m
'qn

m#1 − qn$k−1−mF#m,k$

( g#qn$ . #1$

Here pk is the degree distribution #probability that a node has
k neighbors$ of the configuration-model network, z is the
mean degree %kkpk, and the response function is

F#m,k$ = C&m

k
' , #2$

where C is the cumulative distribution function #cdf$ of the
thresholds. If, for example, all nodes have the same threshold
R, the response function is

F#m,k$ = )0 if m # Rk ,

1 if m $ Rk .
* #3$

The derivation of Eq. #1$ uses the fact that the
degree distribution of nearest neighbors on a tree is
kpk /z, and also that a node with k−1 n-level children of
which m are active becomes active itself with probability
# k−1

m $qn
m#1−qn$k−1−mF#m ,k$. As discussed in detail in !26", it

is crucial that the state of each node may be altered at most
once—it is this property that allows us to ignore propagation
of activity away from the central node of the tree and treat
each node as activated from its children.

Given an initial random fraction !0 of active nodes, we
iterate Eq. #1$ from q0=!0 to convergence to determine q"

=limn→" qn, and then find the expected steady-state density
of active nodes in the network as

! = !0 + #1 − !0$%
k=0

"

pk%
m=0

k & k

m
'q"

m#1 − q"$k−mF#m,k$ ( h#q"$ .

#4$

To derive Eq. #4$ we examine the central node of the tree,
which has k children with probability pk !26". The quantity !
is the average #over an ensemble of realizations$ of the
steady-state cascade size in networks characterized by pk,
with dynamics specified by F#m ,k$.

The only feature of the response function F that is crucial
to our derivations is that it is a nondecreasing function of m
for any fixed k. It is therefore straightforward to generalize
our approach to calculate the expected cascade size in a va-
riety of dynamical problems which also obey this condition
#and in which nodes, once activated, remain permanently
active$. Note that the use of the tree structure in this deriva-
tion assumes that the fraction !0 of seed nodes is nonvanish-
ing. Cases where cascades are initialized by single-node
seeds #i.e., !0=1 /N$ require further consideration; see Ap-
pendix A.

B. Other models

1. Absolute number of active neighbors

In their recent paper !27", Galstyan and Cohen examine a
version of Watts’ model in which the absolute number of
active neighbors, rather than the fraction of the total number
as in !13", is compared with the nodes’ thresholds to deter-
mine the subsequent states. The corresponding response
function for Eqs. #1$ and #4$ is thus

F#m,k$ = C#m$ , #5$

with C being the cdf of thresholds as before. We consider
this example in some detail in Sec. IV below, where the fact
that the response function is independent of the nodal degree
k will lead to significant simplification.

2. Site and bond percolation

Percolation on random networks has been extensively
studied !20,28–30" and formulas for the size of the giant
connected component have been determined using generat-
ing function methods !20" and applied to study network re-
silience and epidemic thresholds. Here we point out that
these are special cases of our general approach, correspond-
ing to suitable choices for the response function in Eqs. #1$
and #4$.

In the bond percolation problem, network edges are occu-
pied with probability p and nodes become infected #active$ if
they are linked to an infected node by an occupied edge.
Thus with m active neighbors, a node has probability
#1− p$m of not becoming infected, so the response function
for this case is
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derived in Secs. IV and V, and examples of time-dependent
infection in community-structure networks and k-core sizes
in correlated graphs demonstrate the excellent agreement of
theory with numerical simulations. Appendixes A and B ad-
dress the effects of single-seed activations, and the simplifi-
cation of the equations under special assumptions.

II. GENERALIZED MODEL

In this section we briefly review our earlier work on
Watts’ model, and then demonstrate how analytical results
for the mean cascade size may also be found for a variety of
other cases of interest. The response functions introduced
here form the basis for extending the theory to time-
dependent cases on modular or correlated networks in Secs.
III–V.

A. Watts’ model

In our recent paper !26" we derived analytical expressions
for the mean avalanche size in Watts’ model of threshold
dynamics !13". In this model, each node of the network is
assigned a random #frozen$ threshold r from a specified dis-
tribution, and when updated, the node #of degree k, say$ be-
comes active if the fraction m /k of its neighbors which are
active exceeds r. Cascades are initiated by randomly activat-
ing a seed fraction !0 of the nodes.

By approximating the random network by a tree structure
and then defining the probability qn that a random node at
level n of the tree is active, conditional on its parent in the
tree being inactive, we derived the following iteration equa-
tion:

qn+1 = !0 + #1 − !0$%
k=1

"
k

z
pk%

m=0

k−1 &k − 1

m
'qn

m#1 − qn$k−1−mF#m,k$

( g#qn$ . #1$

Here pk is the degree distribution #probability that a node has
k neighbors$ of the configuration-model network, z is the
mean degree %kkpk, and the response function is

F#m,k$ = C&m

k
' , #2$

where C is the cumulative distribution function #cdf$ of the
thresholds. If, for example, all nodes have the same threshold
R, the response function is

F#m,k$ = )0 if m # Rk ,

1 if m $ Rk .
* #3$

The derivation of Eq. #1$ uses the fact that the
degree distribution of nearest neighbors on a tree is
kpk /z, and also that a node with k−1 n-level children of
which m are active becomes active itself with probability
# k−1

m $qn
m#1−qn$k−1−mF#m ,k$. As discussed in detail in !26", it

is crucial that the state of each node may be altered at most
once—it is this property that allows us to ignore propagation
of activity away from the central node of the tree and treat
each node as activated from its children.

Given an initial random fraction !0 of active nodes, we
iterate Eq. #1$ from q0=!0 to convergence to determine q"

=limn→" qn, and then find the expected steady-state density
of active nodes in the network as

! = !0 + #1 − !0$%
k=0

"

pk%
m=0

k & k

m
'q"

m#1 − q"$k−mF#m,k$ ( h#q"$ .

#4$

To derive Eq. #4$ we examine the central node of the tree,
which has k children with probability pk !26". The quantity !
is the average #over an ensemble of realizations$ of the
steady-state cascade size in networks characterized by pk,
with dynamics specified by F#m ,k$.

The only feature of the response function F that is crucial
to our derivations is that it is a nondecreasing function of m
for any fixed k. It is therefore straightforward to generalize
our approach to calculate the expected cascade size in a va-
riety of dynamical problems which also obey this condition
#and in which nodes, once activated, remain permanently
active$. Note that the use of the tree structure in this deriva-
tion assumes that the fraction !0 of seed nodes is nonvanish-
ing. Cases where cascades are initialized by single-node
seeds #i.e., !0=1 /N$ require further consideration; see Ap-
pendix A.

B. Other models

1. Absolute number of active neighbors

In their recent paper !27", Galstyan and Cohen examine a
version of Watts’ model in which the absolute number of
active neighbors, rather than the fraction of the total number
as in !13", is compared with the nodes’ thresholds to deter-
mine the subsequent states. The corresponding response
function for Eqs. #1$ and #4$ is thus

F#m,k$ = C#m$ , #5$

with C being the cdf of thresholds as before. We consider
this example in some detail in Sec. IV below, where the fact
that the response function is independent of the nodal degree
k will lead to significant simplification.

2. Site and bond percolation

Percolation on random networks has been extensively
studied !20,28–30" and formulas for the size of the giant
connected component have been determined using generat-
ing function methods !20" and applied to study network re-
silience and epidemic thresholds. Here we point out that
these are special cases of our general approach, correspond-
ing to suitable choices for the response function in Eqs. #1$
and #4$.

In the bond percolation problem, network edges are occu-
pied with probability p and nodes become infected #active$ if
they are linked to an infected node by an occupied edge.
Thus with m active neighbors, a node has probability
#1− p$m of not becoming infected, so the response function
for this case is
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derived in Secs. IV and V, and examples of time-dependent
infection in community-structure networks and k-core sizes
in correlated graphs demonstrate the excellent agreement of
theory with numerical simulations. Appendixes A and B ad-
dress the effects of single-seed activations, and the simplifi-
cation of the equations under special assumptions.

II. GENERALIZED MODEL

In this section we briefly review our earlier work on
Watts’ model, and then demonstrate how analytical results
for the mean cascade size may also be found for a variety of
other cases of interest. The response functions introduced
here form the basis for extending the theory to time-
dependent cases on modular or correlated networks in Secs.
III–V.

A. Watts’ model

In our recent paper !26" we derived analytical expressions
for the mean avalanche size in Watts’ model of threshold
dynamics !13". In this model, each node of the network is
assigned a random #frozen$ threshold r from a specified dis-
tribution, and when updated, the node #of degree k, say$ be-
comes active if the fraction m /k of its neighbors which are
active exceeds r. Cascades are initiated by randomly activat-
ing a seed fraction !0 of the nodes.

By approximating the random network by a tree structure
and then defining the probability qn that a random node at
level n of the tree is active, conditional on its parent in the
tree being inactive, we derived the following iteration equa-
tion:

qn+1 = !0 + #1 − !0$%
k=1
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k−1 &k − 1

m
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m#1 − qn$k−1−mF#m,k$
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Here pk is the degree distribution #probability that a node has
k neighbors$ of the configuration-model network, z is the
mean degree %kkpk, and the response function is

F#m,k$ = C&m

k
' , #2$

where C is the cumulative distribution function #cdf$ of the
thresholds. If, for example, all nodes have the same threshold
R, the response function is

F#m,k$ = )0 if m # Rk ,

1 if m $ Rk .
* #3$

The derivation of Eq. #1$ uses the fact that the
degree distribution of nearest neighbors on a tree is
kpk /z, and also that a node with k−1 n-level children of
which m are active becomes active itself with probability
# k−1

m $qn
m#1−qn$k−1−mF#m ,k$. As discussed in detail in !26", it

is crucial that the state of each node may be altered at most
once—it is this property that allows us to ignore propagation
of activity away from the central node of the tree and treat
each node as activated from its children.

Given an initial random fraction !0 of active nodes, we
iterate Eq. #1$ from q0=!0 to convergence to determine q"

=limn→" qn, and then find the expected steady-state density
of active nodes in the network as

! = !0 + #1 − !0$%
k=0

"

pk%
m=0

k & k

m
'q"

m#1 − q"$k−mF#m,k$ ( h#q"$ .

#4$

To derive Eq. #4$ we examine the central node of the tree,
which has k children with probability pk !26". The quantity !
is the average #over an ensemble of realizations$ of the
steady-state cascade size in networks characterized by pk,
with dynamics specified by F#m ,k$.

The only feature of the response function F that is crucial
to our derivations is that it is a nondecreasing function of m
for any fixed k. It is therefore straightforward to generalize
our approach to calculate the expected cascade size in a va-
riety of dynamical problems which also obey this condition
#and in which nodes, once activated, remain permanently
active$. Note that the use of the tree structure in this deriva-
tion assumes that the fraction !0 of seed nodes is nonvanish-
ing. Cases where cascades are initialized by single-node
seeds #i.e., !0=1 /N$ require further consideration; see Ap-
pendix A.

B. Other models

1. Absolute number of active neighbors

In their recent paper !27", Galstyan and Cohen examine a
version of Watts’ model in which the absolute number of
active neighbors, rather than the fraction of the total number
as in !13", is compared with the nodes’ thresholds to deter-
mine the subsequent states. The corresponding response
function for Eqs. #1$ and #4$ is thus

F#m,k$ = C#m$ , #5$

with C being the cdf of thresholds as before. We consider
this example in some detail in Sec. IV below, where the fact
that the response function is independent of the nodal degree
k will lead to significant simplification.

2. Site and bond percolation

Percolation on random networks has been extensively
studied !20,28–30" and formulas for the size of the giant
connected component have been determined using generat-
ing function methods !20" and applied to study network re-
silience and epidemic thresholds. Here we point out that
these are special cases of our general approach, correspond-
ing to suitable choices for the response function in Eqs. #1$
and #4$.

In the bond percolation problem, network edges are occu-
pied with probability p and nodes become infected #active$ if
they are linked to an infected node by an occupied edge.
Thus with m active neighbors, a node has probability
#1− p$m of not becoming infected, so the response function
for this case is
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derived in Secs. IV and V, and examples of time-dependent
infection in community-structure networks and k-core sizes
in correlated graphs demonstrate the excellent agreement of
theory with numerical simulations. Appendixes A and B ad-
dress the effects of single-seed activations, and the simplifi-
cation of the equations under special assumptions.

II. GENERALIZED MODEL

In this section we briefly review our earlier work on
Watts’ model, and then demonstrate how analytical results
for the mean cascade size may also be found for a variety of
other cases of interest. The response functions introduced
here form the basis for extending the theory to time-
dependent cases on modular or correlated networks in Secs.
III–V.

A. Watts’ model

In our recent paper !26" we derived analytical expressions
for the mean avalanche size in Watts’ model of threshold
dynamics !13". In this model, each node of the network is
assigned a random #frozen$ threshold r from a specified dis-
tribution, and when updated, the node #of degree k, say$ be-
comes active if the fraction m /k of its neighbors which are
active exceeds r. Cascades are initiated by randomly activat-
ing a seed fraction !0 of the nodes.

By approximating the random network by a tree structure
and then defining the probability qn that a random node at
level n of the tree is active, conditional on its parent in the
tree being inactive, we derived the following iteration equa-
tion:

qn+1 = !0 + #1 − !0$%
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Here pk is the degree distribution #probability that a node has
k neighbors$ of the configuration-model network, z is the
mean degree %kkpk, and the response function is

F#m,k$ = C&m

k
' , #2$

where C is the cumulative distribution function #cdf$ of the
thresholds. If, for example, all nodes have the same threshold
R, the response function is

F#m,k$ = )0 if m # Rk ,

1 if m $ Rk .
* #3$

The derivation of Eq. #1$ uses the fact that the
degree distribution of nearest neighbors on a tree is
kpk /z, and also that a node with k−1 n-level children of
which m are active becomes active itself with probability
# k−1

m $qn
m#1−qn$k−1−mF#m ,k$. As discussed in detail in !26", it

is crucial that the state of each node may be altered at most
once—it is this property that allows us to ignore propagation
of activity away from the central node of the tree and treat
each node as activated from its children.

Given an initial random fraction !0 of active nodes, we
iterate Eq. #1$ from q0=!0 to convergence to determine q"

=limn→" qn, and then find the expected steady-state density
of active nodes in the network as
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To derive Eq. #4$ we examine the central node of the tree,
which has k children with probability pk !26". The quantity !
is the average #over an ensemble of realizations$ of the
steady-state cascade size in networks characterized by pk,
with dynamics specified by F#m ,k$.

The only feature of the response function F that is crucial
to our derivations is that it is a nondecreasing function of m
for any fixed k. It is therefore straightforward to generalize
our approach to calculate the expected cascade size in a va-
riety of dynamical problems which also obey this condition
#and in which nodes, once activated, remain permanently
active$. Note that the use of the tree structure in this deriva-
tion assumes that the fraction !0 of seed nodes is nonvanish-
ing. Cases where cascades are initialized by single-node
seeds #i.e., !0=1 /N$ require further consideration; see Ap-
pendix A.

B. Other models

1. Absolute number of active neighbors

In their recent paper !27", Galstyan and Cohen examine a
version of Watts’ model in which the absolute number of
active neighbors, rather than the fraction of the total number
as in !13", is compared with the nodes’ thresholds to deter-
mine the subsequent states. The corresponding response
function for Eqs. #1$ and #4$ is thus

F#m,k$ = C#m$ , #5$

with C being the cdf of thresholds as before. We consider
this example in some detail in Sec. IV below, where the fact
that the response function is independent of the nodal degree
k will lead to significant simplification.

2. Site and bond percolation

Percolation on random networks has been extensively
studied !20,28–30" and formulas for the size of the giant
connected component have been determined using generat-
ing function methods !20" and applied to study network re-
silience and epidemic thresholds. Here we point out that
these are special cases of our general approach, correspond-
ing to suitable choices for the response function in Eqs. #1$
and #4$.

In the bond percolation problem, network edges are occu-
pied with probability p and nodes become infected #active$ if
they are linked to an infected node by an occupied edge.
Thus with m active neighbors, a node has probability
#1− p$m of not becoming infected, so the response function
for this case is
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derived in Secs. IV and V, and examples of time-dependent
infection in community-structure networks and k-core sizes
in correlated graphs demonstrate the excellent agreement of
theory with numerical simulations. Appendixes A and B ad-
dress the effects of single-seed activations, and the simplifi-
cation of the equations under special assumptions.

II. GENERALIZED MODEL

In this section we briefly review our earlier work on
Watts’ model, and then demonstrate how analytical results
for the mean cascade size may also be found for a variety of
other cases of interest. The response functions introduced
here form the basis for extending the theory to time-
dependent cases on modular or correlated networks in Secs.
III–V.

A. Watts’ model

In our recent paper !26" we derived analytical expressions
for the mean avalanche size in Watts’ model of threshold
dynamics !13". In this model, each node of the network is
assigned a random #frozen$ threshold r from a specified dis-
tribution, and when updated, the node #of degree k, say$ be-
comes active if the fraction m /k of its neighbors which are
active exceeds r. Cascades are initiated by randomly activat-
ing a seed fraction !0 of the nodes.

By approximating the random network by a tree structure
and then defining the probability qn that a random node at
level n of the tree is active, conditional on its parent in the
tree being inactive, we derived the following iteration equa-
tion:
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Here pk is the degree distribution #probability that a node has
k neighbors$ of the configuration-model network, z is the
mean degree %kkpk, and the response function is

F#m,k$ = C&m

k
' , #2$

where C is the cumulative distribution function #cdf$ of the
thresholds. If, for example, all nodes have the same threshold
R, the response function is

F#m,k$ = )0 if m # Rk ,

1 if m $ Rk .
* #3$

The derivation of Eq. #1$ uses the fact that the
degree distribution of nearest neighbors on a tree is
kpk /z, and also that a node with k−1 n-level children of
which m are active becomes active itself with probability
# k−1

m $qn
m#1−qn$k−1−mF#m ,k$. As discussed in detail in !26", it

is crucial that the state of each node may be altered at most
once—it is this property that allows us to ignore propagation
of activity away from the central node of the tree and treat
each node as activated from its children.

Given an initial random fraction !0 of active nodes, we
iterate Eq. #1$ from q0=!0 to convergence to determine q"

=limn→" qn, and then find the expected steady-state density
of active nodes in the network as

! = !0 + #1 − !0$%
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To derive Eq. #4$ we examine the central node of the tree,
which has k children with probability pk !26". The quantity !
is the average #over an ensemble of realizations$ of the
steady-state cascade size in networks characterized by pk,
with dynamics specified by F#m ,k$.

The only feature of the response function F that is crucial
to our derivations is that it is a nondecreasing function of m
for any fixed k. It is therefore straightforward to generalize
our approach to calculate the expected cascade size in a va-
riety of dynamical problems which also obey this condition
#and in which nodes, once activated, remain permanently
active$. Note that the use of the tree structure in this deriva-
tion assumes that the fraction !0 of seed nodes is nonvanish-
ing. Cases where cascades are initialized by single-node
seeds #i.e., !0=1 /N$ require further consideration; see Ap-
pendix A.

B. Other models

1. Absolute number of active neighbors

In their recent paper !27", Galstyan and Cohen examine a
version of Watts’ model in which the absolute number of
active neighbors, rather than the fraction of the total number
as in !13", is compared with the nodes’ thresholds to deter-
mine the subsequent states. The corresponding response
function for Eqs. #1$ and #4$ is thus

F#m,k$ = C#m$ , #5$

with C being the cdf of thresholds as before. We consider
this example in some detail in Sec. IV below, where the fact
that the response function is independent of the nodal degree
k will lead to significant simplification.

2. Site and bond percolation

Percolation on random networks has been extensively
studied !20,28–30" and formulas for the size of the giant
connected component have been determined using generat-
ing function methods !20" and applied to study network re-
silience and epidemic thresholds. Here we point out that
these are special cases of our general approach, correspond-
ing to suitable choices for the response function in Eqs. #1$
and #4$.

In the bond percolation problem, network edges are occu-
pied with probability p and nodes become infected #active$ if
they are linked to an infected node by an occupied edge.
Thus with m active neighbors, a node has probability
#1− p$m of not becoming infected, so the response function
for this case is
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derived in Secs. IV and V, and examples of time-dependent
infection in community-structure networks and k-core sizes
in correlated graphs demonstrate the excellent agreement of
theory with numerical simulations. Appendixes A and B ad-
dress the effects of single-seed activations, and the simplifi-
cation of the equations under special assumptions.

II. GENERALIZED MODEL

In this section we briefly review our earlier work on
Watts’ model, and then demonstrate how analytical results
for the mean cascade size may also be found for a variety of
other cases of interest. The response functions introduced
here form the basis for extending the theory to time-
dependent cases on modular or correlated networks in Secs.
III–V.

A. Watts’ model

In our recent paper !26" we derived analytical expressions
for the mean avalanche size in Watts’ model of threshold
dynamics !13". In this model, each node of the network is
assigned a random #frozen$ threshold r from a specified dis-
tribution, and when updated, the node #of degree k, say$ be-
comes active if the fraction m /k of its neighbors which are
active exceeds r. Cascades are initiated by randomly activat-
ing a seed fraction !0 of the nodes.

By approximating the random network by a tree structure
and then defining the probability qn that a random node at
level n of the tree is active, conditional on its parent in the
tree being inactive, we derived the following iteration equa-
tion:
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Here pk is the degree distribution #probability that a node has
k neighbors$ of the configuration-model network, z is the
mean degree %kkpk, and the response function is

F#m,k$ = C&m
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where C is the cumulative distribution function #cdf$ of the
thresholds. If, for example, all nodes have the same threshold
R, the response function is

F#m,k$ = )0 if m # Rk ,

1 if m $ Rk .
* #3$

The derivation of Eq. #1$ uses the fact that the
degree distribution of nearest neighbors on a tree is
kpk /z, and also that a node with k−1 n-level children of
which m are active becomes active itself with probability
# k−1

m $qn
m#1−qn$k−1−mF#m ,k$. As discussed in detail in !26", it

is crucial that the state of each node may be altered at most
once—it is this property that allows us to ignore propagation
of activity away from the central node of the tree and treat
each node as activated from its children.

Given an initial random fraction !0 of active nodes, we
iterate Eq. #1$ from q0=!0 to convergence to determine q"

=limn→" qn, and then find the expected steady-state density
of active nodes in the network as
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To derive Eq. #4$ we examine the central node of the tree,
which has k children with probability pk !26". The quantity !
is the average #over an ensemble of realizations$ of the
steady-state cascade size in networks characterized by pk,
with dynamics specified by F#m ,k$.

The only feature of the response function F that is crucial
to our derivations is that it is a nondecreasing function of m
for any fixed k. It is therefore straightforward to generalize
our approach to calculate the expected cascade size in a va-
riety of dynamical problems which also obey this condition
#and in which nodes, once activated, remain permanently
active$. Note that the use of the tree structure in this deriva-
tion assumes that the fraction !0 of seed nodes is nonvanish-
ing. Cases where cascades are initialized by single-node
seeds #i.e., !0=1 /N$ require further consideration; see Ap-
pendix A.

B. Other models

1. Absolute number of active neighbors

In their recent paper !27", Galstyan and Cohen examine a
version of Watts’ model in which the absolute number of
active neighbors, rather than the fraction of the total number
as in !13", is compared with the nodes’ thresholds to deter-
mine the subsequent states. The corresponding response
function for Eqs. #1$ and #4$ is thus

F#m,k$ = C#m$ , #5$

with C being the cdf of thresholds as before. We consider
this example in some detail in Sec. IV below, where the fact
that the response function is independent of the nodal degree
k will lead to significant simplification.

2. Site and bond percolation

Percolation on random networks has been extensively
studied !20,28–30" and formulas for the size of the giant
connected component have been determined using generat-
ing function methods !20" and applied to study network re-
silience and epidemic thresholds. Here we point out that
these are special cases of our general approach, correspond-
ing to suitable choices for the response function in Eqs. #1$
and #4$.

In the bond percolation problem, network edges are occu-
pied with probability p and nodes become infected #active$ if
they are linked to an infected node by an occupied edge.
Thus with m active neighbors, a node has probability
#1− p$m of not becoming infected, so the response function
for this case is
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derived in Secs. IV and V, and examples of time-dependent
infection in community-structure networks and k-core sizes
in correlated graphs demonstrate the excellent agreement of
theory with numerical simulations. Appendixes A and B ad-
dress the effects of single-seed activations, and the simplifi-
cation of the equations under special assumptions.

II. GENERALIZED MODEL

In this section we briefly review our earlier work on
Watts’ model, and then demonstrate how analytical results
for the mean cascade size may also be found for a variety of
other cases of interest. The response functions introduced
here form the basis for extending the theory to time-
dependent cases on modular or correlated networks in Secs.
III–V.

A. Watts’ model

In our recent paper !26" we derived analytical expressions
for the mean avalanche size in Watts’ model of threshold
dynamics !13". In this model, each node of the network is
assigned a random #frozen$ threshold r from a specified dis-
tribution, and when updated, the node #of degree k, say$ be-
comes active if the fraction m /k of its neighbors which are
active exceeds r. Cascades are initiated by randomly activat-
ing a seed fraction !0 of the nodes.

By approximating the random network by a tree structure
and then defining the probability qn that a random node at
level n of the tree is active, conditional on its parent in the
tree being inactive, we derived the following iteration equa-
tion:
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mean degree %kkpk, and the response function is
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where C is the cumulative distribution function #cdf$ of the
thresholds. If, for example, all nodes have the same threshold
R, the response function is

F#m,k$ = )0 if m # Rk ,

1 if m $ Rk .
* #3$

The derivation of Eq. #1$ uses the fact that the
degree distribution of nearest neighbors on a tree is
kpk /z, and also that a node with k−1 n-level children of
which m are active becomes active itself with probability
# k−1
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m#1−qn$k−1−mF#m ,k$. As discussed in detail in !26", it

is crucial that the state of each node may be altered at most
once—it is this property that allows us to ignore propagation
of activity away from the central node of the tree and treat
each node as activated from its children.

Given an initial random fraction !0 of active nodes, we
iterate Eq. #1$ from q0=!0 to convergence to determine q"

=limn→" qn, and then find the expected steady-state density
of active nodes in the network as
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To derive Eq. #4$ we examine the central node of the tree,
which has k children with probability pk !26". The quantity !
is the average #over an ensemble of realizations$ of the
steady-state cascade size in networks characterized by pk,
with dynamics specified by F#m ,k$.

The only feature of the response function F that is crucial
to our derivations is that it is a nondecreasing function of m
for any fixed k. It is therefore straightforward to generalize
our approach to calculate the expected cascade size in a va-
riety of dynamical problems which also obey this condition
#and in which nodes, once activated, remain permanently
active$. Note that the use of the tree structure in this deriva-
tion assumes that the fraction !0 of seed nodes is nonvanish-
ing. Cases where cascades are initialized by single-node
seeds #i.e., !0=1 /N$ require further consideration; see Ap-
pendix A.

B. Other models

1. Absolute number of active neighbors

In their recent paper !27", Galstyan and Cohen examine a
version of Watts’ model in which the absolute number of
active neighbors, rather than the fraction of the total number
as in !13", is compared with the nodes’ thresholds to deter-
mine the subsequent states. The corresponding response
function for Eqs. #1$ and #4$ is thus

F#m,k$ = C#m$ , #5$

with C being the cdf of thresholds as before. We consider
this example in some detail in Sec. IV below, where the fact
that the response function is independent of the nodal degree
k will lead to significant simplification.

2. Site and bond percolation

Percolation on random networks has been extensively
studied !20,28–30" and formulas for the size of the giant
connected component have been determined using generat-
ing function methods !20" and applied to study network re-
silience and epidemic thresholds. Here we point out that
these are special cases of our general approach, correspond-
ing to suitable choices for the response function in Eqs. #1$
and #4$.

In the bond percolation problem, network edges are occu-
pied with probability p and nodes become infected #active$ if
they are linked to an infected node by an occupied edge.
Thus with m active neighbors, a node has probability
#1− p$m of not becoming infected, so the response function
for this case is
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where z is the average degree and ȳAðBÞn ¼
ð1 − μÞyAðBÞn þ μyBðAÞn . The fraction of active nodes is
given by

ρAðBÞ∞ ¼ ρAðBÞ0 þ ð1 − ρAðBÞ0 Þ
X∞

k¼0

pðkÞ

×
Xk

m¼⌈θk⌉

!
k
m

"
ðyAðBÞ∞ Þmð1 − yAðBÞ∞ Þk−m: ð4Þ

Now, we address the issue of how communities affect
information diffusion by first highlighting the trade off due
to the strength of communities. As μ decreases, nodes in A
have increasingly more neighbors in A. Thus, the number
of seed nodes to which nodes in A are exposed also
increases because the seeds exist only in A (ρA0 ¼ 2ρ0
and ρB0 ¼ 0). In other words, strong communities enhance
local spreading. By contrast, the spreading in community B
is triggered entirely by the nodes in A, as ρB0 ¼ 0.
Therefore, larger μ (smaller modularity) helps the spreading
of the contagion to community B. The fact that large
modularity (smaller μ) facilitates the spreading in the
originating community, but small modularity (larger μ)
helps intercommunity spreading, raises the following
question: is there an optimal modularity that facilitates
both intracommunity and intercommunity spreading?
Figure 2 demonstrates that there is, indeed, a range of

values of μ that enables both. In the blue range (“local”),
strong cohesion allows intracommunity spreading in the
originating community A; in the red range (“global”), weak
modular structure allows intercommunity spreading from A
to B. The interval where blue and red overlap (purple,
“optimal”) provides the right amount of modularity to
enable global diffusion. Here, the modularity is large

enough to initiate the local spreading and small enough
to induce intercommunity spreading. If μ is too small, the
contagion cannot propagate into B, even if A is fully
saturated, because there are not enough intercommunity
bridges. If μ is too large, although there are enough bridges,
ρB∞ ≃ 0 because the modularity is too small to initiate
intracommunity spreading from A.
Let us analyze the issue in more detail. Figure 3

summarizes our results, derived analytically by MF and
TL approximations, and by numerical simulations. In our
numerical simulations, we compute the mean of ρ∞ across

FIG. 2 (color online). The tradeoff between intracommunity
and intercommunity spreading. Stronger communities (small μ)
facilitate spreading within the originating community (local),
while weak communities (large μ) provide bridges that allow
spreading between communities (global). There is a range
of μ values that allow both (optimal). The blue squares represent
ρA∞, the final density of active nodes in the community A,
and the red circles represent ρB∞. The parameters for the
simulation are ρ0 ¼ 0.17, θ ¼ 0.4, N ¼ 131056, and
z ¼ 20.

FIG. 3 (color online). (a) Phase diagram of the threshold model
in the presence of community structures with N ¼ 131 056,
z ¼ 20, and θ ¼ 0.4. There are three phases: no diffusion (white),
local diffusion that saturates the community A (blue, light-gray),
and global diffusion (red, dark-gray). The dotted and dashed lines
indicate the values of ρ0 shown in (b) and (c). (b) Cross sections
of the phase diagram [dotted lines in (a)]. TL approximations
(solid lines) show excellent agreement with the simulation while
MF approximations (dotted lines) overestimate the possibility of
global diffusion. (c) Cross sections represented by dashed
lines in (a).
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Even strong communities 
can enhance spreading



#3 Viral memes

?





Why? How? 

The song is addictive, MV is funny, 
the dance move is great, ...





“Fame has much less to do with 
intrinsic quality than we believe it 
does, and much more to do with the 
characteristics of the people among 
whom fame spreads.”





communities can enhance 
complex contagion

(B) Social Reinforcement

High Clustering Low Clustering

(D) Retweet Network
A

Multiple
Exposures Multiple

Exposures 

(E) Follower Network

Figure 1: The importance of community structure in the spreading of social contagions.
(A) Structural trapping: dense communities with few outgoing links naturally trap informa-
tion flow. (B) Social reinforcement: people who have adopted a meme (black nodes) trigger
multiple exposures to others (red nodes). In the presence of high clustering, any additional
adoption is likely to produce more multiple exposures than in the case of low clustering, in-
ducing cascades of additional adoptions. (C) Homophily: people in the same community (same
color nodes) are more likely to be similar and to adopt the same ideas. (D) Diffusion structure
based on retweets among Twitter users sharing the hashtag #USA. Blue nodes represent English
users and red nodes are Arabic users. Node size and link weight are proportional to retweet ac-
tivity. (E) Community structure among Twitter users sharing the hashtags #BBC and #FoxNews.
Blue nodes represent #BBC users, red nodes are #FoxNews users, and users who have used both
hashtags are green. Node size is proportional to usage (tweet) activity, links represent mutual
following relations.
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Prediction 

If memes are complex contagions, 
there will be strong concentration 

of memes in communities. 



Two community detection methods

Infomap (Rosvall & 
Bergstrom, 2008)

Link clustering (Ahn, 
Bagrow, Lehmann, 2010)



120 million tweets  
(Mar 24 – Apr 25, 2012)

600k users, only 
reciprocal edges. 



Hashtags ~ Memes



Hashtags ~ Memes
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M1: Random distribution 
M2: Random diffusion
M3: Social reinforcement
M4: Homophily
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Viral memes spread 
like diseases. 



Viral memes spread 
like diseases. 

Uninteresting memes are easily 
‘trapped’ by communities while 

viral memes are not. 



Old New Less dominant More dominant

Early Stage Late Stage

(A) #ThoughtsDuringSchool

Early Stage Late Stage

(B) #ProperBand

Figure 4: Evolution of two contrasting memes (viral vs. non-viral) in terms of commu-
nity structure. We represent each community as a node, whose size is proportional to the
number of tweets produced by the community. The color of a community represents the
time when the hashtag is first used in the community. (A) The evolution of a viral meme
(#ThoughtsDuringSchool) from the early stage (30 tweets) to the late stage (200 tweets) of
diffusion. (B) The evolution of a non-viral meme (#ProperBand) from the early stage (30
tweets) to the final stage (65 tweets).
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Figure 4: Evolution of two contrasting memes (viral vs. non-viral) in terms of commu-
nity structure. We represent each community as a node, whose size is proportional to the
number of tweets produced by the community. The color of a community represents the
time when the hashtag is first used in the community. (A) The evolution of a viral meme
(#ThoughtsDuringSchool) from the early stage (30 tweets) to the late stage (200 tweets) of
diffusion. (B) The evolution of a non-viral meme (#ProperBand) from the early stage (30
tweets) to the final stage (65 tweets).
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Figure 5: F1 scores of the prediction models: (a) dlog |T | +
0.5e = 1, 2, 3, 4 and (b) dlog |A| + 0.5e = 0, 1, 2, 3, 4. The
observation window is set to n = 25, 50, 100 tweets, respec-
tively. Here we only demonstrate the results using the In-
fomap community detection method; link clustering yields
similar results.

#FavFemaleSinger
#InvisibleChildren

(b)

Figure 6: (a) Scatter plot of early popularity T ⌧ versus T for
each meme; the black dashed line is the regression line by
the LN model. (b) Cumulative popularity for two hashtags,
#FavFemaleSinger and #InvisibleChildren.

very popular memes. By combining all the features together,
Pn provides the best overall results. The network-based ap-
proach outperforms all baselines in detecting rare events—
extremely popular and extremely unpopular hashtags.

Conclusion
In summary, we investigated the problem of predicting the
future popularity of a meme with three intuitive classes of
features. First, the positions of early adopters in the network
provide information on the size of potential audience groups,
which may affect the future popularity. Second, community
diversity is a good predictor of virality, consistently with
prior findings that viral memes are less affected by commu-
nity structure (Weng, Menczer, and Ahn 2013). Finally, the
early growth rate of a meme usage can be extrapolated to
predict its future popularity, although the predictive power
is not as strong as that of other features.

We have designed prediction features based on these intu-
itions and analyses, and tested them with machine learning
techniques. The evaluation was executed against two sim-
ple baselines, as well as three more sophisticated regression
models using early popularity (LN and ML models) or so-
cial influence of early adopters (social influence model). The
LN model has been shown to be a powerful predictor for in-
ferring the future popularity of a single item, such as a tweet
or a YouTube video, but does not perform well in predicting
the popularity of hashtags. The ML model provides better
results than the LN baseline by incorporating early popu-
larity growth patterns. The social influence model is able to
achieve better performance than the LN model with knowl-
edge of network structure and topological location of each
early adopter. However, none of the three regression mod-
els is capable of capturing the most popular memes nor the
most unpopular ones. Our prediction model outperforms all
baselines in most cases, especially when predicting memes
in the crucial minority classes. The performance is robust
across different community detection methods.

Community-based features perform the best among the
three classes. Predicting the number of meme adopters is a
more difficult task, but our network-based approach outper-
forms other baseline models, especially in predicting memes
with few adopters. The performance increases with longer
observation windows.



Examining spreading patterns in terms 
of communities  

allows us to distinguish different 
dynamics (simple vs. complex)



#4 Cultural diffusion 
of food



“Tell me what you eat, and I 
will tell you what you are.” 

Jean Anthelme Brillat-Savarin 
(1755-1826)





What do we eat?







We are 
Omnivores













How do we choose?

Why do we eat X?



Because it’s delicious!



Why is it delicious?



Energy!





Sweet + Fat 
= AWESOME



Energy







Why do we eat 
spices?















Are there any other 
principles that transcend 
individuals and cultures?



fruits

dairy

spices

alcoholic beverages

nuts and seeds

seafoods

meats

herbs

plant derivatives

vegetables

flowers

animal products

plants

cereal

Categories

Prevalence

Shared
compounds



What shapes recipes?



Climate?  
Cultural interactions?



Let’s look at regional recipes

ingredients such as salt, sugar, and egg constitute a major part of
our every-day diet. As a result, the set of distinct ingredients
roughly follows Heap’s law, as seen in Fig. 4, with an exponent
around 0:64. According to the method in previous work [20], the
exponent of Zipf’s law corresponding to Fig. 3 can be estimated by

1

l{1
. The product of this exponent and the exponent of Heap’s

law (0.64) is close to 1, which is consistent with the previous result
[21].

Quantifying similarity between cuisines
Our dataset can be considered as a bipartite network with a set

of recipes and a set of ingredients. An edge between a recipe and

an ingredient indicates that the recipe contains the corresponding
ingredient. Since each recipe belongs to one and only one regional
cuisine, the edges could be categorized into cuisines. Given a
cuisine c and an ingredient i, we use nc

i to denote the degree of

ingredient i, counted with edges in cuisine c. In other words, nc
i is

the number of recipes (in cuisine c) that use ingredient i.
Therefore, the ingredient-usage vector of regional cuisine c is
written in the following form:

fPcPc~(pc
1,pc

2, . . . ,pc
i , . . . ,pc

n), ð1Þ

where pc
i ~

nc
iP

i~1 nc
i

is the probability of ingredient i appears in

cuisine c. For example, if recipes in a regional cuisine c use 1,000
ingredients (with duplicates) in total and ingredient i appears in 10

recipes in that cuisine, we have pc
i ~

10

1000
.

Since common ingredients carry little information, we use an
ingredient-usage vector inspired by TF-IDF (Term Frequency
Inverse Document Frequency) [22]:

Pc~(w1pc
1,w2pc

2, . . . ,wjp
c
i , . . . ,wnpc

n), ð2Þ

where a prior weight wi~log

P
c

P
i nc

iP
c nc

i

is introduced to penalize a

popular ingredient. We use Pc for all calculations in this paper.
With this representation in hand, we quantify the similarity
between two cuisines using the Pearson correlation coefficient (Eq.
3) and cosine similarity (Eq. 4).

(i) Pearson product-moment correlation [23]: This metric
measures the extent to which a linear relationship is present
between the two vectors. It is defined as

Figure 1. Map of regional cuisines in China.
doi:10.1371/journal.pone.0079161.g001
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Figure 2. Probability distribution of the number of ingredients
per recipe. All regional cuisines show similar distributions, which have
a peak around 10.
doi:10.1371/journal.pone.0079161.g002
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Represent each cuisine 

as a TF-IDF vector of 
ingredient usage frequency



To estimate the effect of climate we use temperature as a proxy.
We assume that the annual average temperature approximately
captures one of the most fundamental aspects of climates. As
shown in the previous work on spices [14], annual temperature
strongly predicts the usage of spices, and we further assume that
temperature is a strong climate factor that affects ingredient
availability. For two regions A and B, the temperature difference
DTA,B is simply DTA{TBD, where TA is the annual average
temperature of region A.

We quantify geographical proximity using two distance
measures: physical distance and topological distance. We measure
physical distance between two cuisines by identifying the central
cities of the cuisines and then calculating the great-circle distance
[26]. To measure topological distance between two cuisines, we
construct a graph of cuisines, where a node represents a regional
cuisine and an edge represents the adjacency of two cuisines, we
then measure topological distance by the shortest path length on
the graph. Figure 6 shows that the geographical distance and
topological distance are correlated yet exhibit large variance.

Figure 7 shows the relationship between the number of spices
per meat-based recipe in a region and the mean annual
temperature of the region. The correlation is insignificant (p-value
is 0.238), in contrast to the results of the previous work [14]. Our
result may arise due to the fact that China is still a single country
with smaller temperature variation than the whole world.

Figure 8 compares how temperature and physical distance are
related to the similarities between regional cuisines. The left
column shows the results of temperature and the right column
shows that of physical distance. Each circle represents a pair of
cuisines. The Pearson correlation coefficient between the temper-
ature difference and PCC is 20.134 (Figure 8A), indicating a weak
correlation between similarity of regional cuisines and their
temperature difference. When we delete the two outliers
mentioned above (Yungui and HK), the Pearson correlation
coefficient between the temperature difference and PCC becomes
20.216 (Figure 8C). That is, regions with similar temperature tend
to share similar usage patterns of ingredients, which is consistent
with previous results [14]. However, this may not be the effect of
temperature, because climate is correlated with distance. The
Pearson correlation coefficient between the physical distance and
PCC is 20.289 (Figure 8B), indicating a stronger correlation.
When neglecting outliers, it becomes 20.385 (Figure 8D). The

p-values of all cases indicate significant difference (p%0:05 for
both cases).

The previous analysis does not provide a complete picture, since
geography and climate are strongly correlated; nearby regions are
more likely to have similar climates. To estimate the effect of
climate and geographical proximity, we calculate partial correla-
tion [27], which is used to measure the linear association between
two factors while removing the effect of other additional factors.
The partial correlation coefficients between physical distance and
PCC, given temperature difference as a control variable, is
20.280. However, the partial correlation between temperature
difference and ingredient usage similarity, given physical distance
as a control variable, the expected negative correlation completely
vanishes and the correlation coefficient becomes 0.116. Our results
indicate that the effect of temperature on the ingredient usage
pattern may not exist at all. The results with cosine and the cases
without outliers also show the same tendency.

Here we examine the relationship between topological distance
and the similarity of cuisines. Figure 9 shows the similarity
distribution of cuisines with respect to topological distance.
Analysis of variance (ANOVA) [28] shows that the difference in
the similarity distribution is significant (p%0:001 for both cases).
The figure shows a clear trend that geographically closer regional
cuisines have more similar ingredient usage patterns. We perform
a simple permutation significance test by classifying all regional
cuisine pairs into two classes: the first class contains regional
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cuisine pairs with topological distance less than or equal to 2, and
the second class contains those of topological distance larger than
2. Denote the similarities of two classes as F (far, with topological

distance w2) and C (close, with topological distance ƒ2), and F

and C is the mean of F and C, respectively. nF and nC are the
sample sizes corresponding to each group. The null hypothesis H0

says the two classes F and C have identical probability
distributions. We performed the test as follows. First, the difference

Figure 8. The dependence of similarities between different regional cuisines on the climate and geography. (A): scatter plot of PCC and
temperature difference (all regional cuisine pairs); (B): scatter plot of PCC and physical distance (all regional cuisine pairs); (C): scatter plot of PCC and
temperature difference (neglecting outliers); (D): scatter plot of PCC and temperature difference (neglecting outliers).
doi:10.1371/journal.pone.0079161.g008

Figure 9. Similarity distributions of regional cuisine pairs with different topological distance (hops~1, hops~2, . . . , hops§6). (A): result
for all regional cuisines; (B): result when neglecting outliers.
doi:10.1371/journal.pone.0079161.g009
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Temperature and 
proximity are correlated. 



Partial correlation: 

The effect of 
temperature vanish.



The cultural diffusion seems to 
be an important driving factor. 



What is “traditional” Korean 
(Italian, …) cuisine anyway?
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