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Cultural problems



Cultural problems

How ideas and
information spread?



'How one influences
the others’
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How are real networks organized?
How can we reveal them?
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“Network Community”

"a group of densely interconnected
nodes”




“Network Community”

"a group of densely interconnected
nodes”




Hierarchy










Hierarchy implies
communities.



Hierarchical Random Graph model

A. Clauset, C. Moore, and M. E. J. Newman, Nature (2008)
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A. Clauset, C. Moore, and M. E. J. Newman, Nature (2008)



Hierarchical community
structure

Hierarchy . Communities



Overlap

‘\‘Zoom’ ‘Zoory

Hobby
Scientific
community Family

G. Palla, I. Derényi, |. Farkas & T. Vicsek, Nature (2005)



2 Asiera Tolimat
@ Mugul Namarag
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Arnold Perey, Social organization of Oksapmin, Papua New Guinea (1973)
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Seinfeld - Independent George

http://www.youtube.com/watch?v=SxuYdzs4SS8



http://www.youtube.com/watch?v=SxuYdzs4SS8
http://livepage.apple.com/

Overlap is
pervasive.



Family

buildings in same

/ neighborhood
< 1A
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University

T

joint appointment

home and work

It Is impossible to obtain a single
dendrogram.



Hierarchical community
structure

Hierarchy Communities







What is this?




Lots of overlap
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and hierarchy

Diving, Swim, Marine life Water aquatic animals
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Here is the PROBLEM.






Communities overlap.

Hierarchical structure
ex|sts.



Hierarchy implies
disjoint communities.




Hierarchical community
structure

Hierarchy Communities




How can we discover both
overlap and hierarchy?



How can we discover both
overlap and hierarchy?

link communities
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‘Nerds & geeks' relationships

_— Colleagues

S/ ‘Family' links

7 = \(\.’
Family

'Friends’ links



Nodes: multiple membership

Links: unique membership



Nodes: multiple membership

Links: unique membership

Then, why don’t we define communities in
terms of links (edges)?
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Partition Density
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The first plant (genomic scale) interactome
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Relationship vs. entities

Vol 466|5 August 2010|doi:10.1038/nature09182 nature

LETTERS

Link communities reveal multiscale complexity in
networks

Yong-Yeol Ahn"**, James P. Bagrow"** & Sune Lehmann®**

Networks have become a key approach to understanding systems  represent link communities (Fig. 1d, e and Methods). In this den-
of interacting objects, unifying the study of diverse phenomena drogram, links occupy unique positions whereas nodes naturally
including biological organisms and human society'. One crucial  occupy multiple positions, owing to their links. We extract link com-
step when studying the structure and dynamics of networks isto  munities at multiple levels by cutting this dendrogram at various
identify communities**: groups of related nodes that correspond thresholds. Each node inherits all memberships of its links and can
to functional subunits such as protein complexes®” or social thus belong to multiple, overlapping communities. Even though we
spheres®'°. Communities in networks often overlap>'® such that assign only a single membership per link, link communities can also
nodes simultaneously belong to several groups. Meanwhile, many  capture multiple relationships between nodes, because multiple
eV S O e 1 ate  nodes can simultaneously belong to several communities together.
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#2 Communities and Contagion




October 17, 1964

NoO. 4953

NATURE

Cultural diffusion = Infectious diseases?

225

GENERALIZATION OF EPIDEMIC THEORY
AN APPLICATION TO THE TRANSMISSION OF IDEAS

By Dr. WILLIAM GOFFMAN

Center of Documentation and Communication Research, School of Library Science,
Western Reserve University

AND

Da. VAUN A. NEWILL
School of Medicine, Western Reserve University. Cleveland, Ohio

NE of the most fundamental problems in the field

of information retrieval is that of determining the
circumstances under which it might be necessary to intro-
duce an information retrieval system as an aid to a given
population of scientists. It is proposed that this problem
bo examined in terms of the transmission and develop-
ment of ideas within a population. Specifically, the
transmission of ideas within a population will be treated
as if it wero the transmission of an infectious disease,
that is, in terms of an epidemic process. An attempt will
be made to indicate the role of information retrieval in
the development of such a process.

The Epidemic Model

Since the spread of disease in a population is to be our
model for the transmission of ideas, it is appropriate to
discuss the essential principles pertinent to this issue.
Theso principles are a part of epidemiology. The necoss-
ary elements involved in the process of the spread of
an infectious disease are those of : (1) a specified popu-
lation ; (2) an exposure to infectious material. The

—eemel e al® AL o iVl o LoV i L 1 DN LA o ) -

Transmission of Ideas as an 'Epidemic’ Process

In general, the ‘epidemic’ process can be characterized
as one of transition from one state (susceptible) to another
(infective) where the transition is caused by exposure to
some phenomenon (infectious material). The process
need not be restricted to infectious disease but is a more
general abstract process that might be applied to many
situations. All that is needed is the appropriate inter-
pretation of the process elements, that is, susceptibles,
mnfectives, removals, infectious material, intermediary
host, latency period, disease, etc.

People are susceptible to certain ideas and resistant to
others. Once an individual is infected with an idea he
may in turn, after some period of time, transmit it to others.
Such a process can result in an intellectual ‘epidemic’
(Table 1). For example, consider the development of
psychoanalysis in the early part of this century. Freud
was no less host to the infectious material of the ‘disease’
of psychoanalysis than the person carrying the organism
capable of transmitting a cold, nor is his writing less of a
‘vector’ carrying the ‘infectious material’ than the mos-



Maybe not



Asch conformity experiment

greater pressure

| ‘ More people exert




Randomization to Conditions

"Large” “Small”

Centola, Science, 2010



Randomization to Conditions

"Large” “Small”

Centola, Science, 2010



Randomization to Conditions

"Large” “Small”

Centola, Science, 2010



Complex Contagion
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‘Threshold’ model




So how communities
affect complex contagion?



"Of course communities
should trap contagion”









Better diffusion?



Not necessarily

Randomization to Conditions

Communities,

while hindering between-

community spreading,
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Better inter-community

spreading




Better inter-community
spreading
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Better inter-community
spreading
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Better inter-community
spreading

Better intra-community
spreading



Better inter-community
spreading
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Optimal?



Tree Like Approximation (TL)
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Gleeson, 2011.



Tree Like Approximation (TL)
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Tree Like Approximation (TL)
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Tree Like Approximation (TL)
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Tree Like Approximation (TL)

Excess degree
distribution
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Tree Like Approximation (TL)

Excess degree
distribution

g
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Tree Like Approximation (TL)
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2. Tree Like Approximation (TL)
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cven strong communities
can enhance spreading




#3 Viral memes




PSY - GANGNAM STYLE (Z'EAEIE) MV

officialpsy - 82 videos

- 352004 782,088 -
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T 8,358,033 [ 1 1,042,808




Why? How"?

The song Is addictive, MV is funny,
the dance move Is great, ...



Homo Narrativus and the Trouble with
-ame

Networks: We think that fame is deserved. We are wrong.
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NAUTILUS ISSUES BLOG D NEWSLETTER sHop f W

“Fame has much less to do with
intrinsic quality than we believe it
does, and much more to do with the
characteristics of the people among
whom fame spreads.”

BY PETER SHERIDAN DODDS
ILLUSTRATION BY DANIEL ZALKUS
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Prediction

It memes are complex contagions,
there will be strong concentration
of memes in communities.



Two community detection methods

Infomap (Rosvall & Link clustering (Ahn,
Bergstrom, 2008) Bagrow, Lehmann, 2010)



120 million tweets
(Mar 24 - Apr 25, 2012)

600k users, only
reciprocal edges.



Hashtags ~ Memes

7ol

“We did nof make the corrections suggested by
reviewer 1 because we fhink reviewer 1is a

f**ing idiot"




Hashtags ~ Memes

Ay R4 . AT

We. ' '~e don’t know how fthe ~results were obfained.

The postdoc who did all the work has since left
fo start a bakery.
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Total # tweets
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Viral memes spreaa
like diseases.



Viral memes spreaa
like diseases.

Uninteresting memes are easily
trapped’ by communities while
viral memes are not.



Old New Less dominant More dominant

I ooOOO

(A) #ThoughtsDuringSchool

30 tweets

Early Stage

(B) #ProperBand

30 tweets

Early Stage



Old New Less dominant More dominant

(A) #ThoughtsDuringSchool

30 tweets %

Early Stage
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N
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Examining spreading patterns in terms
of communities

allows us to distinguish different
dynamics (simple vs. complex)



#4 Cultural diffusion
of food



“Tell me what you eat, and |
will tell you what you are.”

Jean Anthelme Brillat-Savarin
(1755-1826)






What do we eat”?
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We are
Omnivores
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How do we choose?

Why do we eat X?



Because it's delicious!




Why is it delicious?



Energy!






Sweet + Fat
= AWESOME













Why do we eat
spices?
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In victu veritas

Harold McGee

A survey of spice use around the world concludes that spices serve
the adaptive purpose of reducing food-borne disease. It highlights,
however, the need for further research in victu— in food itself —rather

than in vitro.

ike all animals, human beings eat

to live; and food preparation is a

cultural behaviour that presumably
contributes to our fitness by making plant
and animal tissues more nourishing. But
food preparation in many cultures has
become far more elaborate than simple
survival would seem to require. Why do
we invest so much effort in adorning and
transforming our cereals, tubers, meats and
milks? In particular, why do humans bother
to flavour their foods with nutritionally
insignificant quantities of herbs and spices?
And why does tropical heat seem to foster
especially pungent cuisines?

In an extensive literature survey and cor-
relational study, published in 7% Cuariteorly
Review of Binkgy, Billing and Sherman
affirm the relationship between climate and
spiciness. They attribute it to what they con-
sider the primaryadaptive value of seasoning
— that antimicrobial compounds concen-
trated in spices reduce the incidence of food-
borne disease.

Drawing on 93 cookbooks cavering 36
countries, Billing and Sherman analysed
4,578 meat, poultry and seafood recipes for
the number and kinds of spices inchuded.
(They use ‘spice” to signify all plant flavour-
ings, whether Far Eastern natives such as
pepper and cloves, central Asian garlic and
onions, Mediterranean herbs such as thyme
and oregano, or central American chillies.
Quantities were not considered.) They
found a strong correlation between the mean
annual temperature of a given country —an
index of the rate at which foods will spoil
there — and the mean number of spices
added to its flesh dishes, which ranged from

two in Norway and three in Ireland to ten in

but found no significant correlation
between the production of a spice in a given
country and its consumption in that coun-
try. They also reject the adaptiveness of
using spices to disguise spoilage, which they
point out would increase the likelihood
of food poisoning. They conclude that
although the proximate reason for spice use
is to make food more palatable, the “ulti-
mate reason is most likely that spices help
cleanse food of pathogens and thereby con-
tribute to the health, longevity, and repro-
ductive success of people who find their
flavors enjoyable”.

Food historians and other writers have
often casually remarked that spices help pre-
serve foods, so a systematic approach to the
subject is most welcome. But correlational
studies can only be as reliable as their data
sets, and the data chosen in this study are not
well suited to shed new light on spicy heat.

The large recipe database turns out
to be a narrow source
of evidence for the
‘ultimate’  purpose
of an ancient habit
across all cultures ™ -
and historical periods.
No cookbook
consulted
ante-
dates1945,by  §
which time any
biologically deter- =~ 0 o
mined patterns of spice use
have long been obscured
by migrations of peoples
and plants, technical ad-
vanoss in agriculture, trans-
port and food handling, and

news and views
_—......... . ... 3

the null hypothesis survives pretty well
unscathed.

A second limitation of the recipe database
is that the authors consulted only English-
language cookbooks. The ingredient lists in
African and Asian books appear to have been
modified for Western readers and their
larders (no indigenous African spices make
the list, nor do Japanese wasabi or shiso, or
Chinese star anise or Szechwan pepper,
which is neither Zjas nor Caosdum).
Together with the exclusive emphasis on
meat and fish dishes, this Western orienta-
tion may also give undue weight torecipes of
the affluent few who are best able and most
likely to use ancillary ingredients. For exam-
ple, an Indian study’ found that rural labour-
ers near Hyderabad tend to spice their
predominantly cereal regimen more heavily
than the urban middle-class did its broader
diet, but with a more limited palette of chill-
ies, tamarind and turmeric. In Billing and
Shermans tabulation of spice use, this
sample of the average Indian diet would
rank closer to Ireland than to the India
of the cookbooks.

The most serious weakness in Billing and
Sherman's case for their hygienic hypothesis
is the way in which they represent the
antibacterial activities of spices. Studies in
this area have used a great variety of

\experlmental conditions.
‘ The authors there-
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Are there any other
principles that transcend
individuals and cultures?
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What shapes recipes?



Climate?
Cultural interactions?
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Let’s look at regional recipes
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Represent each cuisine

as a TF-IDF vector of
ingredient usage frequency
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Temperature ano
proximity are correlated.



Partial correlation:

The eftect of
temperature vanish.



The cultural diffusion seems to
be an important driving factor.



What is “traditional” Korean
(Italian, ...) cuisine anyway?
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