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2004 - present:

new types / cheaper urban sensors; new
ways to capture human behavior / new
forms of digital culture

- soclal media + user generated content
- higher resolution satellite photography
- location + movemen

- Arduino for inter

- data (phones)

‘acin

g with sensors

- data from city bike programs
- Oopen data movement

- elC.
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Genuino
ARDUINO OUTSIDE USA

USA ONLY

Search the Arduino Website Q

Home Buy Download Products -+ Learning + Forum  Support - Blog LOGIN SIGN UP

ARDUINO PRODUCTS > Arduino Gemma

Arduino Gemma

Arduino Gemma is a miniature wearable
microcontroller board based on the
ATtiny8S. It contains everything needed to
support the microcontroller; simply connect
it to a computer with a USB cable or power
It with a battery to get started on your
wearable projects!
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1pcs HC-SR04 Ultrasonic 5pcs KY008 Laser ICSGO010A PIR Motton

2pcs KY-008 Laser

Hal Hall S Module Distance Transmitter Module for Sensor Infrared module ADXL I
all Element Hall Switch os . o 3-axis ADXL335 Analo Transmitter Module for
$1.59 $2.45 $4.29 $7.29 $2.12 $56-12 : v
Output Accelerometer $2.09 $5.09
$2.84 $5.84

sensor Magnetic for Detect

o. ’- - _‘, ‘ : :
1 1" HX711 Weight Sensor 2.6- : Capacitive Touch Dimmer
Correlation Photoelectric

5.5V 10HZ/80Hz 1TmA LED Dimmer Precise PWM
10pcs TCRT5000 Infrared DHT22 AM2302 Digital 5PCS Soil Humidity Sensor  Switch Infrared Sensor

Reflective Photoelectric Temperature and Humidity $2.00 $5.00 Module Hygrometer $3.91 $6.91 $2.24 $5.24

$7.56 $10.56 $6.29 $9.20 $3.79 $6.79

Yo




20006 - present:

new research fields that use big cultural
data (including social media, user
generated content and digitized cultural
heritage) to study social and cultural
patterns and cultural histories
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-soclal computing

-computational social science

-other CS fields: computer vision, media

computing, web science, NLP

-science of cities, urban analytics

-digital humanities, digital history, digital
t history

al
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My library

Any time

Since 2015
Since 2014
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Sort by relevance
Sort by date

include patents
include citations

Create alert

twitter dataset

About 329,000 results (0.04 sec)

Enhanced sentiment learning using twitter hashtags and smileys

D Davidov, O Tsur, A Rappoport - Proceedings of the 23rd International ..., 2010 - dl.acm.org
... If there are no matching vectors found for v, we assigned the default “no sentiment” label
since there is significantly more non-sentiment sentences than sentiment sentences in
Twitter. 4 Twitter dataset and sentiment tags ... 4.1 Twitter dataset ...

Cited by 363 Related articles All 17 versions Cite Save

Semi-supervised recognition of sarcastic sentences in twitter and amazon
D Davidov, O Tsur, A Rappoport - Proceedings of the Fourteenth ..., 2010 - dl.acm.org

... Using the Mechani- cal Turk we created a gold standard sam- ple in which each

sentence was tagged by 3 annotators, obtaining F-scores of 0.78 on the product

reviews dataset and 0.83 on the Twitter dataset. ... Twitter Dataset. ...

Cited by 148 Related articles All 23 versions Cite Save

Predicting flu trends using twitter data

H Achrekar, A Gandhe, R Lazarus... - ... WKSHPS), 2011 IEEE ..., 2011 - ieeexplore.ieee.org
... Until October 23, 2010 we have collected 4.7 million tweets from 1.5 million unique users from
Twitter. Since CDC does not provide weekly ILI activity data for the period from May 23, 2010 to
October 9, 2010, we have 31 weeks of CDC data for the Twitter dataset. ...

Cited by 141 Related articles All 13 versions Cite Save

Why we twitter: understanding microblogging usage and communities
A Java, X Song, T Finin, B Tseng - Proceedings of the 9th WebKDD and ..., 2007 - dl.acm.org

# My Citations A

[PDF] from aclweb.org

[PDF] from aclweb.org

[PDF] from psu.edu

[PDF] from umbc.edu

... Based on our study of the communities in Twitter dataset, we observed that this is a representative

community in Twitter network: people in one community have certain common interests and they
also share with each other about their personal feeling and daily experience. ...
Cited by 2403 Related articles All 24 versions Cite Save

poF] Measuring User Influence in Twitter: The Million Follower Fallacy.
M Cha, H Haddadi, F Benevenuto, PK Gummadi - ICWSM, 2010 - aaai.org

... Page 2. The Twitter dataset used in this paper consists of 2 billion follow links among

54 million users who produced a total of 1.7 billion tweets. ... Dataset We asked Twitter
administrators to allow us to gather data from their site at scale. ...

Cited by 1644 Related articles All 39 versions Cite Save More

[PDF] from aaai.org
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We have to always remember that not everybody is using social media.
Example: our map of 100 million tweets with images (sampled from 265 million tweets, 2011-2014)
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Key characteristics of social media
relevant for the study of cultural and
soclal patterns:
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1
very high spatial and temporal resolution
in cities (time and location metadata)

2
automatic detection of subjects + styles +
sentiment

3
connectivity (content propagation,
influences, groups, structure of networks)
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A

engagement: likes, comments, shares,
ay, elc. -

web navigation, gamep

for the first time, we can study cultural

reception on mass sca

€
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data allows us to qualitatively stuady
INnteractions between -

a) people (online and physically)

D) people and spaces

c) people and cultural software tools

d) people and cultural artitacts (“reception,”
engagement”)
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GO gle aesthetic computing prediction - “

Scholar About 32,600 results (0.06 sec)

High level describable attributes for predicting aesthetics and interestingness
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Predicting users' first impressions of website aesthetics with a quantification of percei

visual complexity and colorfulness
K Reinecke. T Yeh. L Miratrix. R Mardiko... - ... Factors in Computing .... 2013 - dl.acm.ora



@ Preview File Edit View Go Tools Window Help 33 ©276GB @ A ] = 49% @) SatNovi4 8:44AM Q =
00 a ____cvpr2014_final (1).pdf (page 1 of 8)
th L v O & Q

~

My Q @&

6 Seconds of Sound and Vision: Creativity in Micro-Videos

3, % 12.1

Neil O’Hare' Rossano Schifanella>* Michele Trevisio Alejandro Jaimes'

"Yahoo Labs, Barcelona, Spain {redi, nohare, ajaimes}@yahoo-inc.com
2Universitat Pompeu Fabra, Barcelona, Spain {trevisiol}@acm.org
IUniversita degli Studi di Torino, Torino, Italy {schifane}@di.unito.it

Miriam Redi'

Abstract

The notion of creativity, as opposed to related concepts
such as beauty or interestingness, has not been studied from
the perspective of automatic analysis of multimedia content.
Meanwhile, short online videos shared on social media plat-
forms, or micro-videos, have arisen as a new medium for
creative expression. In this paper we study creative micro-
videos in an effort to understand the features that make a
video creative, and to address the problem of automatic de-
tection of creative content. Defining creative videos as those
that are novel and have aesthetic value, we conduct a crowd-
sourcing experiment to create a dataset of over 3,800 micro-
videos labelled as creative and non-creative. We propose a
set of computational features that we map to the components
of our definition of creativity, and conduct an analysis to
determine which of these features correlate most with cre-
ative video. Finally, we evaluate a supervised approach to
automatically detect creative video, with promising results,
showing that it is necessary to model both aesthetic value
and novelty to achieve optimal classification accuracy.

the Tribeca Film Festival in New York.

Not all micro-videos uploaded on social media platforms
are creative in nature (1.9% of randomly sampled videos
were annotated as creative in our study), and quality can vary
widely. This motivates the need for automatic approaches
to detect and rank the best, and in particular the most cre-
ative, micro-video content on social media platforms. Such
applications can increase the visibility of video authors, and
replace or augment current features of social-media plat-
forms such as “Editors Picks”, which showcases the best
content on Vine.

Micro-videos provide a unique opportunity to address the
study of audio-visual creativity using computer vision and
audio analysis techniques. The very short nature of these
videos means that we can analyze them at a micro-level.
Unlike short video sequences within longer videos, the in-
formation required to understand a micro-video is contained
within the video itself. This allows us to study audio-visual
creativity at a fine-grained level, helping us to understand
what, exactly, constitutes creativity in micro-videos.

In this paper we study the audio-visual features of cre-
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Group Feature Dim | Description
AESTHETIC VALUE
Sensory Features
Scene Content Saliency Moments [26] 462 | Frame content is represented by summarizing the shape of the salient region
General Video Properties 2 Number of Shots, Number of Frames
Filmmaking Stop Motion 1 Number of non-equal adjacent frames
Technique Loop 1 Distance between last and first frame
Movement 1 Avg. distance between spectral residual [9] saliency maps of adjacent frames
Camera Shake 1 Avg. amount of camera shake [1] per frame
Rule of Thirds [5] 3 HSV average value of the inner quadrant of the frame (H(RoT),S(RoT),V(RoT))
Composition Low Depth of Field [5] 9 LDOF indicators computed using wavelet coefficients
and Photographic | Contrast [6] 1 Ratio between the sum of max and min luminance values and their difference
Technique Symmetry [27] 1 Difference between edge histograms of left and right halves of the image
Uniqueness [27] 1 Distance between the frame spectrum and the average image spectrum
Image Order [28] 2 Order values obtained through Kologomorov Complexity and Shannon’s Entropy
Emotional Affect Features
Color Names [17] 9 Amount of color clusters such as red, blue, green, ...
Visual Affect Graylevel Contrast Matrix Properties [17) 10 | Entropy, Dissimilarity, Energy, Homogeneity and Contrast of the GLCM matrix
HSYV statistics [17] 3 Average Hue, Saturation and Brightness in the frame
Pleasure, Arousal, Dominance [30] 3 Affective dimensions computed by mapping HSV values
Loudness [15] 2 Overall Energy of signal and avg Short-Time Energy in a 2-seconds window
Audio Affect Mode [15] 1 Sums of key strength differences between major keys and their relative minor key:
Roughness [15] 1 Avg of the dissonance values between all pairs of peak in the sound track spectrur
Rythmical Features [15] 2 Onset Rate and Zero-Crossing Rate
NOVELTY
Novelty Audio Novelty 10 | Distance between the audio features and the audio space
Visual Novelty 40 | Distance between the visual features and each visual feature space

Table 4. Audiovisual features for creativity modeling
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correlate with crea
Feature — Atl‘—)c.l;;l(‘)acyl)_lm to have warmer, bz
: ume sounds. Also,
Aesthetic Value :
emotions, and don
Sensory Features i
Scene Content 0.67 | 0.69 | 0.74 emotions. Loop a
Filmmaking Techniques 0.65 | 0.69 | 0.73 designed for mode]
Composition & Photographic Technique 0.67 | 0.74 | 0.77 high correlation wi
All Sc?nsory Features 0.69 | 0.75 | 0.77 associated with be:
Emotional Affect Features i i )
Audio Affect 0.59 | 0.53 | 0.67 tions with creative
Visual Affect 0.65 | 0.66 | 0.66 between creativity
All Emotional Affect Features 0.62 | 0.56 0.71 color, symmetry a
All Aesthetic Value Features 0.68 | 0.72 | 0.79 modeling beauty ar
Novelty creative micro-vide
Audio 0.58 | 0.58 | 0.63 : |
Visual 0.63 | 0.67 | 0.74 Finally, we eval
Audio + Visual Novelty 0.59 | 0.63 | 0.69 cation of creative #
Novelty + Aesthetic Value 0.69 | 0.73 | 0.80 overall, with a high
Table 5. Prediction results for value and novelty features The best results are
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soclal networks as medium
and message

(using Instagram as the
example)
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message 1 (“surface”): what people who
use soclal networks say, do, capture

message 2 (“depth”): what they “really”
say, do, and how they live

medium 1: digital vernacular
photography as It exists on Instagram

medium 2: Instagram as its own visual,
narrative and networked media platform
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data analysis and visualization as
“medium”

Features extracted from content, the
avallable metadata, and data mining
techniques determine what we can learn
from social media

Visualization |layouts and options further
iInfluences what patterns we can see, the
meanings, and interpretations

softwarestudies.com 31



the general and the particular:

18th-20th centuries:

soclal statistics, social science anad
data visualization - aggregation,
summarization, reduction; focusing
on the regular (that can be modeled
and predicted)

21st century: from summarization to
individualization; from general to
focusing on variability and individual

softwarestudies.com 32
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examples of cultural
analysis using large
visual data

all examples In the following slides are from

- projects created in our lab,

- collaborative projects with external collaborators
- student work from Manovich’s classes

2009 - 2015

softwarestudies.com

36



Visual evolution of news
medaila

(front covers of a single
newspapers)
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Visual evolution of news
media - longer period

(4535 Time magazine
covers, 1923-2009)
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4535 Time covers
1923-20089.

Organized by date,
left to right, top to
bottom.

Every pattern we
observe is continuous,
with changes taking
places over years or
decades.
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4535 Time covers 1923-2009 (left to right). Each cover is represented by a single vertical line.
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History of a cultural
medium (photography)

as represented by a single
institution (MoMA)
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EXPLORE

ook = Notesto the User =« Share MoMA

In 2013 we were invited by MoMA to analyze their whole
photo collection and contribute to the OBJECT : PHOTO
exhibition website
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Mapping an artistic
movement

(French Impressionists)
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L Visualization of 5000 paintings
shd . s of French Impressionist
D e n e artists

5
a

x and y - first two dimensions
of PCA using 200 features

Wl o,
i

41 (0

The familiar paintings of French
impressionists (see closeup on
next slide) turn to be only %20-
%30 of their whole creative
output

o

2
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Mapping a cultural fielo
using a large sample

(883 manga publications
containing 1,074,790

pages)
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1 million manga pages
X - standard deviation
y - entropy
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Closeups of the bottom left corner and top corner (previous slide). Entropy feature sorts all pages according
to low detail/no texture/flat - high detail/texture/3D dimension. Visualization reveals continuos variation on this
dimension. This example suggests that our standard concept of "style’ may not be appropriate when looking
at particular characteristics of big cultural samples (because "style assumes presence of distinct
characteristics, not continuos variation across a whole dimension).

. B

N—
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1 million manga pages plotted as points
X - standard deviation
y - entropy

Some plot areas are densely filled in,
while others are almost empty. Why
manga visual language developed in this
way? Visualization of a large number of
samples allows us to map a cultural fields
to see what is typical and what is rare,
and what kind of clusters (if they eX|st)
are present in this field.
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Visual signatures of cities:
sampling and aggregating
images from a

soclal media platform
(Instagram)
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SAN FRANCISCO (50,000 PHOTOS) TOKYO (50,000 PHOTOS)
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Comparing San Francisco and Tokyo using 50K image samples.
Photos are organized by average brightness (distance to plot center) and average hue (angle).
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Comparing NYC and Tokyo using 50K image samples shared over few days (organized by upload date/time.)
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closeup of the visualization from previous slide softwarestudies.com 62



MDS (extended features all)

Tel Aviv
New York

Sydney

Berlin

Rio de Janeiro
London

Bangkok

Singapore

Moscow

San Francisco

Istanbul

|
0

Example of data

aggregation - reducing 2.3M

photos to 13 data points
(one point per city)
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Another plot of
MDS (extended features colors) cities differences

(using only color
Tokyo features)

Tel Avi
Rio de Janeiro el aviv Singapore

San Francisco
London
Istanbul
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How people represent
themselves” How they
construct themselves In
soclal media”?

. 65
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BANGKOK

BERLIN NEW YORK SAO PAULO

SELFIECITY

Investigating the style of self-portraits (selfies)
in five cities across the world.

Selfiecity investigates selfies using a mix of theoretic, artistic and quantitative
methods:

We present our findings about the demographics of people taking selfies,
their poses and expressions.

Rich media visualizations (imageplots) assemble thousands of photos to
reveal interesting patterns.

The interactive selfiexploratory allows you to navigate the whole set of
3200 photos.

Finally, theoretical essays discuss selfies in the history of photography,
the functions of images in social media, and methods and dataset.



http://selfiecity.net
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based on automatic face analysis of
selfie images posted on instagram.
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The SELFIEXPLORATORY s part of SELFIECITY x Reset filters

DEMOGRAPHICS

o @°

FEATURES MOOD

%%

Crop & rotate

CITY

\\

Screenshot from interactive app selfiexploratory:
http://selfiecity.net/seltiexploratory/
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http://selfiecity.net/selfiexploratory/

SELFIECITY

Exploring the cultural meaning
of the selfie







INnterfaces for people to
iInteract with urban social

media data + census and
government data;

Combining multiple types
+ resolution of data
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The interactive installation ON BROADWAY
represents life in the 21st century city through
a compilation of images and data collected
along the 13 miles of Broadway that span
Manhattan.
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The result is a new type of city view, created OPEN THE APPLICATION *
from the activities of hundreds of thousands of H
pe0ple' ml. | I - HI l "“ H '; Only recommended on fast machines with large display
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Lev Manovich.



http://http://on-broadway.nyc/

< gy - “:‘. b“‘. "v /- .' "

On Broadway is an interactive installation shown at New York Public Library, 12/2004-1/2016
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Artists team in front of On Broadway installation softwarestudies.com 74
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Interface uses familiar multi-touch gestures to navigate Broadway street in Manhattan (21 km, 30M data points)
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HOow exceptional events
are represented in visual
soclal media”? The
exceptional vs the
everyday

Social media sensors vs.
DOP Mmedia coverage
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The Exceptional & The Everyday: 144 Hoursin Kiev

The Exceptional & The Everyday project, 2014 softwarestudies.com 30



The Exceptional & The Everyday
project, 2014
http://www.the-everyday.net/

The visualization shows 13,208
Instagram images shared by
6,165 people in the center of

Kiev during 2014 Ukrainian revolution (
February 17 - February 22, 2014).
The photos are organized
chronologically (left to right, top to
bottom). The right column shows
summary of the events from
Wikipedia page about the
revolution.

A single condensed narrative
history (Wikipedia text) vs.

visual experiences of thousands of people

(Instagram)? The second is potentially
richer - but also more difficult to
Interpet.

Can we narrate history without aggregation

and summarization”? History as
timelines of million of people?
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From The Everyday Project
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2/17
kiev
ukraine
love

follow
followme

instagood

me
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2/18 2/19 2/20 2/21 2/22

kiev kiev kiev kiev kiev
ukraine euromaidan ukraine euromaidan euromaidan
KUEB ukraine euromaidan ukraine ukraine
euromaidan €BpoMauJaH €BpOMaWJaH €BpOMAWJIaH e€BpOMaWJiaH
€BpOMaWJlaH eBpoMaWJiaH eBpOMaWJaH eBpoMaHWJiaH €EBpOMaWJaH
eBpoMangaH Kkyiv revolution kyiv KHUEB

kyiv KHEB KHEB revolution revolution
love MauJlaH MauJ1aH Ukraine followme
followme Ukraine love love instagood
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using visual social
media to predict socio-
economic Indicators
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Mehrdad Yazdani and Lev Manovich.
"Predicting Social Trends from Non-
photographic Images on lwitter.” Big
Data and the Humanities workshop,

[ 2015 Big Data conterence.

We classified 1 million twitter images
shared in 20 US cities in 2013 using
Google free Deep Learning Model
avallable to all researchers
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Houston - ®
San Jose - °
Dallas - ®
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Tampa - ®
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Chicago - ®
San Diego - .
Los Angeles - ®
Boston - °
New York - &
Washington- e
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San Francisco - ®
| | | | |

6 7 8 9 10
Text-images percentages

Fig. 3. The proportion of images in each city classified as “web site, website,
internet site, site.”

IV. RESULTS AND DISCUSSION

We have classified one million images from 20 U.S. cities
using the GoogLeNet Convolutional Neural Network. The
most frequent category is “web site, website, internet site, site.”
We call these images “image-texts.” Figure 2 shows a sample
of these images. Figure 3 shows the proportion of this category
for all 20 cities among all other images. This proportion varies
from about 5% to over 10%. As Figure 2 shows, image-texts
are memes, screenshots, and other images that are not directly
representative of the real world. However, note that many of
them are screenshots of text message conversations on smart
phones. So while they do not show real life social interactions
or natural environments, they are records of new forms of
sociality enabled by networks and mobile phones.

We can see from Figure 3 that the rates of image-texts
are different for each city. Furthermore, as Figures 4 and 5
demonstrate, each city also has a unique diurnal pattern of such
images. Therefore, both characteristics can be used as features.
The first feature is the overall rate of image-texts per city. The
second feature is the entropy of the diurnal distribution of the
image-text rates for 24-hour cycle per city.

To see if these two features have some connection to the
socio-economic indicators, we calculate Pearson correlations
between the values of the features and the indicators. Tables
IT and III show the correlation values. The absolute values of
correlations range from 0.47 to 0.64. The values are significant
with p < 0.01, except for income which has p < 0.05.
The correlation with “objective” measures (i.e., housing prices,
education levels and incomes) are negative, whereas the cor-
relation with “subjective” measure of “social well-being” as
reported by Gallup are positive.

These negative correlations suggest that people in cities
that are more affluent as measured by objective measures such
as housing prices share text-images less frequently. In contrast,
people in less affluent cities share text-images more often.



Indicator Correlation P-value

Median Housing Price -0.5638  0.007735
Rate of Bachelor’s Degree -0.6413  0.001623
Average Income -0.4772  0.01805
Social well-being 0.56100 0.001623
TABLE II. PEARSON CORRELATIONS BETWEEN THE PROPORTION OF

IMAGES CLASSIFIED AS IMAGE-TEXTS AND FOUR SOCIO-ECONOMIC
VARIABLES (FIGURE 2).



our lab: free tools, publications, projects, news:

WWW.Softwarestudies.com

articles, books, projects:
WWW.manovich.net
academia.edu

contact:
www.facebook.com/lev.manovich

twitter.com/manovich
manovich.lev@gmail.com
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