Information Theoretic Approaches for Understanding Human Behavior

Greg Ver Steeg and Aram Galstyan

University of Southern California Information Sciences Institute

March 9, 2015 IPAM Tutorial

Information theory:

Reliable communication over a noisy channel

How much information can we send?

What is the maximum rate of error-free communication over all possible codes?

Surprises:

- Error free is possible!
- Simple formula for this rate! (Mutual information)

Examples of noisy channels

Donald J. Trump *
@realDonaldTrump

The Bandwagon

CLAUDE E. SHANNON

1956
"Information theory has, in the last few years, become something of a scientific bandwagon...

It will be all too easy for our somewhat artificial prosperity to collapse overnight when it is realized that the use of a few exciting words like information, entropy, redundancy do not solve all of our problems"

In the context of "culture analytics", our problems are:

- Useful, meaningful measures
- Estimation
- Information Theory Basics
- Entropy, MI, Discrete IT estimators
- Entropy estimation demo
- Human behavior dynamics
- Social networks
- Stylistic coordination

Coffee Break (3:15-3:30)

- Non-parametric entropy estimation
- Very high-dimensional information
- How to handle it?
- Applications: language, personality, behavior

Basics

- Plain Old Entropy
- Why "log"?, Building intuition
- Continuous variable caveats
- Mutual information
- Definition/interpretation/forms
- Continuous variables
- Dependence/multivariate measures
- Estimation for discrete variables

Why "log"?

- A random variable

$$
\begin{array}{r}
p(X=x)=p(x)=1 / 6 \\
x=1, \ldots, 6
\end{array}
$$

- How would we quantify uncertainty, $\mathrm{H}(\mathrm{X})$?
- 2 dice: $6^{*} 6=36$ states
- $\log \left(6^{*} 6\right)=\log (6)+\log (6)=2 \log (6)$

Axiomatic approach (Shannon)

- Which functions quantify uncertainty?
- Continuous (a small change in $p(x)$ should lead to a small change in our uncertainty)
- Increasing (If there are n equally likely outcomes, uncertainty goes up with n)
- Composition (The uncertainty for two independent coins should equal the sum of uncertainties for each coin)

$$
\begin{aligned}
H(X) & =\mathbb{E}(\log 1 / p(x)) \\
& =-\sum_{x} p(x) \log p(x)
\end{aligned}
$$

Alternate interpretation: compression

Guess my square game:

- I pick a square
uniformly at random
- You can ask yes/no questions to determine the square

- How many questions are required?
- To distinguish between \mathbf{N} squares, we need $\log _{2} \mathrm{~N}$ questions
- In Round 2: I prefer the bottom two rows, and half the time pick one of those squares
- Find the correct square with fewer questions on average

Encode the answer 000...

- How many questions do we need on average?
- This answer is exactly the entropy and therefore entropy can be viewed as a measure of compression

Encode the answer 000...

Continuous Random Variables (are a little different)

- A probability density

- What is the probability of observing $\mathrm{x}=0.532432897504328563905732 \ldots$?
- $p(x) d x$ tells us the probability observe a number in $[\mathrm{x}, \mathrm{x}+\mathrm{dx}$)

(Differential) Entropy

- $p(x) d x$ tells us the probability observe a number in $[x, x+d x)$

Each discrete bin has probability $d x / \alpha$

$$
\begin{aligned}
H(X) & =-\sum_{i=1}^{\alpha / d x} d x / \alpha \log d x / \alpha \\
& =\underset{\uparrow}{\log \alpha} \text { As } d x \rightarrow 0 \ldots \\
H_{d i f f}(X) & \stackrel{\rho^{\prime}}{=} \int d x p(x) \log p(x)=\mathbb{E}(\log 1 / p(x))
\end{aligned}
$$

- Plain Old Entropy
- Why "log"?, Building intuition
- Continuous variable caveats
- Mutual information
- Definition/interpretation/forms
- Continuous variables
- Dependence/multivariate measures
- Estimation for discrete variables

Mutual information

$$
C=\max _{p(X)} I(X: \underbrace{Y}_{\text {mutual intormation! }}
$$

Channel Coding Theorem (Shannon, 1948)

For every $R<C$, there are channel codes that allow almost error-free transmission of information.

Mutual information

$$
I(X: Y)=\underbrace{H(X)+H(Y)}_{\begin{array}{c}
\text { Uncertainty if } \mathrm{X} \text { and } \\
\text { Y are independent }
\end{array}}-\underbrace{H(X, Y)}_{\begin{array}{c}
\text { Uncertainty } \\
\text { considered as } \\
\text { one system }
\end{array}}
$$

Some things to notice:

- Symmetric
- A difference of entropies
- Non-negative

Mutual information

Read off other the ways of describing mutual information:

$$
\begin{aligned}
I(X: Y) & =H(X)+H(Y)-H(X, Y) \\
& =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X)
\end{aligned}
$$

Independence

$$
I(X: Y)=\underbrace{H(X)+H(Y)}_{\begin{array}{l}
\text { Uncertainty if } \mathrm{X} \text { and } \\
\mathrm{Y} \text { are independent }
\end{array}}-\underbrace{H(X, Y)}_{\begin{array}{l}
\text { Uncertainty } \\
\text { considered as } \\
\text { one system }
\end{array}}
$$

$$
H(X)=\mathbb{E}(\log 1 / p(x))
$$

$$
\begin{aligned}
I(X: Y) & =\mathbb{E}(\log 1 / p(x)+\log 1 / p(y)-\log 1 / p(x, y)) \\
& =\mathbb{E}\left(\log \frac{p(x, y)}{p(x) p(y)}\right) \\
I(X & : Y)=0 \longleftrightarrow p(x, y)=p(x) p(y)
\end{aligned}
$$

Extends to Conditional Independence

- Bayesian networks, e.g., can be read as encoding a set of "conditional independence" relationships

$$
\begin{gathered}
p(X, Y \mid Z)=p(X \mid Z) p(Y \mid Z) \forall Z \longleftrightarrow X \perp Y \mid Z \\
X \perp Y \mid Z \longleftrightarrow I(X: Y \mid Z)=0 \\
I(X: Y \mid Z)=H(X \mid Z)-H(X \mid Z, Y)
\end{gathered}
$$

First useful(?) property for M.L.

$$
I(X: Y)=0 \longleftrightarrow p(x, y)=p(x) p(y)
$$

- You don't get this for other "correlation" measures: (Pearson, Kendall, Spearman...)
- MI captures nonlinear relationships, the size of MI has many nice interpretations
- Extends to multivariate (last part)
- But, is it "useful"? It depends on $p(x, y)$...
- Plain Old Entropy
- Why "log"?, Building intuition
- Continuous variable caveats
- Mutual information
- Definition/interpretation/forms
- Continuous variables
- Dependence/multivariate measures
- Estimation for discrete variables

Estimation for discrete variables

- An "asymptotically unbiased" estimator:

$$
\begin{array}{r}
x^{(i)} \sim p(X), i=1, \ldots, N \\
\lim _{N \rightarrow \infty} \mathbb{E}\left[\hat{H}_{N}(X)\right]=H(X)
\end{array}
$$

- For discrete entropy, the 'plug-in' estimator:

$$
\hat{H}(X)=-\sum_{x} \hat{p}(x) \log \hat{p}(x)
$$

$\hat{p}(x)=($ number of times to observe $x) / N$

How well do we do?

$\mathrm{p}(\mathrm{X}=\mathrm{i})$

$\#$ states $=16$
${ }_{\hat{p}(\mathrm{X}=\mathrm{i})} \quad \#$ samples $=32$

How well do we do?

Probability

Naïve estimator for MI?

Again, standard formula using observed freq. counts:

$$
\hat{I}(X: Y)=\mathbb{E}\left(\log \frac{\hat{p}(x, y)}{\hat{p}(x) \hat{p}(y)}\right)
$$

Bias for MI

E.g., for $x=1, \ldots, 16$ and $y=1, \ldots, 16$ $p(x, y)=1 /(16 \cdot 16)$
Then $I(X: Y)=0$.
Again, let \# samples $=2 \cdot \#$ states

Three possible solutions

- Analytic estimate of bias (Panzeri-Treves)
- Bootstrap
- Shuffle Test

Bias for MI

Correcting for the Sampling Bias Problem in Spike

 Train Information MeasuresStefano Panzeri, Riccardo Senatore, Marcelo A. Montemurro and Rasmus S. Petersen
J Neurophysiol 98:1064-1072, 2007. First published 5 July 2007; doi:10.1152/jn.00559.2007

Bias for MI

- Bootstrap: generate new samples based on $\hat{p}(x, y)$
- Estimate bias for those samples, use as correction

Entropy 2013, 15, 2246-2276; doi:10.3390/e15062246

Article

Bootstrap Methods for the Empirical Study of Decision-Making and Information Flows in Social Systems

Simon DeDeo ${ }^{1, *}$, Robert X. D. Hawkins ${ }^{1,2}$, Sara Klingenstein ${ }^{1}$ and Tim Hitchcock ${ }^{3}$

Permutation test

- For a given set of samples

$$
\left(x^{(i)}, y^{(i)}\right), i=1, \ldots, N
$$

- Generate many "shuffled" versions

$$
\left(x^{\pi(i)}, y^{(i)}\right), i=1, \ldots, N
$$

- For these, $I\left(X_{s h u f f l e}, Y\right)=0$ this gives empirical Cl for correlations to be due to chance.
- Information Theory Basics
- Entropy, MI, Discrete IT estimators
- Entropy estimation demo
- Human behavior dynamics
- Social networks
- Stylistic coordination

Coffee Break (3:15-3:30)

- Non-parametric entropy estimation
- Very high-dimensional information
- How to handle it?
- Applications: language, personality, behavior

Information Theoretic Approaches for Understanding Human Behavior

Greg Ver Steeg and Aram Galstyan

University of Southern California Information Sciences Institute

March 9, 2015 IPAM Tutorial

- Information Theory Basics
- Entropy, MI, Discrete IT estimators
- Entropy estimation demo
- Human behavior dynamics
- Social networks
- Stylistic coordination

Coffee Break (3:15-3:30)

- Non-parametric entropy estimation
- Very high-dimensional information
- How to handle it?
- Applications: language, personality, behavior

Topology of social interactions

Mesoscopic motifs

Clustering and Small Worlds

What about behavioral data?

Measuring influence

- Structural (network) measures
- Out-degree/number of followers
- Page-rank, other centrality measures
- Does not consider user dynamics
- Not all links are created equal

"Social Capital" on ebay

$35,000+$ Twitter Followers within 48 Hours!

Buy It Now
Free shipping

Newly Listed Tweet from Health and
2 h left
Today 12:46PM
$\$ 0.01$
1 bid
Free shipping

Measuring influence

- Structural (network) measures
- Out-degree/number of followers
- Page-rank, other centrality measures
- Does not consider user dynamics
- Not all links are created equal

"Social Capital" on ebay

Measuring influence

- Structural (network) measures
- Out-degree/number of followers
- Page-rank, other centrality measures
- Does not consider user dynamics
- Not all links are created equal

"Social Capital" on ebay

Measuring influence

- Dynamic measures
- Re-tweets (Kwak et. al. WWW '10)
- Size of cascades (Bakshy, et. al. WSDM '11)
- Influence-passivity (Romero et. al. WWW '11)

- Requires explicit causal knowledge
- E.g, who responds to whom
- Platform-specific
- Retweets/mentions/Likes
- Tailored to particular activity/representation
- Text/check-in/purchase/etc

Influence via predictability

- Y influences X if Y's past activity is a good predictor of X 's future activity

- Quantified using information-theoretic concepts
- E.g., Transfer Entropy (Schreiber, 2000): How much our uncertainty about user X's future activity is reduced by knowing Y's past activity

$$
T E_{Y \rightarrow X}=H\left(X^{\text {Future }} \mid X^{\text {Past }}\right)-H\left(X^{\text {Future }} \mid Y^{\text {Past }}, X^{\text {Past }}\right)
$$

Transfer Entropy

- Entropy of a random variable X

$$
\begin{aligned}
H(X)= & -\sum_{x} p(x) \log p(x) \quad \text { discrete } \\
& -\int d x p(x) \log p(x) \quad \text { continuous }
\end{aligned}
$$

- Mutual Information

$$
I(X: Y)=H(X)-H(X \mid Y)
$$

- Conditional Mutual Information

$$
\begin{aligned}
C M I(X: Y \mid Z) & =H(X \mid Z)-H(X \mid Z, Y) \\
T E_{Y \rightarrow X} & =\operatorname{CMI}\left(X^{\text {Future }}: Y^{\text {Past }} \mid X^{\text {Past }}\right)
\end{aligned}
$$

Outline

- Social influence via transfer entropy
- Activity timing
- Content dynamics
- Stylistic influence in dialogues
- Estimation of entropic measures (from limited data)

Transfer entropy with activity timing

How predictable is X's behavior? Look at X's history

And if we add Y 's history?

$$
\left.T E_{Y \rightarrow X}=\underset{\text { Uncertainty about } \mathbf{x}}{H} \underset{\left.\substack{\text { Future }} X^{\text {Past }}\right)-H\left(X^{\text {Uncertainty about } \mathbf{x} \text {, if you know }} \mid Y^{\text {Y's behavior }}<\right.}{H \text { Past }}, X^{\text {Past }}\right)
$$

Granger Causality

$\begin{array}{ll}\text { Model-1 } & x_{t+1} \approx \sum_{j=1}^{p} A_{j} x_{t-j} \\ \text { Model-2 } & x_{t+1} \approx \sum_{j=1}^{p} A_{j} x_{t-j}+\sum_{j=1}^{l} B_{j} y_{t-j}\end{array}$
Y is Granger-causal to X if Model-2 is better than Model-1

Uncovering Networks from Activities

- Information transfer (Schrieber, 2000)
- How much is our uncertainty about user X's future activity reduced by knowing about Y's past activity?

$$
I T_{Y \rightarrow X}=\underset{\text { Uncertainty about } \mathbf{x}}{H\left(X^{\text {Future }} \mid X^{\text {Past }}\right)-H\left(X^{\text {Future }} \mid X^{\text {Past }}, Y^{\text {Past }}\right)}
$$

- Arbitrary signals/relationships; hard to evaluate
- Granger Causality (Granger, 1969)

$$
\begin{aligned}
& (M 1) X_{t+1}=\sum_{j=1}^{p} A_{j} X_{t-p} \\
& (M 2) X_{t+1}=\sum_{j=1}^{p} A_{j} X_{t-p}+\sum_{k=1}^{m} B_{j} Y_{t-k}
\end{aligned}
$$

- \mathbf{Y} is "Granger-causal" to \mathbf{X} if (M2) is a better predictor than (M1)
- More efficient but assumes linearity; real-valued signals only

More intuition about T.E.

Alternate possibility: low transfer entropy

BByth DRenornmstic

$$
T E_{Y \rightarrow X}=H\left(X^{\text {Future }} \mid X^{\text {Past }}\right)-H\left(X^{\text {Future }} \mid Y^{\text {Past }}, X^{\text {Past }}\right)
$$

Information theory of spike trains

- Information theory has been used for decoding electrical signals in the brain, called "spike trains"

$\mathrm{X}_{\mathrm{t}+1}$

$$
p\left(x_{t+1} \mid x_{t}^{(k)}\right) \quad x_{t}^{(k)}=x_{t}, x_{t-1}, . ., x_{t-k}
$$

$$
H\left(x_{t+1} \mid x_{t}^{(k)}\right)=-\sum p\left(x_{t+1}, x_{t}^{(k)}\right) \log p\left(x_{t}, x_{t}^{(k)}\right) / p\left(x_{t}^{(k)}\right)
$$

How do we calculate this?

1 bit of information transfer from y means we can use y to perfectly predict the next bit of x

Sampling problems

k bins $\rightarrow 2^{\mathrm{k}}$ possible histories, requiring $\mathrm{O}\left(2^{\mathrm{k}}\right)$ data
Too little data leads to systematic bias in entropy estimates
(Panzeri, et. al. J. Neurophys. 2007)
\checkmark Get more data/remove inactive users
\checkmark Estimate bias and correct (Panzeri \& Treves, 1996)

- Use binless, unbiased entropy estimators (Victor, 2003)
\checkmark Use fewer, more informative bins (for social media)

Relevant time-scales for social media

Histogram of Time to Re-tweet

Results

- Synthetic data
- How well can we estimate IT?
- Recover network structure from activity pattern
- Twitter data
- Compare IT to other measures of aggregate influence
- Identify most predictive edges
- IT among top users
- Fine-grain picture of influence

Synthetic data

Model user activity for two friends, x, y, as a non-homogeneous Poisson process

Synthetic data

- If X is affected by Y, but not vice versa, this asymmetry is captured using information transfer

Synthetic data

- Information transfer as a function of how long we observe
- Equivalently, fix time and change the rate of activity

Synthetic data

- Post-bias correction

Synthetic data

Generate activity according to graph (30 days, background rate $=1$ post/day, $\mathrm{V}=\mu$)

User
Time

Calculate information transfer between each pair of users.

Can we use this information to recover the correct network?

Who influences whom?

Time

Synthetic data

User

~ 50 posts/person typically leads to perfect reconstruction of network.

Twitter data

- Top information transfer edges

Banned

Free2BurnMusic	\rightarrow	Free2Burn	0.00433
Earn_Cash_Today	\rightarrow	ineome_ideas	0.00116
BuzTweet_com	\rightarrow	scate	0.00100
Kamagra_drug2	\rightarrow	sogradrug3	0.000929
Sougolinkjp	\rightarrow	sogolinksite	0.000907
kcal_bot	\rightarrow	FF_kcal_bot	0.000903
Nr1topforex	\rightarrow	nr1forexmoney	0.000797
Wpthemeworld	\rightarrow	wpthememarket	0.000711
Viagrakusurida	\rightarrow	viagrakusuride	0.000680
BoogieFonzareli	\rightarrow	Nyce_Hunnies	0.000677

Free2BurnMusic: "\#Nowplaying Janet Jackson - Hot 1001990 http://free2burn.com/index.php \#Music \#IFollowBack \#Music"

1 second later
Free2Burn: "\#Nowplaying Janet Jackson - Hot 1001990 http://free2burn.com/index.php \#Music \#lFollowBack \#Music"

Bombe cluster

- High transfer entropy among users with most followers

BOMBE O SEU TWITTER, COM MILHARES DE NOVOS FOLLOWERS, ATRAVES DO SITE:
http://????????\#QueroSeguidores NNN

Google Translate:
Pump up your Twitter, get thousands of new followers, link to this site: http://?????? \#IWantFollowers NNN

Links and numbers changing over time, Most users re-posted many times.

Tweeted over 50,000 times.

Two users with same TE

Marina Silva

@silva_marina Brasil
Sou professora de História. Fui candidata à Presidência da
República pelo PV em 2010, ministra do Meio
Ambiente(2003-2008) e senadora pelo Acre, de (1995-
2011).
http://www.minhamarina.org.br
514,347
Total TE ≈ 0.025 Followers

Soulja Boy (S.Beezy)

@souljaboy Atlanta, GA
President of SODMG: Producer/Artist/Gamer/Student signed to Collipark Music/Interscope Records living a dream... \$\$\$ * SWAG \#energy
https://plus.google.com/116381176537835440497/
Total TE ≈ 0.025 3,110,453
Followers
Data taken just before the Brazilian presidential elections, for which Marina was a top contender.
Soulja Boy has many more followers, but most are only weakly influenced.

Granger Causality

$$
x_{t+1} \approx \sum_{j=1}^{p} A_{j} x_{t-j}+\sum_{j=1}^{l} B_{j} y_{t-j}
$$

- Time series might represent
- \#of tweets by a user in a given time interval (e.g., per day)
- \# of certain hashtag mentions
- etc

Straightforward Approach

- Calculate all pair-wise influence between the time series

Problem: The learned influence network will be generally very dense

Granger Graphical Models

- Combining Granger-causality and variable selection

$$
\hat{\beta}^{a, \lambda}=\operatorname{argmin} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left\|x_{i}^{a}-X_{-a, i} \cdot \beta\right\|_{2}+\underbrace{\lambda\|\beta\|_{1}}_{\text {Sparsity term }}
$$

- Results in sparser (simpler! network)

Granger Graphical Models

- Climate time-series analysis for climate-forcing agents [Lozano et.al., KDD'09]

- Time-series microarray analysis for regulatory dependencies [Liu et. el, ISMB'09]

Output

Treat/conditions

Uncovering hidden influence networks

- Information transfer (Schrieber, 2000)
- How much is our uncertainty about user X's future activity reduced by knowing about Y's past activity?

$$
I T_{Y \rightarrow X}=\underset{\text { Uncertainty about } \mathbf{X}}{H\left(X^{\text {Future }} \mid X_{\text {Past }}^{H}\right)-H\left(X^{\text {Future }} \mid X^{\text {Past }}, Y^{\text {Past }}\right)}
$$

- Arbitrary signals/relationships; hard to evaluate
- Granger Causality (Granger, 1969)

$$
\begin{aligned}
& (M 1) X_{t+1}=\sum_{j=1}^{p} A_{j} X_{t-p} \\
& (M 2) X_{t+1}=\sum_{j=1}^{p} A_{j} X_{t-p}+\sum_{k=1}^{m} B_{j} Y_{t-k}
\end{aligned}
$$

- \mathbf{Y} is "Granger-causal" to \mathbf{X} if (M2) is a better predictor than (M1)
- More efficient but assumes linearity; real-valued signals only

Summary

Arbitrary signals/representation, but hard to evaluate

Inferring Social Influence from Content

Information in human speech

Information in human speech

How much information is communicated?

Information in human speech

- Mutual information between Alice and Bob's statements:

$$
I(A: B)=\sum_{\substack{A, B \\ \text { Sum over all possible statements! }}} P(A, B) \log \frac{P(A, B)}{P(A) P(B)}
$$

- Includes such hard to quantify probabilities as:

- And, this is different for each pair of people!

You're so 10 dimensional

Overview

- N samples of tweet exchanges

Convert to an abstract representation

- Estimate transfer entropy: measure

$$
T E_{Y \rightarrow X}=\hat{I}\left(X^{F}: Y^{P} \mid X^{P}\right)
$$ of Y's predictivity of X

Predictability in content space

Tweets about the 2014
midterm election

Tweets about health care reform

Hightwansferetropyix's twait was
mowe predictabe from y's recent tweet than from his own past tweets

Predictability in content space

Tweets about the 2014
midterm election

Tweets about health care reform

High transfer entropy : x's tweet was more predictable from y 's recent tweet than from his own past tweets

Overview

- N samples of
 tweet exchanges
- Convert to an abstract representation

- Estimate transfer entropy: measure

$$
T E_{Y \rightarrow X}=\hat{I}\left(X^{F}: Y^{P} \mid X^{P}\right)
$$ of Y's predictivity of X

Convert to an abstract representation

HOLY FLYING COWS	
FROM SPACE WHY DID	
THIS SONG DO BAD IF	
IT'S SO INCREDIBLE.	Easiest: we'll use LDA topic model vectors from gensim. Best?

Estimate transfer entropy

$X^{\mathrm{P}}, Y^{\mathrm{P}}, X^{\mathrm{F}}=\left(\begin{array}{c}0.6 \\ 0.4 \\ \ldots\end{array}\right),\left(\begin{array}{c}0.1 \\ 0.3 \\ \ldots\end{array}\right),\left(\begin{array}{c}0.2 \\ 0.8 \\ \ldots\end{array}\right) \longrightarrow T E_{Y \rightarrow X}$
~ 100 samples of $\sim 100-$ dim topic vectors!
(luckily, most users' activity is effectively low-d)

Non-parametric entropy estimators

- No binning of data
- No estimating probability density
- Nice convergence properties

Twitter study

- 1 month of tweets
- ~2k users, snowball sampling, constrained to Middle East
- 768k tweets
- PREPROCESSING:
- No RTs
- [a-zA-Z] only, lowercased
- No punctuation
- No stop words
- Calculate transfer entropy for all ordered pairs of users

Histogram of transfer entropy

"Friend-follower" network

Transfer entropy network

Transfer entropy network

Muhammad Ali @sheikhali

A technology blogger who loves blogging about Apple (jailbreak included), Microsoft, Google, Facebook, Twitter and other IT movers and shakers.
Dubai, UAE • http://www.geekword.net
geekword: \#Skype for \#Windows gets deep rooted \#Facebook Integration http://bit.ly/cb7UOj \#SocialNetwork sheikhali: \#Skype for \#Windows gets deep rooted \#Facebook Integration http://bit.Iy/cb7UOj \#SocialNetwork sheikhali: @l3v5y nice one geekword: \#Windows Phone 7 to get copy/paste feature in early 2011 http://bit.ly/a9AfF5 \#Wp7 \#Microsoft \#gadgets sheikhali: \#Windows Phone 7 to get copy/paste feature in early 2011 http://bit.ly/a9AfF5 \#Wp7 \#Microsoft \#gadgets

-No follows
-No retweets
-Random order leads to bidirected transfer geekword: \#Windows Phone 7 makes a guest appearance on \#HTC \#HD2 http://bit.ly/aUJmJp \#WP7 sheikhali: \#Windows Phone 7 makes a guest appearance on \#HTC \#HD2 http://bit.ly/aUJmJp \#WP7 geekword: Where to watch \#Apple's Back to the Mac event streamed live http://goo.gl/fb/843kl \#gadgets \#newsreviews \#macbookair sheikhali: How to watch live streaming of \#Apple's Back to the \#Mac Event http://bit.ly/bGJ4w2 \#gadgets \#Macbook sheikhali: @geekword trending post: \#Ultrasn0w \#iOS 4.1 \#unlock for \#iPhone 3G(S) will go live two days after the iOS 4.2 release http://bit.ly/9QKcNB

geekword: \#PwnageTool 4.1 unleashed brings iOS 4.1/3.2.2 \#jailbreak for your \#iDevice http://bit.ly/cn50Qu \#Apple \#jbiPhone sheikhali: \#PwnageTool 4.1 unleashed brings iOS 4.1/3.2.2 \#jailbreak for your \#iDevice http://bit.ly/cn50Qu \#Apple \#jbiPhone geekword: @tweetmeme How to watch live streaming of \#Apple's Back to the \#MacEvent http://bit.ly/bGJ4w2 \#gadgets \#Macbook sheikhali: @tweetmeme How to watch live streaming of \#Apple's Back to the \#Mac Event http://bit.ly/bGJ4w2 \#gadgets \#Macbook geekword: \#Guide to \#jailbreakiOS 4.1 using \#PwnageTool 4.1 http://bit.ly/bz6dv8 \#jbiPhone \#Howto sheikhali: \#Guide to \#jailbreakiOS 4.1 using \#PwnageTool 4.1 http://bit.ly/bz6dv8 \#jbiPhone \#Howto geekword: @tweetmeme \#Guide to \#jailbreakiOS 4.1 using \#PwnageTool 4.1 http://bit.ly/bz6dv8 \#jbiPhone \#Howto sheikhali: @tweetmeme \#Guideto \#jailbreakiOS4.1 using \#PwnageTool 4.1 http://bit.ly/bz6dv8 \#jbiPhone \#Howto

\begin{tabular}{|c|c|}
\hline User
zah

mza

zah \& | Tweet |
| :--- |
| KARACHI, Pakistan, Oct. 12 (UPI) - Intelligence agencies in Pakistan are warning of terrorist atta... http://bit.ly/bscYoX \#news \#Pakistan |
| Is Mobile Video Chat Ready for Business Use?: Matthew Latkiewicz works at Zendesk.com, creators of web-based custo... http://bit.ly/cAx3Ob |
| Matthew Latkiewicz works at Zendesk.com, creators of web-based customer support software. He writes for... http://bit.ly/bkuWCV \#technology |

\hline zah
mza

zah \& | Man-made causes cited for Pakistan floods: ISLAMABAD, Pakistan, Oct. 14 (UPI) - Deforestation ... http://bit.ly/92afA0 \#pkfloods \#Pakistan |
| :--- |
| Google Shares Jump 7% on Impressive Earnings: Google has posted its latest earnings report, and early indications ... http://bit.ly/9oi4zr |
| Google has posted its latest earnings report, and early indications suggest that investors are more tha... http://bit.ly/cyT35p \#technology |

\hline
\end{tabular}

No following
 No mentions
 No RT
 Different URL Different Hash Different wording

LTE puts exchanges about same story higher with probability 0.68

Hours

Seconds

Asymmetric:
Temporally, only one order occurs (mza then zah)
It's predictable but is it causal?

$\begin{aligned} & \hline \text { LTE } \\ & 2.65 \end{aligned}$	User zah mza zah	Tweet KARACHI, Pakistan, Oct. 12 (UPI) - Intelligence agencies in Pakistan are warning of terrorist atta... http://bit.ly/bscYoX \#news \#Pakistan Is Mobile Video Chat Ready for Business Use?: Matthew Latkiewicz works at Zendesk.com, creators of web-based custo... http://bit.ly/cAx3Ob Matthew Latkiewicz works at Zendesk.com, creators of web-based customer support software. He writes for... http://bit.ly/bkuWCV \#technology
の 2	nh	

Social influence

Previous examples were predictable but not social
-Can we use mentions to check if we capture social behavior?
-We consider to a subset of users who use mutual mentions in conversation

Reconstructing mention graph

Top 4 edges according to transfer entropy are correct:
"tabankhamosh", "shahidsaeed", 0.110 "noy_shahar", "lihifarag", 0.0987
"enggandy", "fzzzkhan", 0.0976
"noy_shahar", "reutgolan", 0.0975

Metric:
Probability that a true edge has higher transfer entropy than a false edge

$$
\text { AUC }=0.648
$$

Null model: \quad AUC $=0.5$
(w/ SE = 3.5\%)

Top transfer entropy examples

User	Tweet
sh	@ta tsalk to police officers. 6 prominent policemen of Op ta Cleanup have been killed in last 2 yrs. Still tolerating MQM
	@sh I meant the "participation" of the hijacked public was a function of fear perp by Talibs. Same thing here. ppl don't want 2 die
ta	@ta what does it serve them?More pathetic f*tards snatching their mobiles and wallets? Small-crime is engrained in MQM structure @sh re: "no soul n honor"... well I think MQM zia's creation to puncture the Sindh Nationalist cause. ISI _will_ slap its b*

Top transfer entropy examples

Tri-lingual friends

re	queremos unaa fotooooo deee @celeb1 y @celeb2
li	QUIERO UNA FOTO DE @celeb1 \& @celeb2
no	@celeb2 nico .. please que la segunda imagen sera de vos con
re	@celeb1
duele tanto decir ALGO ?	
li	@celeb2 nico porfi saca una foto con emi :(
re	@No [Hebrew characters]
no	@Li @Re [Hebrew characters]
no	@re twiitcam baby, yes o no?!
re	@No yesssss, and my brother will be theirr !! hahah , your
no	Sweet @Re jaja! very good sister! :)

Summary

- Model-free approach to text-based analysis of social interactions
- Grounded in Information Theory
- Go beyond followers, RT, \#hash, URL.
- Agnostic to representation (content, stylistic features, etc)
- Can account for confounders by proper conditioning
- Challenges and future work
- Better and/or different representation for text
- Better estimators for entropic measures

Stylistic Influence in Dialogues

Behavioral mirroring

Coordination in communication

- Communication Accommodation Theory:
- When conversing, people non-consciously adapt to one another's communicative behaviors [Chartrand and Bargh, 1999]

Dimension
Posture
Head Nodding
Pause Length
Backchannels
Self-disclosure
Linguistic Style
Linguistic Style (Large Scale)

Study

Condon and Ogston, 1967
Hale and Burgoon, 1984
Jaffe and Feldstein, 1970
White, 1984
Derlenga et al., 1973
Niederhoffer and Pennebaker, 2002
Danescu-Niculescu-Mizil et al., 2011, 2012

Linguistic style coordination

- How things are said, rather what is said
- Example

A: "What time are you available?"
B: "Noon."

Linguistic style coordination

- How things are said, rather what is said
- Example

A: "What time are you available?"
A: "At what time are you available?"
B: "Noon."
B: "At noon."

Linguistic style coordination

- How things are said, rather what is said
- Example

A: "What time are you available?"
A: "At what time are you available?"
B: "Noon."
B: "At noon."

- Quantified using function words (LIWC)
- Reflect psychological processes [Chung \& Pennebaker, 2007]
- In this study: articles, auxiliary verbs, conjunctions, adverbs, impersonal pronouns, personal pronouns, prepositions, quantifiers

Function Words

- Function words are processed rapidly and largely nonconsciously when people produce or comprehend language. [Petten et al. 1991; Segalowitz et al., 2004]
- Linguistic Inquiry and Word Count(LIWC) [Pennebaker et al., 2007]

Category	Example
Personal Pronouns	I, them; her
Impersonal Pronouns	it, those
Articles	a, an, the
Auxiliary Verbs	am, will, have
Adverbs	very, really, quickly
Prepositions	to, with, above
Conjunctions	and, but, whereas
Quantifiers	few, many, much

Linguistic style coordination

Alice: dfasdf to the dafgaf
Bob: by dfa at dafsdf the dagfg
Alice: dfasgfge of dfsd gaf dgevm
Bob: drgt for dag fgfd
Alice: dasf to dagtef an erfsadfa
Bob: dfasd dag ad dagf dafs
$(1,1)$
$(1,1)$
$(1,0)$
$(1,0)$
$(1,1)$
$(0,0)$
red: prepositions blue: articles

Linguistic style coordination

Alice: dfasdf to the dafgaf
Bob: by dfa at dafsdf the dagfg
Alice: dfasgfge of dfsd gaf dgevm
Bob: drgt for dag fgfd
Alice: dasf to dagtef an erfsadfa
Bob: dfasd dag ad dagf dafs
$(1,1)$
$(1,1)$
$(1,0)$
$(1,0)$
$(1,1)$
$(0,0)$

- Coordination: Is Bob more likely to use a particular feature in his response, if Alice used that feature in her post?
$\operatorname{Coord}($ Bob \rightarrow Alice $)=p\left(m_{b}=1 \mid m_{a}=1\right)-p\left(m_{b}=1\right)$

Prior results

- Observation of statistically significant coordination
- Laboratory experiments [Pennebaker, 1999]
- Large-scale experiments [Danescu-Niculescu-Mizil, 2012]
- Data from Supreme court transcripts \& Wikipedia discussions
- Stylistic coordination can be used to predict different behavioral outcomes
- Relationship stability [Ireland, 2010]
- Power relationship/social status [Danescu-Niculescu-Mizil, 2012]
- Presidential debates \& polling numbers [Romero 2015]

Alternative measure of stylistic coordination

- Given two users Alice and Bob and their corresponding feature sequence, we define stylistic coordination using (time-shifted) mutual information

$$
\operatorname{Coord}(\text { Bob } \rightarrow \text { Alice })=I\left(m_{b}^{t}: m_{a}^{t-1}\right)
$$

$\mathbf{m}_{\mathbf{A}}$	$\mathbf{m}_{\mathbf{B}}$
0	0
1	0
0	1
0	0
1	0
\cdots	\cdots

- For independent sequences the measure is identically zero
- Allows to consider possible confounders
- E.g., length of utterances, conversation topic, etc

$$
\operatorname{Coord}(\text { Bob } \rightarrow \text { Alice })=C M I\left(m_{b}^{t}: m_{a}^{t-1} \mid Z\right)
$$

Experiments

U.S. Supreme Court Oral arguments:
-50,000 verbal exchanges
-between Justices and Lawyers

Wikipedia Community of editors:
-240,000 conversational exchanges of discussions
-users are either admins or non-admins

Results

Wikipedia:

Results

Wikipedia: green error bars are obtained via shuffling the sequences

most "stylistic" coordination is "explained away" by length

Results

Supreme Court:

most "stylistic" coordination is "explained away" by length

Stylistic coordination and social status

- Can we use asymmetry in stylistic coordination to predict power relationship?
- Justices vs. lawyers, admin vs. non-admins

- Not really: observed asymmetry in stylistic coordination diminishes after conditioning on length

Length as a confounding factor

Wikipedia:

Longer utterances solicit longer response, producing spurious correlations in other features, e.g., \# of occurrences of letter "r"

Understanding Length Coordination

- Bayesian Network for length coordination:

- Contextual factor: C
- Contextual influence: $\mathbf{C} \boldsymbol{\rightarrow} \mathrm{L}_{\mathbf{o}} \mathbf{C} \boldsymbol{\rightarrow} \mathrm{L}_{\mathbf{R}}$
- Turn-by-turn length coordination: $L_{0} \rightarrow L_{R}$

Turn-by-turn Length Coordination Test

- A Conditional Monte Carlo Test
- Overall Length Coordination: $\mathrm{OLC}=\mathrm{I}\left(\mathrm{L}_{\mathrm{L}}: \mathrm{L}_{\mathrm{R}}\right)$

$$
\begin{array}{l|l|l}
L_{0} & L_{R} & L_{R}
\end{array}
$$

- OLC 0 : Original OLC
- OLC_{1} : After shuffling utterances within each conversation
- Test: $\mathrm{OLC}_{0}=\mathrm{OLC}_{1}$?
$10 \quad 16$
8
- If yes, then there is no turn-by-turn coordination

Turn-by-turn Length Coordination Test

Turn-by-turn Length Coordination Test

Supreme Court TTLCT

- Information Theory Basics
- Entropy, MI, Discrete IT estimators
- Entropy estimation demo
- Human behavior dynamics
- Social networks
- Stylistic coordination

Coffee Break (3:15-3:30)

- Non-parametric entropy estimation
- Very high-dimensional information
- How to handle it?
- Applications: language, personality, behavior

Estimation of Entropic Measures from Data

Estimating Entropic Measures

$$
H(X)=-\int d x p(x) \log p(x)
$$

- Straightforward (kind of) if we know $p(x)$

Estimating Entropic Measures

$$
H(X)=-\int d x p(x) \log p(x)
$$

- Usually we don't know $p(x)$ (have samples $x_{i} \sim p(x)$)

Plug-in Estimators

- Estimate $\mathrm{p}(\mathrm{x})$ and calculate the integral

Plug-in Estimators

- Estimate $\mathrm{p}(\mathrm{x})$ and calculate the integral

Does not work in high-dimensional, under-sampled settings

Binless Entropy Estimation

- One way to write entropy:

$$
H(x)=\mathbb{E}_{x}[-\log p(x)]
$$

- Given some samples $x_{i} \sim p(x)$,

$$
\approx-\frac{1}{N} \sum_{i} \log p\left(x_{i}\right)
$$

- We still don't know $p(x)$
- However, we need to estimate $p(x)$ only at points x_{i}

kNN Density Estimation for $\mathrm{p}(\mathrm{x})$

- How to estimate the density $p(x)$ at point $x^{(i)}$
- Construct the k-nearest neighbor ball centered at $x^{(i)}$
- Central Assumption: $p(x)$ is uniform within the ball
- Estimate
$\hat{p}\left(\mathbf{x}^{(i)}\right)=\frac{\text { probability mass of balli }}{\text { Volume of balli }}=\frac{\% \text { pointsin ball } i}{\text { Volume of balli } \mathcal{~}}$
- E.g. for $d=2, k=4$

$$
\hat{p}_{k=4}\left(\mathbf{x}^{(i)}\right)=\frac{4 /(N-1)}{\pi r_{i}^{2}}
$$

$$
\widehat{H}(\mathbf{x})=-\frac{1}{N} \sum_{i=1}^{N} \log \hat{p}\left(\mathbf{x}^{(i)}\right)=\frac{2}{N} \sum_{i=1}^{N} \log r_{i}+\log (N-1)-\log k
$$

From Entropy to Mutual Information

- Mutual information is written as:

$$
I(\mathbf{x})=\sum_{i=1}^{d} H\left(x_{i}\right)-H(\mathbf{x})
$$

- A simple MI estimator:

$$
\hat{I}(\mathbf{x})=\sum_{i=1}^{d} \widehat{H}\left(x_{i}\right)-\widehat{H}(\mathbf{x})=\frac{1}{N} \sum_{i=1}^{N} \log \frac{\hat{p}\left(\mathbf{x}^{(i)}\right)}{\hat{p}\left(x_{1}^{(i)}\right) \hat{p}\left(x_{2}^{(i)}\right) \ldots \hat{p}\left(x_{d}^{(i)}\right)}
$$

Binless Entropy Estimation

Differential entropy for a Gaussian in 3 dimensions, as a function of N , the number of samples

From Victor 2002, "Binless strategies for estimation of information for neural data"

But for Topic Models?

- Nice trick in a few dimensions, but if we pick a topic model with 125 topics,

$$
X^{\mathrm{P}}, Y^{\mathrm{P}}, X^{\mathrm{F}} \in \mathbb{R}^{125}
$$

- Leads to a 375 dimensional space! We are estimating information transfer with as few as 100 samples!
- Ok, but is it REALLY 375 dimensional?
- (answer: no! most people don't use most topics)

Number of active topics per user

Example

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{lll}
4 & 3 & 1 \\
3 & 4 & 1 \\
1 & 1 & 2
\end{array}\right)\right)
$$

$$
\begin{aligned}
H(X: Y \mid Z) & =0.357 \\
H(X: Y) & =0.413
\end{aligned}
$$

Convergence of estimators

Limitations of MI estimators

Reshef et al., "Detecting novel associations in large data sets." Science, 2011

Mutual Information

Equitability, mutual information, and the maximal information coefficient

Justin B. Kinney ${ }^{1}$ and Gurinder S. Atwal

Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
MI is just fine: one only needs more data points for accurate estimation
Edited* by David L. Donoho, Stanford University, Stanford, CA, and approved January 21, 2014 (received for review May 24, 2013)

How should one quantify the strength of association between two random variables without bias for relationships of a specific form? Despite its conceptual simplicity, this notion of statistical "equitability" has yet to receive a definitive mathematical formalization. Here we argue that equitability is properly formalized by a selfconsistency condition closely related to Data Processing Inequality.
dependencies without bias for relationships of one type or another. And although it was proposed in the context of modeling communications systems, mutual information has been repeatedly shown to arise naturally in a variety of statistical problems (6-8). The use of mutual information for quantifying associations in continuous data is unfortunately complicated by the fact that it

Cleaning up the record on the maximal information coefficient and equitability

Abstract

Although we appreciate Kinney and Atwal's instead that we look for approximations far will allow researchers in the area to most interest in equitability and maximal information coefficient (MIC), we believe they misrepresent our work. We highlight a few of our main objections below. and solutions in restricted cases, an impossibility result about perfect equitability provides focus for further research, but David N. Reshef ${ }^{a, b, 1,2}$, Yakir A. Reshef $f^{b, 1,2}$,

Regarding our original paper (1), Kinney productively and collectively move forward.

Michael Mitzenmacher ${ }^{c, 3}$, and Pardis C. Sabeti ${ }^{d, e, 3}$

Reply to Reshef et al.: Falsifiability or bust

The term "equitability" was introduced by the claimed equitability of MIC was only mately satisfy R^{2}-equitability better than do Reshef et al. in ref. 1 to describe measures intended to describe a qualitative tendency certain estimates of mutual information. The of statistical dependence that "give similar that they observed when analyzing some relevance of these select simulations is unscores to equally noisy relationships of differ- data that they themselves simulated. We clear. As proven in our paper, neither MIC
ent types." Their paper also introduced a new find this objection of theirs troubling, as nor mutual information satisfies R^{2}-equitabilent types." Their paper also introduced a new find this objection of theirs troubling, as nor mutual information satisfies R^{2}-equitabilstatistic, the "maximal information coeffi- it implies that the central claim of ref. 1-that ity in any mathematical sense. The question cient" (MIC), that was said to satisfy this MIC is equitable-was never meant to be of whether estimates of these quantities are equitability criterion. There has since been falsifiable.

Mutual Information as a Function of Noise

Kraskov, Stögbauer, \& Grassberger, Physical Review E, 2004

$$
\hat{\boldsymbol{I}}_{K S G, k}(\mathbf{x})=(\boldsymbol{d}-\mathbf{1}) \psi(N)+\psi(k)-(\boldsymbol{d}-\mathbf{1}) / k-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{d} \psi\left(\boldsymbol{n}_{x_{j}}(i)\right)
$$

Mutual Information as a Function of Noise

Kraskov, Stögbauer, \& Grassberger, Physical Review E, 2004

$$
\hat{\boldsymbol{I}}_{K S G, k}(\mathbf{x})=(\boldsymbol{d}-\mathbf{1}) \psi(N)+\psi(k)-(\boldsymbol{d}-\mathbf{1}) / k-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{d} \psi\left(\boldsymbol{n}_{x_{j}}(\boldsymbol{i})\right)
$$

Mutual Information as a Function of Noise

Kraskov, Stögbauer, \& Grassberger, Physical Review E, 2004

$$
\hat{I}_{K S G, k}(\mathbf{x})=(\boldsymbol{d}-\mathbf{1}) \psi(N)+\psi(k)-(d-1) / k-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{d} \psi\left(n_{x_{j}}(i)\right)
$$

Mutual Information as a Function of Noise

Kraskov, Stögbauer, \& Grassberger, Physical Review E, 2004

$$
\hat{I}_{K S G, k}(\mathbf{x})=(\boldsymbol{d}-\mathbf{1}) \psi(N)+\psi(k)-(d-1) / k-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{d} \psi\left(n_{x_{j}}(i)\right)
$$

Mutual Information as a Function of Noise

Kraskov, Stögbauer, \& Grassberger, Physical Review E, 2004

$$
\hat{\boldsymbol{I}}_{K S G, k}(\mathbf{x})=(\boldsymbol{d}-\mathbf{1}) \psi(N)+\psi(k)-(d-1) / k-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{d} \psi\left(n_{x_{j}}(i)\right)
$$

Mutual Information as a Function of Noise

Kraskov, Stögbauer, \& Grassberger, Physical Review E, 2004

$$
\hat{\boldsymbol{I}}_{K S G, k}(\mathbf{x})=(\boldsymbol{d}-\mathbf{1}) \psi(N)+\psi(k)-(d-1) / k-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{d} \psi\left(n_{x_{j}}(i)\right)
$$

Mutual Information as a Function of Noise

Kraskov, Stögbauer, \& Grassberger, Physical Review E, 2004

$$
\hat{\boldsymbol{I}}_{K S G, k}(\mathbf{x})=(\boldsymbol{d}-\mathbf{1}) \psi(N)+\psi(k)-(\boldsymbol{d}-\mathbf{1}) / k-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{d} \psi\left(\boldsymbol{n}_{x_{j}}(i)\right)
$$

kNN Estimator Limitations

Theorem

For a certain class of k-NN estimators, estimating mutual information within ε of its true value, $|\hat{i}(\mathbf{x})-I(\mathbf{x})| \leq \varepsilon$, requires that the number of samples, N , is at least:

$$
N \geq C \exp \left(\frac{I(\mathbf{x})-\varepsilon}{d-1}\right)+1
$$

Strong relationships require exponentially many samples to measure

kNN Estimator Limitations

$$
\mathrm{k}=5
$$

$\begin{array}{rr}\bullet \\ & \\ & -\end{array}$

Works well for weakly correlated distributions

kNN Estimator Limitations

$$
k=5
$$

-

Works bad for strongly correlated distributions Put a lot more probability mass out of the support

Relax Local Uniformity Condition

Non-axis aligned bounding rectangle

$$
\hat{I}_{L N C}(\mathbf{x})=\hat{I}(\mathbf{x})-\frac{1}{N} \sum_{i=1}^{N} \log \frac{\bar{V}(i)}{V(i)}
$$

Local Non-Uniform Correction Algorithm

Algorithm 1 Mutual Information Estimation with Local Nonuniform Correction
correction $=0$
for each point $\mathbf{x}^{(i)}$ do
Find k nearest neighbors of $\mathbf{x}^{(i)}$
Calculate volume of kNN rectangle $V(i)$
Apply PCA on k neighbors, obtain volume $\bar{V}(i)$
if $\bar{V}(i) / V(i)<\alpha_{k, d}$ then
correction $=$ correction $+\log \frac{\bar{V}(i)}{V(i)}$
end if
end for
$\hat{I}_{L N C}(\mathbf{x})=\hat{I}(\mathbf{x})-\frac{1}{N} *$ correction

Test for Local Non-Uniformity

$\bar{V}(i) / V(i) \geq \alpha_{k, d}$

Functional Relationships

Functional Relationships

Empirical Convergence Rate

Empirical Convergence Rate

Ranking Relationship Strength

- WHO (World Health Organization) data-set: 357 socio-economic variables
- We ranked the relationship strength between pairs of variables based on mutual information
- Tested the robustness of ranking under missing data.
- Information Theory Basics
- Entropy, MI, Discrete IT estimators
- Entropy estimation demo
- Human behavior dynamics
- Social networks
- Stylistic coordination
- Coffee Break (3:15-3:30)
- Non-parametric entropy estimation
- Very high-dimensional information
- How to handle it?
- Applications: language, personality, behavior

Representing high-dimensional information

Problem

Information is a functional of $p(x)$

If x is "medium dimensional" then we can use our estimation tricks.

But what if x is truly high dimensional?

Approaches

- Don't even try (i.e., pick a low-d problem)
- Dimensionality reduction
- Compression
- Information decomposition

Compression: InfoMax

$$
\max _{p(y \mid x)} I(X ; Y)
$$

Mutual information is maximized if we copy the information.
1 bit of noise = 1 bit of signal!
Infomax representations produce a copy of a copy of a copy...

This is really an alternate statement of the Data Processing (inequality

$$
Y^{3}
$$

Compression: the information bottleneck

Predict: Z
Tishby, Slonim, et al. (Rate-distortion)

$$
\min _{p(y \mid x)} I(X ; Y)-\gamma I(Y ; Z)
$$

Approaches

- Don't even try (i.e., pick a low-d problem)
- Dimensionality reduction
- Compression
- Information decomposition

Extending mutual information

Entropy the average number of bits required to store X

$$
H(X)=-\sum_{x} p(x) \log p(x)
$$

What if we want to store two variables?
\square $\#$ bits $=H\left(X_{1}\right)+H\left(X_{2}\right) ?$ Holistic $\#$ bits $=H\left(X_{1}, X_{2}\right)$

The difference between the naive strategy and the holistic one has a special name

$$
\begin{array}{r}
H\left(X_{1}\right)+H\left(X_{2}\right)-H\left(X_{1}, X_{2}\right) \\
\quad=I\left(X_{1} ; X_{2}\right)=T C\left(X_{1}, X_{2}\right)
\end{array}
$$

Mutual information

'Total correlation" (Watanabe, 1967) or multivariate mutual information

$$
\begin{aligned}
T C\left(X_{1}, \ldots, X_{n}\right) & =\sum_{i} H\left(X_{i}\right)-H(X) \\
& =D_{K L}\left(p(x) \| \prod_{i \text { Haive }} p\left(x_{i}\right)\right)
\end{aligned}
$$

- Useless because we don't know $\mathrm{p}(\mathrm{x})$

Example of decomposing the dependence

$$
\Gamma C\left(X_{1}, X_{2}, X_{3}, X_{4}\right)
$$

$$
=\mathbb{E} \log \frac{p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(x_{4}\right)}
$$

- Let's show this graphically before looking at the problems...

A hint to get something like "hierarchical coarse-graining"

- From Watanabe's original TC paper: multivariate information can be hierarchically decomposed.
- BUT, this is only formal: it doesn't tell us the best way to decompose it, and we still get the curse of dimensionality.

A hint to get something like "hierarchical coarse-graining"

- Let Y's be some arbitrary function of inputs, now we can get a lower bound
- Now optimize lower bound over functions and structure
- (An aside: Y's at each level are more independent)

Total Correlation Explanation (CorEx)

- Total correlation or multivariate information in X

$$
T C(X) \equiv D_{K L}\left(p(x) \| \prod_{i=1}^{n} p\left(x_{i}\right)\right)
$$

- If Y were the common cause of dependence in all $X_{i}, T C(X \mid Y)=0$
- The reduction in dependence, or the "correlation explained by $\mathrm{Y}^{\prime \prime}$

$$
T C(X ; Y) \equiv T C(X)-T C\left(X \mid Y^{\prime}\right.
$$

More detail on the decomposition

$$
T C(X) \geq T C\left(X ; Y^{1}\right)=T C_{L}\left(X ; Y^{1}\right)+T C\left(Y^{1}\right)
$$

$$
\begin{aligned}
& T C\left(Y^{1}\right) \geq T C_{L}\left(Y^{1} ; Y^{2}\right)+T C\left(Y^{2}\right) \\
& \ldots \ldots
\end{aligned}
$$

Form of Solution for One Layer

What the visualizations will summarize

$T C(X) \geq \sum$ contribution from Y_{j}^{k}

Applications

Benchmark test: Reconstruct latent tree models

Goal: recover
the hidden structure generating this data

Accuracy to recover structure for high-d tree models

$-$
$-$
\square
T
$-$
$-$ N.Net:RBM* PCA Spectral Bi* Isomap* LLE*
\rightarrow Hierarch.
*Best of several implementations

There are also specialized techniques dedicated to latent tree learning: the complexity of these are $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)-$ $O\left(n^{\wedge} 5\right)$, none could run on these examples with thousands of variables

The Big-5 personality test

Q31: I am the life of the party

1. Strongly disagree
2. Disagree
3. Neither agree nor disagree
4. Agree
5. Strongly agree

	Q1	Q2	Q3	\ldots	Q50
Person 1	5	2	4		1
\ldots					
Person N	2	2	5		5

According to psychologists, this question measures Extroversion, one of the "Big 5" personality traits.

Given answers to many questions, can we reverse engineer personality types?

Perfect Recovery of "Big 5" Personality Traits from Survey Data

Nhich questions involve independent personality traits?

Individual trading behavior

- Each variable represents whether an individual trades on a certain company (in a 6 month time-frame)
- Each account's activity is a sample

Grain of salt: Experiment restricted to frequent traders and frequently traded stocks

IBM AAPL ...
$X=(1,2,0,0, \ldots)$
I bought IBM, sold AAPL
in this time period

[Some slides removed]

Dynamics

- Considered just one stock: AAPL
- 110 trading days from: Jan. 22014 - Jun. 102014

Account 1 Account 2.

- Each day represents a sample of activity
- Variables are accounts, indicate buy/sell/both/neither for that day

Application to hierarchical topic modeling

- Data from 20 newsgroups
- Each document is a sample, each word is a variable
- Hierarchical decomposition:

Zooming in on some example results

CorEx wrap-up

- Promising: an information-theoretic path to create succinct representations of complex data in an unsupervised way
- Practical: works on high-d data with few samples and no assumptions about data-generating process

Contact: gregv@isi.edu, galstyan@isi.edu
Papers, open source code, interactive visualizations: http://bit.ly/corex info

Overall wrap-up

- Information theory is a general but challenging way to measure the strength of relationships
- We use this in hard to model domains, like social network dynamics
- For medium or low-dimensional problems, careful estimation solves most of our problems
- For very high-dimensional systems, we can use information decomposition (CorEx)

Contact: gregv@isi.edu, galstyan@isi.edu ICWSM Tutorial: http://isi.edu/~galstyan/icwsm13

CorEx: http://bit.ly/corex info Entropy estimators: http://github.com/gregversteeg/NPEET

References to our related work

Social network dynamics

- Greg Ver Steeg and Aram Galstyan. Information transfer in social media. In Proceedings of World Wide Web Conference (WWW), 2012.
- Greg Ver Steeg and Aram Galstyan. Information-theoretic measures of influence based on content dynamics. In Proceedings of the 6th International Conference on Web Search and Data Mining (WSDM). ACM, 2013.

CorEx

- Greg Ver Steeg and Aram Galstyan. Discovering structure in high-dimensional data through correlation explanation. Advances in Neural Information Processing Systems (NIPS), 2014.
- Greg Ver Steeg and Aram Galstyan. Maximally informative hierarchical representations of highdimensional data. In Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics (AISTATS), 2015.

Stylistic accommodation

- Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. Understanding confounding effects in linguistic coordination: an information-theoretic approach. PLoS ONE, 10(6): e0130167, 2015.
- Entropy estimation
- Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. Estimating mutual information by local gaussian approximation. In Uncertainty in Artificial Intelligence (UAI), 2015.
- Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. Efficient estimation of mutual information for strongly dependent variables. In Proceedings of the Sixteenth International Conference on Artificial

