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Industrial Relevance

Product Quantity 
(T/yr)

Value ($) Process Coagulation

Carbon 
Black

8M 8B Flame X

Titania 2M 4B Flame X

Zinc Oxide 0.6M 0.5B Evap/Oxid X

Fumed Silica 0.2M 2B Flame X

Nickel 0.04M 0.1B Decomp X

2002 Market data for nano-structured materials



Presence of  Nanoparticles
1. Organic Light Emitting Diodes (OLEDs) for 

displays
2. Photovoltaic film that converts light into 

electricity
3. Scratch-proof  coated windows that clean 

themselves with UV
4. Fabrics coated to resist stains and control 

temperature
5. Intelligent clothing measures pulse and 

respiration
6. Bucky-tubeframe is light but very strong
7. Hip-joint made from bio-compatible materials
8. Nano-particle paint to prevent corrosion
9. Thermo-chromic glass to regulate light
10. Magnetic layers for compact data memory
11. Carbon nanotube fuel cells to power 

electronics and vehicles
12. Nano-engineered cochlear implant



 

Scientific Relevance

๏ Description of  nanoparticle growth processes
✤ Nucleation
✤ Coagulation/coalescence
✤ Condensation/evaporation & surface chemistry

๏ Bridging Continuum-molecular length scales
✤ Fluid-particle interactions
✤ Thermal-particle interactions
✤ Chemical-particle interactions

๏ New dynamics/phenomena



Dynamics of  Particle Growth

๏ Nucleation
๏ Coagulation/coalescence
๏ Condensation/evaporation & surface chemistry
๏ Other particle-particle interactions

Chemistry
Nucleation

Collision/
Coallescence

Agglomeration/
Collision

Surface Growth



 

Mathematical Relevance

๏ Modeling
✤ Exploration of  parameter space
✤ Identify relevant features/dynamics
✤ Condensation/evaporation & surface chemistry

๏ Mathematical Description
✤ Captures underlying processes
✤ Solvable
✤ Computationally feasible/efficient
✤ Robust



{Nano}Particle Formulation (1)

• Continuous distribution function
• n is the number concentration of  molecular clusters of  size v, 

and varies as a function of  space, time, and composition (O2, 
N2, SiO2)

• An impossibly-large number of  equations/dimensions
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1
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0
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ṽ)dṽ −
∫ ∞

0
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{Nano}Particle Formulation (2)

๏ Moment method
✤ Assume a distribution for n
✤ Solve for moments of  this distribution, Mk

๏ Three (3) non-linear PDEs, M0, M1, M2

๏ Physical limitations: uni-modal distributions, etc.
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{Nano}Particle Formulation (3)

∂ρQk

∂t
+

∂ρujQk

∂xj
=

∂

∂xj

(
ρDQ

∂Qk

∂xj

)
+ ω̇Q

k
︸︷︷︸

Nucleation, Condensation & Coagulation

βi ,j = 4π(Ri + Rj )2
(

KT
2π

)1
2
(

1
mi

+
1
mj

)1
2

collision frequency function

︸︷︷︸

free-molecule regime

continuum regimeβi ,j =
2kT
3µ

(
1

v1/3
i

+
1

v1/3
j

)(
v1/3
i + v1/3

j

)

ω̇Q
k =





J
∣∣∣
nucleation

−∑Ns
i=1ρβi1QiQ1, k =1

(
1
2∑

Ns
i=1∑

Ns
j=1ρχi jkβi jQiQj−∑Ns

i=1ρβikQiQk

)
,k > 1,

75nm



Titanium Dioxide (TiO2)

๏ Easy clean glass
✤ Aktiv Glass is coated with 

nano-structured TiO2.
✤ Sunshine triggers chemical 

reaction which breaks 
down dirt.

✤ Water spreads evenly over 
surface instead of  forming 
droplets and cascades 
taking dirt with it.

๏ Chem-Bio agents, sensors, 
pigments, solar cells, etc.



Chemical Formulation

concentration of species i
diffusion coefficient of species i

Yi
Di

Hydrolysis of TiCl4

TiCl4+2H2O→ TiO2+4HCl TiCl4+O2→ TiO2+2Cl2

Oxidation of TiCl4 Methane combustion

CH4+2O2→CO2+2H2O
Consider infinite reaction rate

=Cm×min
(
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MWTiCl4

,
ρYH2O

2×MWH2O
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×MWm
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2
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Nanostructured TiO2 Synthesis

๏ Two-dimensional planar jets
✤ Non-premixed methane-air 

diffusion flame
✤ Oxidation of  TiCl4 (20% 

and 30%)
✤ Particles are spherical (25 

bins)
๏ Direct Numerical Simulation
✤ Small time/spatial steps
✤ Massively parallel 

computations
✤ 400 CPU hours on Cray X1

Methane combustion
CH4+2O2→CO2+2H2O

TiCl4+O2→ TiO2+2Cl2
Oxidation of  TiCl4

(Moody and Collins, 2003)

(Bui-Pham, 1992)



Flame Dynamics

๏ Captures nucleation, condensation, and coagulation.
๏ Develop “simple” correlations for use in RANS/LES.



Size-selected Images (20%)
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Particle Growth: Coalescence

๏ Nanoparticle Structure
✤ Collision time-scale vs. 

coalescence time scale
๏ Sintering Rate
✤ Surface tension
✤ Solid-state diffusion



Particle-Particle Dynamics

๏ Molecular dynamics lead to continuum-level descriptions
๏ Pico to nano-second time scales



Nanoparticle Coalescence

๏ Sintering time
✤ Size
✤ Material/composition
✤ Temperature

๏ Multi-scale
✤ Reaction/nucleation: very 

fast
✤ Coalescence: fast - slow
✤ Eddy turnover/mixing: 

medium-slow
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Simulations must resolve all time-scales or 
capture the effects of  “faster” phenomena

τf = 7 .4 × 10 8d4
p exp(31000/T )



Primary Particle General 
Dynamic Equation
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Collision Frequency Function

a1 = (3v0/4π)1/6 (6kBT/ρs)1/2

a = 2Df a1/4 .89
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Aggregate Modeling Results

๏ Better prediction of  growth dynamics
๏ Accounts for particle shape
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Aggregate Modeling Results

๏ More accurate description of  nanoparticle area
✤ Everything happens at the surface!

0 2 4 6 8 10 12

(Area
Agg

 - Area
Sph

)/A
Sph

Probing the dynamics of nanoparticle growth in a flame using 
synchrotron radiation, Nature Materials, 3, 370-374 (2004)



Nano-bio Interaction

๏ Nanoparticles as drug-delivery devices
✤ Chemotherapy - anticancer drugs in tumor tissue reached at 

expense of  massive contamination
✤ Multidrug Resistance - Tumor exhibit indifference to therapy
✤ Create nanoparticle (drug)
✤ Add coating/doping-agent 

Precise control of  particle morphology and composition needed!



Cancer Nano-medicine

๏ Prediction of  crystallization is crucial
๏ Chemical composition
๏ High-rate synthesis, scalability, quality, and affordability



Nucleation Modeling

๏ Nodal approximation
✤ Nucleation
✤ Condensation
✤ Coagulation
✤ Full transport

๏ Nucleation
✤ Classical (kinetics-

based)
✤ Correction of  

Girschick & Chiu
✤ Many uncertainties...
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Nanoparticle Nucleation

๏ Nucleation of  Dibutylpthalate in a planar jet
๏ Nucleation occurs in regions of  thermal/concentration 

gradients/interface(s)



Nucleation Structure

๏ Nucleation depends on the ratio of  chemical transport to 
thermal transport

๏ Non-linear interaction between thermal & chemical mixing and 
molecular/crystal growth
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Instantaneous nucleation rate contours (log): (a) Le=~5; (b) Le=1.



Effects of  Turbulence

๏ Majority of  synthesis reactors operate under turbulent flow 
conditions

๏ The effects of  turbulence on nanoparticle coagulation is 
unknown

๏ Current models assume effects are negligible
๏ “Model-free” simulations of  nanoparticle coagulation
๏ Decompose quantities into mean and fluctuating components
๏ Ascertain effects of  fluctuations & provide model(s)



Large-Scale Mixing

๏ Vorticity generation 
and vortex breakdown
✤ Increase entrainment 

of  ambient/co-
flowing fluid

✤ Dilution of  the 
particle-laden stream

✤ Particles grow more 
slowly in eddy-core.



๏ 3D Computations capture dynamics present in real-world synthesis reactors
๏ Very expensive

✤ 10,750 CPU-hours (Cray X1) 161,500 CPU-hours (Intel P4)

Three-Dimensional Turbulence



Nanoparticle Coagulation in 
Temporal Mixing Layers
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Turbulent Coagulation

๏ At low volume-fractions effects are equally distributed
๏ Turbulence acts to reduce nanoparticle coagulation
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Future Work - SDEs

๏ Current approaches are impractical/unworkable

๏ A new/different mathematical framework must be 
found

๏ PhD dissertation



Equivalent Systems

๏ Two different equations can have the same solution
✤ Fokker-Planck Equation (transport of  a conditional PDF)

✤ Stochastic Differential Equation

๏ Must be solved in a mathematically and physically consistent 
manner

dXi(t) = Di(X(t), t)dt + E1/2(X(t), t)dWi(t)
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The large dimensionality of the Fokker-Planck equation makes it impractical



Equivalent Systems (2)

๏ Increased dimensionality becomes increased no. of  variables
๏ Solution is possible.
๏ Run/CPU time reduced by two orders of  magnitude

E ≡ 2(Γ + Γt) Di ≡ 〈ui〉L +
∂(Γ + Γt)

∂xi

X(n)
i (tk+1) = X(n)

i (tk) + D(n)
i (tk)∆t +

(
E(n)(tk)∆t

)1/2
ξ(n)

i (tk)

Stochastic differential is complete with specification of  E and D

Numerical solution must preserve properties of  the SDE



1.0

0.0

0.5

(a) (b)

(c) (d)

PDE vs SDE

๏ Stochastic solver 
produces very 
accurate results

๏ Solutions are 
oscillation-free

PDE SDE

Solve same problem 
using a set of  PDEs 
and the equivalent 
SDE



 

Summary

๏ Applications
✤ Particle synthesis/production
✤ Size control and chemical tailoring/augmentation

๏ Other projects not discussed
✤ Nucleation - homogeneous vs polymerization (50+ 

PDEs vs 3 PDEs)
✤ Stochastic solver

๏ Methodology
✤ Development of  mathematical models, numerical 

algorithms, and data-analysis tools.
๏ Sponsors

✤ Army Research Office, Army Research Lab, 
National Science Foundation



 

Conclusions

๏ Simulation is critical for success
✤ Appropriate mathematical modeling is crucial

๏ Direct numerical simulation 
✤ Very valuable as a discovery tool.
✤ Provides good “data” for use in developing models .
✤ Too expensive for practical work.

๏ Effects of  turbulence require probabilistic/
stochastic modeling 

๏ Multi-disciplinary by nature
✤ Chemistry/Physics (ab initio, DFT, molecular 

dynamics), Chem. Eng., Mech. Eng. (experiments and 
computation), Mathematics,...


