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The potential for online social networks

e Everyday hundreds of millions of users voluntarily share thoughts, feelings,
and opinions at scales never seen

e Can we use this Big Data scale of thoughts, feelings, and opinions as a "lens"
to gain insight into society?



Overview

e Understanding Culture: DeviantArt

e Understanding Society: Twitter



DeviantArt

e Online community for sharing artistic works (amateurs and professionals)

e Study the temporal changes of 270,000 digital and traditional artworks from
2001 to 2010



Digital Art Digital Art Traditional Art Traditional Art
2004 010 2004 2010



Apply Quantitative Methods

e Extract aggregated color histograms per year for both categories (Digital and
Traditional Art)
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Overview

e Understanding Culture: DeviantArt

e Understanding Society: Twitter



Do social networks provide a clear enough lens?

Important questions to keep in mind:
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e Do users only share the banal?
e |s social media only for the
narcissist?
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Example investigations

e “Diurnal and seasonal mood vary with work, sleep, and daylength across
diverse cultures” by Golder and Macy (2008)

e “The Geography of Happiness: Connecting Twitter Sentiment and Expression,
Demographics, and Objective Characteristics of Place” by Mitchell et. al
(2013)

e “Psychological language on Twitter predicts county-level heart disease
mortality” by Eichstaedt et. al (2015)



What about images?

e Text limits us to specific language

e Increasingly, social media users share content beyond just text

e \We propose that images compliment text and together can be used to form
stronger signals in measuring the well-being of society



Challenges with social media images

e How do we actually go about measuring features that are relevant for

determining social well-being?

aaaaaaaaaaaaa

e First step: look at metadata

Volume of tweeted images
per hour for 4 different cities
for a single day



What about content of images”?

New York

Tokyo

Hochman, Chow, Manovich
Phototrails.net



http://phototrails.net/
http://phototrails.net/
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MDS of color distributions

A trajectory of aggregated color
distributions

Does each city have a specific
trajectory?

Does the unique trajectory for each city
suggest something about cultural and
societal differences?
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Can we systematically study the content of images?

e Recent advances in deep learning allow us to classify content of images at
high accuracies

e GooglLeNet convolutional neural network won the ImageNet challenge in
2014 reported to have an error rate ~6% (human error rate ~5%)

e Available for free as open source through the Caffe framework provided by
UC Berkeley



Non-photographic images

e Take random 50K sample of images from the top 20 populous cities from the
lower 48 of the United States Vo A

New York 1034643  Jacksonville 79850

Los Angeles 810046 Seattle T8139

Houston 405051 Milwaukee 75941

Chicago 334422  Mesa 73567

Dallas 290407  Detroit 71079

| d t t h t I t t f Fort Worth 271916  Cleveland 71055
‘Washington 238254  New Orleans 69473

. n Our a a, e mOS popu ar Ca egory (Ou O Philadelphia 229252 Tucson 58937
. . “ . San Antonio 228038 Baltimore 56520

San Die; 227794 Sacramento 53649

1,000 categories) is the category for “web site, .
Boston 186484  Wichita 52635

H H H H ) Phoenix 177377 Minneapolis 51544
website, internet site, site Austin 167255 Tua s0996
Arlington 132146  Omaha 50814

Long Beach 122521  Oakland 50283

Las Vegas 119437  Louisville 50236

Columbus 111506 ~ Memphis 49207

San Jose 109444  Fresno 44687

Tampa 109387  Riverside 44557

Nashville 102341  Virginia Beach 43278

Atlanta 98322 St. Louis 41098

Anaheim 96452  Albuquerque 40291

. . Denver 96151 Bakersfield 39582

e \We refer to these images as non-photographic Oklaboma City 94246  Loxingon 9100
Charlotte 94024  Corpus Christi 34199

. “r ” Kansas City 93991  El Paso 32547
- Portland 93729  Colorado Springs 30502

Images "image-texts e Ryl

Miami 83999  Aurora 22048
TABLE L 60 U.S. CITIES SORTED BY NUMBER OF GEOLOCATED

IMAGES PUBLICALY SHARED ON TWITTER IN 2013. THE ToP 20 CITIES
USED IN OUR CITY ARE HIGHLIGHTED IN BOLD.
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Compute features from non-photographic images

Columbus -
Las Vegas -
San Antonio -
Fort Worth -
Houston -
San Jose -
Dallas -
Philadelphia -
Long Beach -
Phoenix -
Tampa -
Austin -
Chicago -
San Diego -
Los Angeles -
Boston -

New York -
Washington -
Arlington-

San Francisco -

1 I 1 I
6 7 8 9
Text—-images percentages

1
10

Different cities have different
proportions of non-photographic
images.

Are these differences indicative
of socio-cultural difference
between these cities?
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We quantify the temporal
distributions of non-
photographic images with
the entropy of their hourly
distributions.

KQ
1 & B sam
X244(h) = 155 3 T =0

h =1

Different cities have
different temporal
distributions.

Are these differences
indicative of socio-
cultural difference
between these cities?



TABLE Il

Indicator Correlation  P-value
Median Housing Price -0.5638  0.007735
Rate of Bachelor's Degree -0.6413  0.001623
Averape Income -0.4772  0.01805
Social well-being 0.56100  0.001623

PEARSON CORRELATIONS BETWEEN THE PROPORTION OF
IMAGES CLASSIFIED AS IMAGE-TEXTS AND FOUR S0OCIO-ECONOMIC

VARIABLES (FIGURE 2).

Indicator Correlation  P-value
Median Housing Price -0.5332 0.007735
Rate of Bachelor's Degree -0.62451 0.001623
Average Income -0.4709 0.01805
Social well-being 0.53381 0.001623
TABLE III. PEARSON CORRELATIONS BETWEEN THE ENTROPY

MEASURES COMPUTED FROM THE SERIES IN EQUATIONS 1 AND 2 AND
FOUR SOCIO-ECONOMIC INDICATORS.

Sources of socio-economic variables:
1. Median housing price (Zillow)
2. Bachelor’s degree rate (Census)
3. Average income (Census)
4. Social well-being (Gallup survey)

Similar results using other
measures for correlation (eg,
Spearman Rank)



Image-texts positively correlate with social well-being
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e C(ities that report being more socially
satisfied, tend to also share more image-
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texts

e This may be linked to the fact that one of oy
the most consistent sub-categories in b
image-texts are screenshots of text == gw
message conversations «_-—""-—' [?s




Summary

e Our work suggests that images in social media have features that relate to
scoio-economic variables

e Other content types should also be investigated (including texts on images)

e Future work should combine features from both images and texts to form a
more complete picture
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