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Asymptotic Complexity

O( f(n) )

Ω( g(n) )

Θ( h(n) )

for problems with massive input



Characterization of Efficient Algorithms

Polynomial Time

O(nc)   for a constant c



• Tera Web pages

• unbounded amount of Web logs

• billions of variables 

• billions of transistors. 

Big Data and Massive Graphs



• Tera Web pages

• unbounded amount of Web logs

• billions of variables 

• billions of transistors. 

Happy Asymptotic World for Theoreticians

Big Data and Massive Graphs



Efficient Algorithms for Big Data

Quadratic time algorithms could be too slow!!!!                                          



Modern Notion of

Algorithmic Efficiency



Therefore, more than ever before, it is not just 

desirable, but essential, that efficient 

algorithms should be scalable. In other words, 

their complexity should be nearly linear or 

sub-linear with respect to the problem size.

Thus, scalability — not just polynomial-time 

computability — should be elevated as the 

central complexity notion for characterizing 

efficient computation. 



Big Data and Scalable Algorithms

A Practical Match Made in the Digital Age
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Big Data and Scalable Algorithms

• Nearly-Linear Time Algorithms

• Sub-Linear Time Algorithms 



Algorithmic Paradigms: Scorecard

• Greedy often scalable (limited applications)

• Dynamic Programming usually not scalable (even when applicable)

• Divide-and-Conquer      sometimes scalable

• Mathematical Programming                                               rarely scalable

• Branch-and-Bound hardly scalable

• Multilevel Methods                                   mostly scalable (lack of proofs)

• Local Search and Simulated Annealing can be scalable



Examples: 

Scalable Geometry Algorithms

Sorting O(n logn)

Nearest neighbors

Delaunay Triangulation/3D convex hull

Fixed Dimensional Linear Programming                   O(n) 

e–net in fixed-dimensional VC space



Examples: 

Scalable Graph Algorithms

Breadth-First Search                                        O(|V|+|E|)

Depth-First Search

Shortest Path Tree

Minimum Spanning Tree

Planarity Testing

Bi-connected components

Topological sorting

Sparse matrix vector product



Examples: 

Scalable Numerical Algorithms

N-Body simulation                                                     O(n)

Sparse matrix vector product

FFT/Multiplication O(n log n)

Multilevel algorithms

Multigrid



We need more provably-good 

scalable algorithms for network 

analysis, data mining, and 

machine learning (in real-time 

applications)



Scalable Methodology: Talk Outline

• Scalable Primitives and Reduction

– The Laplacian Paradigm

• Electrical Flows & Maximum Flows; Spectral Approximation; Tutte’s 

embedding and Machine Learning

• Scalable Technologies:

– Spectral Graph Sparsification

• Sparse Newton’s Method and Sampling from Graphical Models

– Computing Without the Whole Data: Local Exploration and

Advanced Sampling 

• Significant PageRanks

• Challenges: Computation over Dense/High-Dimensional

Models with Succinct/Sparse Representations
• Social Influence; high order clustering;



Scalable Primitives and Reduction

Algorithm Design is like Building a Software Library

Scalable Reduction: Once scalable algorithms are 

developed, they can be used as primitives or 

subroutines for designing new scalable algorithms.



Laplacian Primitive

Solve A x = b, where A is a weighted Laplacian 

matrix



Laplacian Primitive

Solve A x = b, where A is a weighted Laplacian 

matrix
A is Laplacian matrix: symmetric

non-positive off diagonal

row sums = 0

Isomorphic to weighed graphs

1 2

34



Compute                                             in time

For symmetric diagonally dominant (SDD) A, any b

Scalable Laplacian Solvers

(Spielman-Teng)

Greatly improved by Koutis-Miller-Peng, Kelner-Orecchia-Sidford-

Zhu, …, Lee, Peng, and Spielman, to essentially O(m log (1/ε))



The Laplacian Paradigm

To apply the Laplacian Paradigm to solve a problem 

defined on massive networks or big matrices, we 

attempt to reduce the computational and optimization 

problem to one or more linear algebraic or spectral 

graph-theoretical problems.

Beyond scalable Laplacian solvers



Scalable Tutte’s Embedding

Learning from labeled data on directed graphs 

[Zhou-Huang-Schölkopf]



For Laplacian A, is vector vT1 = 0 such that 

Scalable Spectral Approximation

Can find v using inverse power method, in time

Approximate Fiedler Vector



Theorem: Constant degree graph G, Fiedler value λ:

scalable computation of a cut of conductance

Scalable Cheeger Cut

 O



Scalable Electrical Flows

Electrical potentials:  L φ= χst 

in time Õ(m log ε-1)



Undirected Maximum Flow

Previously Best: O(m3/2)                             [Even-Tarjan 75]  



Maximum Flow

(Christiano-Kelner-Mądry-Spielman-Teng)

Iterative Electrical Flows: φ= L-1 χst :    Õ(m4/3 ε-3)

Previously Best: Õ(min(m3/2 , m n2/3))       [Goldberg-Rao]  



Path to Scalable Maximum Flow

Previously Best: Õ(min(m3/2 , m n2/3))       [Goldberg-Rao]  

Iterative Electrical Flows: φ= L-1 χst :    Õ(m4/3 ε-3)

Scalable: Sherman; Kelner-Lee-Orecchia-Sidford, Peng



Applications of The Laplacian Paradigm

• Electrical flow computation 

• Spectral approximation 

• Tutte’s embedding 

• Learning from labeled data on a directed graph [Zhou-Huang-Schölkopf]

• Cover time approximation [Ding-Lee-Peres]

• Maximum flows and minimum cuts [Christiano-Kelner-Madry-Spielman-Teng]

• Elliptic finite-element solver [Boman-Hendrickson-Vavasis]

• Rigidity solver [Shklarski-Toledo; Daitch-Spielman]

• Image processing [Koutis-Miller-Tolliver]

• Effective resistances of weighted graphs [Spielman-Srivastava]

• Generation of random spanning trees [Madry-Kelner]

• Generalized lossy flows [Daitch-Spielman]

• Geometric means [Miller-Pachocki]

• …



Scalable Techniques

• Algebraic Formulation of Network Problems

• Spectral Sparsification of Matrices and Networks

• Computing without the Whole Data: Local 

Exploration of Networks



For a graph G (with Laplacian L), a sparsifier is a graph     

(with Laplacian    )  with at most                   edges s.t.

Graph Spectral Sparsifiers

Improved by Batson, Spielman, and Srivastava



Sampling From Graphical Models

Joint probability distribution of n-dimensional 

random variables x

Graphical model for 

local dependencies 

Sampling according to the model



Gibbs’ Markov Chain Monte Carlo 

Process

Locally resample each variable, conditioned on the values 

of its graphical neighbors   

• In limit, exact mean and covariance 

[Hammersley-Clifford]

• Easy to implement

• Many iterations

• Sequential



A Holy Grail Sampling Question

Characterization of graphical models that have scalable 

parallel sampling algorithms with poly-logarithmic depth?



Gaussian Markov Random Fields

• Precision matrix – symmetric positive definite

• Potential vector

• Goal: Sampling from Gaussian distribution N(Λ-1 h , Λ-1)



GMRF with H-Precision Matrices

Johnson-Saunderson-Willsky (NIPS 2013)

DΛD is SDD

If the precision matrix Λ is (generalized) diagonally 

dominant, then Hogwild Gibbs distributed sampling 

process converges 



• Time complexity:

• Parallel complexity:

• Randomness complexity:

Scalable Parallel Gaussian Sampling?

It remains open even if the precision matrix is 
symmetric diagonally dominant (SDD).



A Numerical Program for 

Gaussian Sampling

1. Find the mean:

m = Λ-1 h 

2.  Compute an inverse square-root factor:

CCT = Λ-1

3. Sampling: 

generate standard Gaussian variables z

x = C z + m



Canonical Inverse Square-Root

= C CT



Canonical Inverse Square-Root

Focus on normalized Laplacian:

I-X

= C CT



Newton’s Method



Newton’s Method



Sparse Newton’s Method



Sparse Newton Chain



Random-Walk Polynomials and 

Sparsification



Path Sampling

e

e

Scalable Sparsification of Random-

Walk Polynomials



• Time complexity:

• Parallel complexity:

• Randomness complexity:

Scalable Parallel Gaussian Sampling

for H-Precision Matrices

Cheng-Cheng-Liu-Peng-Teng (COLT 2015)



Scalable Sparse Newton’s Method



Scalable Matrix Roots

Nick Higham at Brain Davies’ 65 Birthday: An email from a 

power company regarding the usage of electricity networks 

“I have an Excel spreadsheet containing the transition 

matrix of how a company’s [Standard & Poor’s] credit 

rating charges from on year to the next. I’d like to be 

working in eighths of a year, so the aim is to find the eighth 

root of the matrix.”



Family of Scalable Techniques

• Algebraic Formulation of Network Problems

• Spectral Sparsification of Matrices and Networks

• Computing without the Whole Data: Local 

Exploration of Networks



Local Network Algorithms



Local Network Algorithms



Local Network Algorithms



Local Network Algorithms



Local Network Algorithms



PageRank

• PageRank: Stationary Distribution 

of the Markov Process:

– Probability 1-a: random walk 

on the network

– Probability a: random restarting

– Stationary Distribution:

http://upload.wikimedia.org/wikipedia/commons/e/ee/PageRank-byFML.gif


Significant PageRank without Explore 

the Entire Network?

Input: G, 1 ≤ Δ ≤ n, and c>1

Output: Identify a subset S ⊆ V containing:

• all nodes of PageRank at least Δ

• no nodes with PageRank less than Δ/c

O(n/Δ) time algorithm?

http://upload.wikimedia.org/wikipedia/commons/e/ee/PageRank-byFML.gif


Personalized PageRank Matrix

Personalized PageRank



Scalable Local Personalized PageRank

Jed-Widom

Andersen-Chung-Lang

O(dmax/e)

Fogaras-Racz-Csalogany-Sarlos

Borgs-Brautbar-Chayes-Teng

O(log n/(er2))



An Abstract Problem: Vector Sum

Input: v (an unknown vector from [0,1]n)

1 ≤ Δ ≤ n (a threshold value)

Query Model:               ?(v,i,e)

Cost: 1/e

Output: Is sum(v) more than Δ or less than Δ/2?

Question: O(n/Δ) cost algorithm?



Riemann Estimator
Borgs-Brautbar-Chayes-Teng



Scalable Methodology: Talk Outline

• Scalable Primitives and Reduction

– The Laplacian Paradigm

• Electrical Flows & Maximum Flows; Spectral Approximation; Tutte’s 

embedding and Machine Learning

• Scalable Technologies:

– Spectral Graph Sparsification

• Sparse Newton’s Method and Sampling from Graphical Models

– Computing Without the Whole Data: Local Exploration and

Advanced Sampling 

• Significant PageRanks



• Computation over dense models with

succinct/sparse representations
• High order clustering;

• Computation over high-dimensional models

with succinct/sparse representations
• Social Influence;

• Computation over incomplete data
• ML

Challenges



Clustering Based on Personalized Page-

Rank Matrix

suspiciousness measure (Hooi-Song-Beutel-Shah-Shin-Faloutsos)

Open Question: scalable 2-approximation?



Reversed Diffusion Structure and 

Process 



Influence Through Social Networks



Reversed Diffusion Process

• Scalable Influence Maximization

• Borgs, Brautbar, Chayes, Lucier

• Tang, Shi, Xiao

• Scalable Shapley Centrality of Social Influence

• Chen and Teng



Given a vertex v of interest in a massive network

find a provably-good cluster near v

in time O(cluster size)

Local Graph Clustering

Spielman-Teng

Open Question: What other clustering problems can it 

be extended to?

High order clustering?







Big Data and Network Sciences: 

Going Beyond Graph Theory

• Set Functions

• Distributions

• Dynamics

• Multilayer Networks
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