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Asymptotic Complexity
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for problems with massive input



Characterization of Efficient Algorithms

Polynomial Time
O(n¢) for a constant c




Big Data and Massive Graphs

Tera Web pages

unbounded amount of Web logs
billions of variables

billions of transistors.
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Big Data and Massive Graphs
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unbounded amount of Web logs
billions of variables
billions of transistors.

Happy Asymptotic World for Theoreticians




Efficient Algorithms for Big Data
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Quadratic time algorithms could be too slow!!!!



Modern Notion of

Algorithmic Efficiency



Therefore, more than ever before, it Is not just
desirable, but essential, that efficient
algorithms should be scalable. In other words,
their complexity should be nearly linear or
sub-linear with respect to the problem size.

Thus, scalability — not just polynomial-time
computability — should be elevated as the
central complexity notion for characterizing
efficient computation.



Big Data and Scalable Algorithms
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A Practical Match Made in the Digital Age



Big Data and Scalable Algorithms
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Big Data and Scalable Algorithms
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scalability(A, ) = m scalability 4 (n) = O(log" n)



Big Data and Scalable Algorithms

scalability(A, ) = TA(I) scalability 4 (n) = O(log" n)

» Nearly-Linear Time Algorithms
« Sub-Linear Time Algorithms



Algorithmic Paradigms: Scorecard

Greedy often scalable (limited applications)

Dynamic Programming  usually not scalable (even when applicable)
Divide-and-Conquer sometimes scalable
Mathematical Programming rarely scalable
Branch-and-Bound hardly scalable
Multilevel Methods mostly scalable (lack of proofs)

Local Search and Simulated Annealing can be scalable



Examples:
Scalable Geometry Algorithms

Sorting
Nearest neighbors
Delaunay Triangulation/3D convex hull

Fixed Dimensional Linear Programming O(n)

e—net In fixed-dimensional VVC space



Examples:
Scalable Graph Algorithms

Breadth-First Search O(|VI|+|E[)
Depth-First Search
Shortest Path Tree
Minimum Spanning Tree
Planarity Testing
Bi-connected components
Topological sorting

Sparse matrix vector product



Examples:
Scalable Numerical Algorithms

N-Body simulation O(n)
Sparse matrix vector product
FFT/Multiplication O(n log n)

Multilevel algorithms
Multigrid




We need more provably-good
scalable algorithms for network
analysis, data mining, and
machine learning (in real-time
applications)



Scalable Methodology: Talk Outline

e Scalable Primitives and Reduction

— The Laplacian Paradigm

 Electrical Flows & Maximum Flows; Spectral Approximation; Tutte’s
embedding and Machine Learning

» Scalable Technologies:

— Spectral Graph Sparsification
» Sparse Newton’s Method and Sampling from Graphical Models

— Computing Without the Whole Data: Local Exploration and
Advanced Sampling
« Significant PageRanks

» Challenges: Computation over Dense/High-Dimensional

Models with Succinct/Sparse Representations
« Social Influence; high order clustering;



Scalable Primitives and Reduction

Algorithm Design is like Building a Software Library

Scalable Reduction: Once scalable algorithms are
developed, they can be used as primitives or

subroutines for designing new scalable algorithms.



Laplacian Primitive

Solve Ax = Db, where A Is a weighted Laplacian
matrix



Laplacian Primitive

Solve Ax = Db, where A Is a weighted Laplacian
matrix

A Is Laplacian matrix: symmetric

non-positive off diagonal

row sums =0
Isomorphic to weighed graphs
4
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Scalable Laplacian Solvers
(Spielman-TengQ)

For symmetric diagonally dominant (SDD) A, any b

Compute ||z — A7, < elz|, intime

mlog® ) nlog(1/e)

Greatly improved by Koutis-Miller-Peng, Kelner-Orecchia-Sidford-
Zhu, ..., Lee, Peng, and Spielman, to essentially O(m log (1/¢))



The Laplacian Paradigm

To apply the Laplacian Paradigm to solve a problem
defined on massive networks or big matrices, we
attempt to reduce the computational and optimization
problem to one or more linear algebraic or spectral
graph-theoretical problems.

Beyond scalable Laplacian solvers



Scalable Tutte’s Embedding

earning from labeled data on directed graphs
[Zhou-Huang-Scholkopf]



Scalable Spectral Approximation

Approximate Fiedler \Vector
For Laplacian A, is vector v'1 = 0 such that
T
vt Av
7— < (L+6)A(4)

U

(v

Can find v using inverse power method, in time

mlog®M nlog(1/€)/e



Scalable Cheeger Cut

Theorem: Constant degree graph G, Fiedler value A:
scalable computation of a cut of conductance

o(Vz)



Scalable Electrical Flows
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Electrical potentials: L ¢p= y,

in time O(m log 1)



Undirected Maximum Flow

Previously Best: O(m32) [Even-Tarjan 75]



Maximum Flow
(Christiano-Kelner-Madry-Spielman-Teng)

Iterative Electrical Flows: p= L1y, :  O(m*3 ¢3)

Previously Best: O(min(m32, m n23))  [Goldberg-Rao]



Path to Scalable Maximum Flow

Previously Best: O(min(m32 , m n?3))  [Goldberg-Rao]
Iterative Electrical Flows: p= L1y, : O(m*3¢3)

Scalable: Sherman; Kelner-Lee-Orecchia-Sidford, Peng



Applications of The Laplacian Paradigm

 Electrical flow computation

« Spectral approximation

e Tutte’s embedding

« Learning from labeled data on a directed graph [Zhou-Huang-Schdlkopf]
« Cover time approximation [Ding-Lee-Peres]

« Maximum flows and minimum cuts [Christiano-Kelner-Madry-Spielman-Teng]
 Elliptic finite-element solver [Boman-Hendrickson-Vavasis]

 Rigidity solver [Shklarski-Toledo; Daitch-Spielman]

« Image processing [Koutis-Miller-Tolliver]

« Effective resistances of weighted graphs [Spielman-Srivastava]

« (Generation of random spanning trees [Madry-Kelner]

« Generalized lossy flows [Daitch-Spielman]

» Geometric means [Miller-Pachocki]



Scalable Techniques

 Algebraic Formulation of Network Problems
« Spectral Sparsification of Matrices and Networks

« Computing without the Whole Data: Local
Exploration of Networks



Graph Spectral Sparsifiers

For a graph G (with Laplacian L), a sparsifier is a graph &G
(with Laplacian ) with at most nlog®) n edges s.t.
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Improved by Batson, Spielman, and Srivastava



Sampling From Graphical Models

Joint probability distribution of n-dimensional

random variables x
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Graphical model for
local dependencies

Sampling according to the model



Gibbs’ Markov Chain Monte Carlo
Process

Locally resample each variable, conditioned on the values
of its graphical neighbors

In limit, exact mean and covariance
[Hammersley-Clifford]
Easy to implement

Many iterations
Sequential



A Holy Grail Sampling Question

Characterization of graphical models that have scalable
parallel sampling algorithms with poly-logarithmic depth?



Gaussian Markov Random Fields
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 Precision matrix — symmetric positive definite
 Potential vector
« Goal: Sampling from Gaussian distribution N(Ath, A1)



GMRF with H-Precision Matrices

Johnson-Saunderson-Willsky (NIPS 2013)
DAD is SDD

If the precision matrix A is (generalized) diagonally
dominant, then Hogwild Gibbs distributed sampling
process converges



Scalable Parallel Gaussian Sampling?

 Time complexity: O(nnz(A))
 Parallel complexity: O(log n)
« Randomness complexity: n

It remains open even If the precision matrix Is
symmetric diagonally dominant (SDD).



A Numerical Program for
Gaussian Sampling

1. Find the mean:
u=A1h
2. Compute an inverse square-root factor:
CCT=A"1
3. Sampling:
generate standard Gaussian variables z
X=Cz+ u



Canonical Inverse Square-Root




Canonical Inverse Square-Root

:

Focus on normalized Laplacian:
L=D-—W = Dl/Q(I _ D—I/QWD—I/Q)DI/Q

l
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Newton’s Method

(I-X) ' = (I + %X) (I - %X2 - ix?’) B (I + %X)



Newton’s Method

(I-X) ' = (I + %X) (I - %X2 - ix?’) B (I + %X)

Newton’s method wuses dense matriz multiplications,
even when the original matriz is sparse. This is partic-
ularly the case in network analysis, where input graphs
are usually sparse. Although Newton’s method may con-
verge rapidly, which provides a numerical framework
for designing not only sequential but also parallel al-
gorithms, its intermediate computation could be pro-
hibitively expensive for handling big data.



Sparse Newton’s Method

(I-X) ' = (I + %X) (I - %X2 - ix?’) B (I + %X)
1

Spectral Sparsification



Sparse Newton Chain
(I-X)!= (I + 1X) (I _ox2 1X3) B (I + 1X)
B 2 4 4 2

X, X1, .., Xg1]

3 1
X; 1s a spectral sparsifer of (Zxﬁ_l + ZX?_l)

d—1
c=]] (I + %)
1=0




Random-Walk Polynomials and
Sparsification

t
D-> oD (D'W)
r=1



Path Sampling

Scalable Sparsification of Random-
Walk Polynomials

O(t>-m-log* n - Flg)



Scalable Parallel Gaussian Sampling
for H-Precision Matrices

Cheng-Cheng-Liu-Peng-Teng (COLT 2015)
* Time complexity: O(nnz(A))

e Parallel complexity: O(polylog n)

« Randomness complexity: 2n



Scalable Sparse Newton’s Method

Matrix p"-Power Factorization:

Given an n X n Laplacian matrix M and a constant

—1 < p <1, compute an n X n linear operator C such
that M? = CC"'.

ot (1 23) (1 2x) Tao0] (10 £



Scalable Matrix Roots

Matrix p"-Power Factorization:

Given an n X n Laplacian matrix M and a constant

—1 < p <1, compute an n X n linear operator C such
that M? = CC"'.

Nick Higham at Brain Davies’ 65 Birthday: An email from a
power company regarding the usage of electricity networks

“I have an Excel spreadsheet containing the transition
matrix of how a company s [Standard & Poor 5] credit
rating charges from on year to the next. |1°d like to be

working in eighths of a year, so the aim is to find the eighth
root of the matrix.”




Family of Scalable Techniques

 Algebraic Formulation of Network Problems
« Spectral Sparsification of Matrices and Networks

« Computing without the Whole Data: Local
Exploration of Networks



Local Network Algorithms



Local Network Algorithms

@s



Local Network Algorithms




Local Network Algorithms




Local Network Algorithms
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PageRank

 PageRank: Stationary Distribution - B
of the Markov Process: = \Vr -

— Probability 1—o: random walk
on the network

— Probability o: random restarting

— Stationary Distribution: S
PRwao=0a-1+(1-a)-PRwa- (DW) W


http://upload.wikimedia.org/wikipedia/commons/e/ee/PageRank-byFML.gif

Significant PageRank without Explore
the Entire Network?

Input: G, 1<4<n,andc>1

Output: Identify a subset S € V containing:
 all nodes of PageRank at least 4

* no nodes with PageRank less than 4/c

T )
L 73
.;\a&

""“‘—\__a
PN
PageRank” | O(n/A4) time algorithm?



http://upload.wikimedia.org/wikipedia/commons/e/ee/PageRank-byFML.gif

Personalized PageRank Matrix

Personalized PageRank

P*u. — X - ]-*u_ —I_ {]. i ﬂj) . p,”_ . (D%I) -1 . W
Pu = {pu—}la e '.lp?.r.—}'n.)

P1—1 e Pl—n |
PPRW,:’I — [Plg ceey P-n.]T —

i Prn—1 e Pri—n



Scalable Local Personalized PageRank

~1
pu=&'1u+(1_&)'pu'(Dgﬁt) W

Jed-Widom

Andersen-Chung-Lang
O €)

Pu = (Pu—bl; Tt ;pu—bn)

Fogaras-Racz-Csalogany-Sarlos
Borgs-Brautbar-Chayes-Teng
O(log n/(&0°))




An Abstract Problem: Vector Sum

Input: v (an unknown vector from [0,1]")
1 <4 <n (athreshold value)
Query Model: ?2(v,1,8)
Cost: 1/e
Output: Is sum(v) more than A or less than A/27?

Question: O(n/A4) cost algorithm?



Riemann Estimator
Borgs-Brautbar-Chayes-Teng

Z I[g: > e, where V¢ € [T], ¢ = %

E[@]/OlPr[q:zx}d;r

—
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Scalable Methodology: Talk Outline

e Scalable Primitives and Reduction

— The Laplacian Paradigm

o Electrical Flows & Maximum Flows; Spectral Approximation; Tutte’s
embedding and Machine Learning

» Scalable Technologies:

— Spectral Graph Sparsification
» Sparse Newton’s Method and Sampling from Graphical Models

— Computing Without the Whole Data: Local Exploration and
Advanced Sampling
« Significant PageRanks



Challenges

Computation over dense models with

succinct/sparse representations
« High order clustering;

Computation over high-dimensional models

with succinct/sparse representations
« Social Influence;

Computation over incomplete data
- ML



Clustering Based on Personalized Page-

Rank Matrix
i P1—=1 - Plon ]
 Pn—1 " Pnon
PPR-Densityw o(S) = % Z PPRw ,[u, v]
u,vES

suspiciousness measure (Hooi-Song-Beutel-Shah-Shin-Faloutsos)

Open Question: scalable 2-approximation?



Reversed Diffusion Structure and
Process

Pi—1 - DPlon

Pn—1 " Pn—on



Influence Through Social Networks




Reversed Diffusion Process

« Scalable Influence Maximization
« Borgs, Brautbar, Chayes, Lucier
« Tang, Shi, Xiao

« Scalable Shapley Centrality of Social Influence
 Chenand Teng



Local Graph Clustering
Spielman-Teng

Given a vertex v of interest in a massive network
find a provably-good cluster near v

In time O(cluster size)

Open Question: What other clustering problems can it
be extended to?
High order clustering?
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Abstract

In the age of Big Data, efficient algorithms are now in higher demand
more than ever before. While Big Data takes us into the asymptotic
world envisioned by our pioneers, it also challenges the classical notion
of efficient algorithms: Alrorithms that used to be considered efficient,
according to polynomial-time characterization, may no longer be ade-
quate for solving today's problems. It is not just desirable, but essential,
that efficient algorithms should be scalable. In other words, their com-
plexity should be nearly linear or sub-linear with respect to the problem
gize. Thus, scalabilify, not just polynomial-time computability, should
be elevated as the central complexity notion for characterizing efficient
computation.

In this article, I will survey a family of alrorithmic techniques



Big Data and Network Sciences:
Going Beyond Graph Theory

Set Functions
Distributions
Dynamics

Multilayer Networks
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