
Abstract

While we speculate what exascale hardware might look like, state-of-the-art numerics
and our machines already diverge. Many new hardware generations or ingredients such
as Skylake, manycores or Intel’s Optane reduce caches per core, make more and more
cores share one interconnect, or introduce additional memory levels with high latency. At
the same time, many modern algorithmic paradigms such as multigrid, particle-in-cell or
predictor-corrector schemes require irregular, non-continuous, repeated memory
accesses, as well as non-trivial (meta) data assembly. As a result, data assembly,
movement and exchange become constraining factors when we upscale or tune scientific
software. We have to avoid them.
In this talk, we generalise the term communication-avoiding. We make it comprise (i) the
reduction of data volume, (ii) the elimination of (meta) data generation, (iii) the reduction
of data exchange frequency, (iv) the homogenisation of data access, (v) data access
hiding and (vi) the localisation of data transfers. These criteria apply to both classic data
exchange between compute nodes as well as data movements on the chip.
Communication-avoiding then tackles the problematic divergence sketched above. While
every code might require tailored solutions of its own to become communication-avoiding,
we present some algorithmic techniques - for multigrid, particle-in-cell and
predictor-corrector schemes - which seem to be generic patterns. They can inspire us
how to write communication-avoiding software for various applications.

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 1 / 50

Stop talking to me - some
communication-avoiding programming patterns
IPAM Workshop IV: New Architectures and Algorithms
D.E. Charrier, B. Hazelwood, B. Reps, B. Verleye, M. Weinzierl, me and many others

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 1 / 50

Durham Cathedral, www.dur.ac.uk

Durham Cathedral, www.dur.ac.uk

Why I love to think about algorithms and their
implementation . . .

Chris Johnson (SCI, Utah):
Before the great discovery was the creation of a new tool!

(“The Golden Age of Computing”)

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 3 / 50

Performance increases—tool improves

H. Sutter: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software, 2005 (left)

D. Keyes: SCaLeS Report, Vol. 2, 2004 (right)

I Both sides improve our tools, yet are not orthogonal
I Better algorithms drive machine evolution(*)
I Changing machine characteristics require algorithmic rethinking
I Don’t be naı̈ve: hardware poses challenges to algorithms

(*)If you believe in co-design:

https://www.hpcwire.com/2016/07/12/isc-workshop-tackles-co-developments-thorny-challenges

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 4 / 50

https://www.hpcwire.com/2016/07/12/isc-workshop-tackles-co-developments-thorny-challenges

This talk’s challenge: data movements become
showstopper

2.
3

G
B

yt
e/

co
re

332 GByte/s (w/o multiply/add)
2x14 cores

343 GByte/s

92 GByte/s

39 GByte/s/core

6.7 GByte/s/core

Left: Node of SuperMUC Phase 2; right: SuperMUC c©IBM

Vertical New memory layers (Optane), new cache modi (Skylake)

Horizontal More cores per node, cache and network competition

The next big jumps on the algorithm side

Remove data movement dependencies both intra-node & inter-node

= Remove communication dependencies between computer components

= Communication-avoiding algorithms

but don’t give up on the cool mathematics/algorithms

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 5 / 50

Outline

Motivation

Demonstrators

Communication-avoiding techniques

Avoid assembling data

Give up on task-traversal association

Prioritise communication tasks

Predict synchronisation

Drop the IEEE standard

Wrap-up

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 6 / 50

Particle-In-Cell (PIC)

1. Solve PDE on (dynamically
adaptive) mesh

2. Interpolate PDE solution onto
particles

3. Move particles (suprathermal)

4. Restrict to PDE’s rhs

Weinzierl, T., Verleye, B., Henri, P., Roose, D. Two Particle-in-Grid realizations on Spacetrees. Parallel Computing 52, 42–64, 2016.
arXiv:1508.02435
Weinzierl, T. The Peano software—parallel, automaton-based, dynamically adaptive grid traversals. ACM Transaction on Mathematical
Software (TOMS), 2nd revision. arXiv:1506.04496
Eckhardt, W., Glas, R., Korzh, D., Wallner, S., Weinzierl, T. (2016), On-the-fly memory compression for multibody algorithms, in Joubert,
G.R., Leather, H., Parsons, M., Peters, F., Sawyer, M. eds, Advances in Parallel Computing 27: International Conference on Parallel
Computing (ParCo) 2015. Edinburgh, Scotland, IOS Press, Amsterdam, 421–430

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 7 / 50

PIC

16 64 256 1024
cores

107

108

109

#
p
a
rt

ic
le

s/
s

Polaris, 2d, ppc=100, with flops

#particles=1.0e+07

#particles=1.0e+08

#particles=1.0e+09

Likes
I Lagrangian plus Eulerian

(best fit per subproblem)
I Break (Cartesian) mesh

constraints
I Keep Cartesian efficiency for PDE

Flaws
I Particle updates/integrator cheap

(arithmetic intensity)
I Maintain mapping
I Limited scalability
I Speed drops

Speed drops result from latency-sensitiveness of bandwidth-bound particle movers

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 8 / 50

PIC

16 64 256 1024
cores

107

108

109

#
p
a
rt

ic
le

s/
s

Polaris, 2d, ppc=100, with flops

#particles=1.0e+07

#particles=1.0e+08

#particles=1.0e+09

Likes
I Lagrangian plus Eulerian

(best fit per subproblem)
I Break (Cartesian) mesh

constraints
I Keep Cartesian efficiency for PDE

Flaws
I Particle updates/integrator cheap

(arithmetic intensity)
I Maintain mapping
I Limited scalability
I Speed drops

Speed drops result from latency-sensitiveness of bandwidth-bound particle movers

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 8 / 50

ADER-DG

3

1

2

1. Predictor (non-linear iterate,
implicit space-time)

2. Riemann

3. Corrector
Weinzierl, T. The Peano software—parallel, automaton-based, dynamically adaptive grid traversals. ACM Transaction on Mathematical
Software (TOMS), 2nd revision. arXiv:1506.04496
Charrier E. D., Weinzierl T. Stop talking to me – a communication-avoiding ADER-DG realisation. arXiv:1801.08682
Dumbser M., Fambri F., Tavelli M., Bader M., Weinzierl T. Efficient implementation of ADER discontinuous Galerkin schemes for a scalable
hyperbolic PDE engine. arXiv:1808.03788

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 9 / 50

ADER-DG

1 4 8 12 16 24

1

4

8

12

16

24

cores

sp
ee
d
u
p

p3, regular
p4, regular
p5, regular
p6, regular
p7, regular
p8, regular
p3, adaptive
ideal
freq.-scaled ideal

12 4 8 12 16 24

1

4

12

24

cores

sp
ee
d
u
p

p5, regular
p7, regular
p5, adaptive
ideal
freq.-scaled ideal

Likes
I Single shot (for large p)

I Localisation with expensive STP
(arithmetic intensity)

Flaws
I Three phases

(synchronisation and data loads)
I Two phases extremely cheap

(arithmetic intensity)

Obtained scalability suffers from one bandwidth-bound algorithm phases, time step
size synchronisation and dynamic AMR’s consistency constraints

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 10 / 50

ADER-DG

1 4 8 12 16 24

1

4

8

12

16

24

cores

sp
ee
d
u
p

p3, regular
p4, regular
p5, regular
p6, regular
p7, regular
p8, regular
p3, adaptive
ideal
freq.-scaled ideal

12 4 8 12 16 24

1

4

12

24

cores

sp
ee
d
u
p

p5, regular
p7, regular
p5, adaptive
ideal
freq.-scaled ideal

Likes
I Single shot (for large p)

I Localisation with expensive STP
(arithmetic intensity)

Flaws
I Three phases

(synchronisation and data loads)
I Two phases extremely cheap

(arithmetic intensity)

Obtained scalability suffers from one bandwidth-bound algorithm phases, time step
size synchronisation and dynamic AMR’s consistency constraints

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 10 / 50

(Additive) Multigrid, BPX, . . .
with complex shift

R P

S

I

R

R
P

P

S

S

S

Level

1

2

3

4

I

I

1. Solve on fine level

2. Solve correction on coarser level

3. Prolongate correction and sum up
on fine level

Reps, B., Weinzierl, T. Complex additive geometric multilevel solvers for Helmholtz equations on spacetrees. ACM Transactions on
Mathematical Software (TOMS), 44(1), 2:1–2:36, 2017. arXiv:1508.03954
Weinzierl, M., Weinzierl, T. Quasi-matrix-free hybrid multigrid on dynamically adaptive Cartesian grids, ACM Transactions on Mathematical
Software (TOMS), 44(3), 32:1–32:44, 2018. arXiv:1607.00648

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 11 / 50

(Additive) Multigrid, BPX, . . .

0 1000 2000 3000 4000 5000 6000

vertex updates scaled by 10dim

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

|r
(n

)| m
a
x
/|
r(

0)
| m
a
x

sin, hmax=3.00e-01, hmin=3.33e-02, ω=0.8

p=2,full-coarse-grid-addition
p=2,exponential-coarse-grid-damping
p=2,transition
p=3,full-coarse-grid-addition
p=3,exponential-coarse-grid-damping
p=3,transition
p=4,full-coarse-grid-addition
p=4,exponential-coarse-grid-damping
p=4,transition

PETSc
Jacobi

BoxMG
Jacobi

PETSc
GAMG

BoxMG
V22

BoxMG
V22

FMG-type

PETSc
GAMG
1 cycle

BoxMG
V22

1 cycle

10 7

10 6

10 5

10 4

10 3

10 2

tim
e/

un
kn

ow
n

= (0, 1)2, hmin = 3 8

create grid & init (multiscale) operators
create grid
enumerate & init datastructures
assemble
solve
plot & smooth
plot

Likes
I Convergence speed

(optimal)
I Conceptually simple

improvements
(smoother)

Flaws
I Touch unknowns multiple times
I Assembly time for (multiscale)

operators
I Storage footprint of (multiscale)

operators

Suffers from low AI and high setup cost (assembly)

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 12 / 50

(Additive) Multigrid, BPX, . . .

0 1000 2000 3000 4000 5000 6000

vertex updates scaled by 10dim

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

|r
(n

)| m
a
x
/|
r(

0)
| m
a
x

sin, hmax=3.00e-01, hmin=3.33e-02, ω=0.8

p=2,full-coarse-grid-addition
p=2,exponential-coarse-grid-damping
p=2,transition
p=3,full-coarse-grid-addition
p=3,exponential-coarse-grid-damping
p=3,transition
p=4,full-coarse-grid-addition
p=4,exponential-coarse-grid-damping
p=4,transition

PETSc
Jacobi

BoxMG
Jacobi

PETSc
GAMG

BoxMG
V22

BoxMG
V22

FMG-type

PETSc
GAMG
1 cycle

BoxMG
V22

1 cycle

10 7

10 6

10 5

10 4

10 3

10 2

tim
e/

un
kn

ow
n

= (0, 1)2, hmin = 3 8

create grid & init (multiscale) operators
create grid
enumerate & init datastructures
assemble
solve
plot & smooth
plot

Likes
I Convergence speed

(optimal)
I Conceptually simple

improvements
(smoother)

Flaws
I Touch unknowns multiple times
I Assembly time for (multiscale)

operators
I Storage footprint of (multiscale)

operators

Suffers from low AI and high setup cost (assembly)

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 12 / 50

The root of all evil: We communicate.

Communication-avoiding (to me) is . . .
1. reduction of data volume

2. elimination of (meta) data generation

3. reduction of data exchange frequency

4. homogenisation of data access

5. data access hiding

6. localisation of data transfer

Applies to node-to-node and CPU-to-memory.

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 13 / 50

This talk

This talk: A tour de force through some communication avoiding
techniques tailored to my demonstrators(*).

(*) With the potential to pay off in your projects, too.

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 14 / 50

Outline

Motivation

Demonstrators

Communication-avoiding techniques

Avoid assembling data

Give up on task-traversal association

Prioritise communication tasks

Predict synchronisation

Drop the IEEE standard

Wrap-up

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 15 / 50

HPC’s lingua franca: Task graphs

Riemann

Riemann

Corrector

STP

Corrector

ADER-DG
I ADER-DG describes a task pattern
I The mesh instantiates the task graph from this pattern
I Task graph conceptually simple
I Algorithm plus mesh plus graph⇒ one item redundant

PIC and MG
I Conceptually related

Task processing
I Grid traversal = (partial) sweep over task graph

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 16 / 50

A plea against task graphs

Task assembly-free: Grid traversal spawns tasks, i.e. we use
task parallelism without setting up a the task graph.

I Task pattern and instantiate rules exist already anyway
I Task assembly-free
I Mesh traversal acts as “scheduler”
I Avoid expensive assembly (graph changes each and every time step) (*)

I Eliminate meta data footprint (*)

I Best case: Throw away matrix data structures and matrix assembly, too
(more on this later)

(*) I might be horribly wrong for static setups/meshes and more complicated algorithms

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 17 / 50

Why I am wrong—a double-edged sword

Task dependencies might require multiple grid sweeps
I Multiple data reads (no single-touch)
I Strong synchronisation between sweeps
I Temporary data
I Tiny tasks

Technique 1: Programming without (graph) assembly.

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 18 / 50

Outline

Motivation

Demonstrators

Communication-avoiding techniques

Avoid assembling data

Give up on task-traversal association

Prioritise communication tasks

Predict synchronisation

Drop the IEEE standard

Wrap-up

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 19 / 50

Single touch implementation: A piece of data is read/written
from main memory only once per iteration/time step.

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 20 / 50

Shifted tasking in ADER-DG

Prediction (cell-local)

Riemann solve
(face-to-face)

Correction (cell-local)

Time step size comp.
(reduction)

Riemann solve
(face-to-face)

Time step size synchr.
(broadcast)

Prediction (cell-local)

For the time being: assume ∆t is known and there’s

no need to reduce it

Shifted algorithm:
I First read of face: trigger Riemann
I Enter cell: correct solution

(all 2d faces are read already)

I Trigger subsequent STP immediately

Observations:
I Shifted execution model with two

activities
(Riemann and one cell modification)

⇒ Task-fusion
(incl. elimination of temporary memory)

I One time step per sweep

⇒ Amortised single-touch semantics
I Parallel traversal intermixes activities

⇒ Memory access homogenisation

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 21 / 50

Straightforward application to mat-vecs

1. Partial mat-vec computation: run over grid and contribute per-entity contribution

r = Ax

2. Apply action of r in next grid traversal

x ← x + ωdiag−1(A)r

3. Immediately trigger follow-up computation

⇒ What happens in multiscale systems?

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 22 / 50

Pipelining in additive multigrid

1: function TDADD(`) . Shift evaluation by half a grid sweep
2: sc` ← sc` + Psc`−1 . Add coarse grid correction to sc` which
3: . so far, holds update resulting from a Jacobi smoothing step.
4: u` ← u` + sc` + sf` . Update u with update from
5: . previous line plus all updates done on finer grids.
6: û ← u` − Pu`−1 . Determine new hierarchical surplus.
7: if ` < `max then
8: TDADD(`+ 1) . Go to next finer level.
9: end if

10: r` ← b` − H`u` . Determine residual and
11: r̂` ← b` − H`û` . hierarchical residual.
12: sc` ← ω`S(r`) . Bookmark update due to a Jacobi
13: . smoothing step for next traversal
14: if ` > `min then
15: b`−1 ← Rr̂` . Determine right-hand side
16: . for multigrid correction.
17: sf`−1 ← I (sf` + sc`) . Inform other grids about update
18: . that is due in next traversal
19: . Update propagation aligns with traversal data flow
20: end if
21: end function

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 23 / 50

Shifting summary

Lessons learned
I Suffered from tight association of grid traversals with algorithmic steps
I Don’t eliminate temporary data on paper immediately (residual, unknown updates)

but use them for pipelining
I Desynchronise grid entities (some already are ahead in the computation)⇒

anarchic mindset
I Not too difficult to prove correctness

Open questions
I Increased memory footprint
I Stability(*)

I Causal dependencies

(*) Cmp. work by Vanroose et al. Likely not an issue here as only one step of pipelining.

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 24 / 50

Be optimistic and anarchic

Prediction (cell-local)

Riemann solve
(face-to-face)

Correction (cell-local)

Time step size comp.
(reduction)

Riemann solve
(face-to-face)

Time step size synchr.
(broadcast)

Prediction (cell-local)

Move orange sync down

I Intermix compute phases over
different grid entities
(data access homogenisation)

I Bring STP calculations forward
I Fuse correction with STP tasks
I Be optimistic (and eliminate

synchronisation):
I Work with estimate ∆t (n+1)

est
I Determine ∆t (n+1)

adm on-the-fly
I If admissible ∆t (n+1)

adm > ∆t (n+1)
est use

∆t (n+1)
est ← 0.5(∆t (n+1)

adm + ∆t (n+1)
est)

I If ∆t (n+1)
adm < ∆t (n+1)

est reset

∆t (n+1)
est ← 0.9 ∆t (n+1)

adm

⇒ AMR, time step decreases might
make approach fall back to two-sweep
paradigm

⇒ Does seem to happen negligible often
I PIC: Same time stepping mindset
I MG: Postpone analysis of termination

criterion

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 25 / 50

Some metrics for ADER-DG

1 core 12 cores 24 cores
p BW Volume Time BW Volume Time BW Volume Time
3 1,357.44 30.59 1.36 2,885.94 35.24 0.75 4,639.00 73.32 0.71
5 1,155.42 101.64 3.91 4,158.00 117.06 1.25 6,377.94 223.06 1.04
7 806.87 215.91 14.75 5,695.60 285.40 2.24 8,540.10 520.33 1.83
9 483.04 487.98 29.20 20,894.15 4,376.39 4.66 30,938.36 4,716.02 3.76
3 1,233.97 24.05 1.14 3,645.78 31.58 0.39 5,481.20 71.92 0.39
5 861.10 80.49 4.18 5,931.70 110.40 0.68 8,403.62 211.44 0.57
7 625.40 176.84 10.71 6,877.66 350.95 1.98 9,003.53 621.64 1.50
9 429.35 434.20 25.96 17,525.00 4,619.24 4.80 27,297.87 5,280.57 4.32

Performance counters for a 27 × 27 × 27 grid. Upper part: straightforward 3-step implementation. Lower part:

fused approach. The bandwidth (BW) is given as MB/s, the volume (Vol.) transferred is given in GB, all timings are

time per time step with [T] = s.

I the lower the AI the higher the reward
I optimistic assumption here failed in� 1%

I for very expensive STPs still burst of memory accesses
(shift’s homogenisation of memory accesses not sufficient)

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 26 / 50

Outline

Motivation

Demonstrators

Communication-avoiding techniques

Avoid assembling data

Give up on task-traversal association

Prioritise communication tasks

Predict synchronisation

Drop the IEEE standard

Wrap-up

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 27 / 50

Flaws in the task graph-free approach

Task assembly-free: Grid traversal spawns tasks, i.e. we use
task parallelism without setting up a the task graph.
⇒ Traversal fires (and forgets) tasks.

Barely a new idea ignoring some showstoppers
(on parallel computers)

In an ideal world, we would like to run through the whole grid with one large parallel

for issuing face and cell operations, but
I cells along MPI boundaries have to be processed in order

(MPI messages may not overtake)

I all cores might run Riemann (or any particular task type) concurrently
(see experimental evidence for p = 9)

I dynamic AMR changes mesh between corrector and subsequent STP
(memory allocation and initialisation/FV reruns synchronise code)

I AMR requires particular inter-grid transfer operator orders
(multi-resolution data consistency)

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 28 / 50

Enclave tasking—inspired by Ghattas et al.

Riemann

Riemann

Corrector

STP

Corrector

I Mark all cells along MPI boundary and resolution transitions⇒ skeleton grid
(those are involved in MPI and might refine/coarsen; this is an optimistic assumption)

⇒ reordering challenging
I Give up on idea to run Riemann solves parallel

(at least on all of the cores)

⇒ bandwidth-bound
(cheap and skeleton operations done immediately and close-to sequentially)

I Make remaining cells (enclaves) yield the scaling
(job stealing brings in idling cores)

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 29 / 50

Prioritise tasks
Primary sweep:
I Per face

I wait for adjacent STPs to finish
(cmp. shifting)

I Riemann solves
I restrict image along resolution

transitions
I Per cell

I Corrector (bottom-up traversal)
I Dynamic adaptivity, limiter reruns, . . .
I determine skeletons on-the-fly

I Spawn STP
I on skeleton: high priority
I on enclaves: low priority (background)

Secondary (partial) sweep:
I Ignore enclaves (partial traversal)
I Per skeleton cell: wait for STP
I Trigger MPI exchange
I Interpolate along AMR transitions for

next Riemann solve

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 30 / 50

Prioritise tasks
Primary sweep:
I Per face

I wait for adjacent STPs to finish
(cmp. shifting)

I Riemann solves
I restrict image along resolution

transitions
I Per cell

I Corrector (bottom-up traversal)
I Dynamic adaptivity, limiter reruns, . . .
I determine skeletons on-the-fly

I Spawn STP
I on skeleton: high priority
I on enclaves: low priority (background)

Secondary (partial) sweep:
I Ignore enclaves (partial traversal)
I Per skeleton cell: wait for STP
I Trigger MPI exchange
I Interpolate along AMR transitions for

next Riemann solve

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 30 / 50

Enclave implications

Riemann

Riemann

Corrector

STP

Corrector

Riemann Riemann

I Low intensity tasks constantly trickle through system
(homogenise arithmetic load/avoid memory access bursts)

I Coarsening & refinement accompanied by background/enclave STPs
(avoid memory allocation and initialisation not throttling everybody else)

I STPs yielding MPI messages ran before majority of (enclave) tasks
(more time to overlap messaging and processing)

Implementation remarks:
I Skeleton traversal has highest priority⇒ tweak TBB runtime
I Fuse multiple enclave tasks to reduce overhead⇒ tweak TBB runtime

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 31 / 50

parallel for vs. enclaves

1 4 8 12 16 24

1

4

8

12

16

24

cores

sp
ee
d
u
p

p3, regular
p4, regular
p5, regular
p6, regular
p7, regular
p8, regular
p3, adaptive
ideal
freq.-scaled ideal

1 4 8 12 16 24

1

4

8

12

16

24

cores

sp
ee
d
u
p

p3, regular
p4, regular
p5, regular
p6, regular
p7, regular
p8, regular
p3, adaptive
ideal
freq.-scaled ideal

1 4 8 12 16 24

1

4

8

12

16

24

cores

sp
ee
d
u
p

p5, fused
p7, fused
p5, nonfused
p5, predictor
p5, Riemann
ideal
freq.-scaled ideal

1 4 8 12 16 24

1

4

8

12

16

24

cores

sp
ee
d
u
p

p5, fused
p7, fused
p5, nonfused
p5, predictor
p5, Riemann
ideal
freq.-scaled ideal

Broadwell; top row: regular grid parallel for vs. tasks; bottom row: regular (left) vs. adaptive (right)

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 32 / 50

Outline

Motivation

Demonstrators

Communication-avoiding techniques

Avoid assembling data

Give up on task-traversal association

Prioritise communication tasks

Predict synchronisation

Drop the IEEE standard

Wrap-up

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 33 / 50

The particle code

Single touch through shifts
I Bookmark position update

(do not apply)

I Apply position update as preamble to
next step
(first touch)

I Update grid-particle association in
preamble, too

⇒ simple iff particles travel at most one
cell per time step

Data maintenance
I Use cascade of grids (octree)
I Particles on finest level for

computation
I Otherwise on level such that they drift

at most one level

⇒ lift-n-drop mechanism

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 34 / 50

The particle code

16 64 256 1024
cores

107

108

109

#
p
a
rt

ic
le

s/
s

Polaris, 2d, ppc=100, with flops

#particles=1.0e+07

#particles=1.0e+08

#particles=1.0e+09

Horizontal data exchange
I Along multiscale domain boundaries

(non-blocking MPI hiding behind computation)

I Very fast particles are lifted
aggressively

I Non-neighbour MPI ranks involved
(global sort)

⇒ Latency-sensitive

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 35 / 50

Predict data flow

Vertical data flow:
I Max velocity vmax (c) per cell c ∈ T
I Extrapolate velocity updates (fine grid)
I Analysed tree grammar

vmax (c) =

 maxp∈c |v(p)| for leaves
maxc′ vmax (c′) otherwise

∀ c′ vchild of c

I Next traversal:
I Particle p drops into domain

vmax ← max(vmax , |v(p)|)
I vmax ≤ h/∆t : no tunnelling possible

and likely not to happen either
⇒ skip reduction for these rank pairs
I Security factor for extrapolation

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 36 / 50

reduction-avoiding Particle-In-Tree

32 128 512 2048 9102
cores

106

107

108

109

1010

#
p
a
rt

ic
le

s/
s

SuperMUC, raPIDT,2d

1.0e+09, ∆t=1.0e-04

1.0e+09, ∆t=1.0e-05

1.0e+09, ∆t=1.0e-06

I Triangle: 2.0 · 108 particles
I Diamond: 4.0 · 109 particles
I Star: 1.0 · 1010 particles
I Colours encode time step sizes

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 37 / 50

Generic patterns

I Communication graph replaces collective
I Sparsify a priori

(sparsity of communication graph anticipates particle positions and velocities)

I Similar pattern used to predict dynamic mesh refinement, wave fronts, time step
size evolution

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 38 / 50

Outline

Motivation

Demonstrators

Communication-avoiding techniques

Avoid assembling data

Give up on task-traversal association

Prioritise communication tasks

Predict synchronisation

Drop the IEEE standard

Wrap-up

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 39 / 50

Massive memory

I More particles more accurate
physics

I Single-touch nice, but then
homogeneously memory bound

I Pure geometric operators
unstable

I Matrix-free not really an option

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 40 / 50

Information density

Particle sets
I Particles per cell carry similar values

(often)

I Compute average attribute Ã(c) per
cell

I Encode hierarchical
Â(p) = A(p)− Ã(c) per cell

I Compute on-the-fly how many bytes
per attribute are required such that

∀p ∈ c : |fbpa(Â(p))− Â(p)| ≤ ε

MG operators
I Operators often similar to

Poisson/d-linear
I Compute difference to these stencils
I Encode hierarchical

Both approaches: convert back prior to next
usage

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 41 / 50

Reproducible science

vo id peano : : heap : : decompose (double value , char exponent [8] , long i n t mantissa [8] , double e r r o r [8]) {
i n t sh i f tExponent = 6 ;
const long i n t s ign = value < 0.0 ? −1 : 1 ;
i f (sign<0) {

value =−value ;
}
i n t in tegerExponent ;
const double s i g n i f i c a n d = std : : f rexp (value , &integerExponent) ;
f o r (i n t i =0; i <8; i ++) {

const double s h i f t M a n t i s s a = std : : pow(2 .0 , sh i f tExponent) ;
exponent [i] = s t a t i c c a s t<char>(integerExponent−sh i f tExponent) ;
mantissa [i] = s t a t i c c a s t<long i n t>

(s td : : round (s i g n i f i c a n d∗s h i f t M a n t i s s a)) ;
e r r o r [i] = s td : : abs (s td : : ldexp (mantissa [i] , exponent [i]) − value) ;
s td : : b i t s e t<64>∗ mant issaAsBi tset =

r e i n t e r p r e t c a s t<std : : b i t s e t<64>∗>(&(mantissa [i])) ;
i f (s ign<0) {

mant issaAsBi tset−>f l i p ((i +1)∗8−1) ;
}
sh i f tExponent +=8;

}
}

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 42 / 50

Forget IEEE

no
comp

2

3

4

5

6

7

1
10

102

104

106

108

109ε=1e-12
ε=1e-8
ε=1e-4

I Reduction of memory footprint
I “Almost” matrix-free for multigrid
I Generic observation: double values do often not carry enough significant bits

compared to their neighbours/averages/recomputed data
I On-the-fly analysis: only compress where error is not too big

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 43 / 50

Outline

Motivation

Demonstrators

Communication-avoiding techniques

Avoid assembling data

Give up on task-traversal association

Prioritise communication tasks

Predict synchronisation

Drop the IEEE standard

Wrap-up

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 44 / 50

My notion of “communication-avoiding”

1. reduction of data volume (IEEE)

2. elimination of (meta) data generation (assembly)

3. reduction of data exchange frequency (shifts, fusion, prediction and batching)

4. homogenisation of data access (scheduling, shifts and enclaves)

5. data access hiding (enclaves)

6. localisation of data transfer (prediction)

I Generalised interpretation of “communication-avoiding”
I Applies to both message exchange and on-chip data access
I Might still be incomplete . . .
I Requires us to rethink our implementations
I Benefits from generic implementation techniques
I Hunt for these techniques has just started

Message: It is more than posting sends and receives early. It
is more than avoiding replicated messages. It is more than elim-
inating temporary data.

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 45 / 50

Context

H. Sutter: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software, 2005 (left)

D. Keyes: SCaLeS Report, Vol. 2, 2004 (right)

I Some patterns have made/kicked off multifaceted impact:
I Think multiresolution
I

I Time might be right for similar impact of communication avoiding techniques

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 46 / 50

Famous last words

It is all open source (www.peano-framework.org or www.exahype.eu).

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 47 / 50

www.peano-framework.org
www.exahype.eu

Support & Grants

I Peano (www.peano-framework.org) has been developed for more than 10 years under various grants made
by Technische Universität München (TUM), KAUST, German Research Foundation (DFG), Durham University,
and many more.

I ExaHyPE (www.exahype.eu) has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 671698.

I The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for
funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz
Supercomputing Centre (LRZ, www.lrz.de).

I Experiments were made possible through Durham’s supercomputer Hamilton.

I We appreciate early-adopters access to Intel Xeon Phi 7200 (codenamed KNL) family processors through the
RSC Group.

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 48 / 50

www.peano-framework.org
www.exahype.eu
www.gauss-centre.eu
www.lrz.de

Support & Grants

I Peano (www.peano-framework.org) has been developed for more than 10 years under various grants made
by Technische Universität München (TUM), KAUST, German Research Foundation (DFG), Durham University,
and many more.

I ExaHyPE (www.exahype.eu) has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 671698.

I The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for
funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz
Supercomputing Centre (LRZ, www.lrz.de).

I Experiments were made possible through Durham’s supercomputer Hamilton.

I We appreciate early-adopters access to Intel Xeon Phi 7200 (codenamed KNL) family processors through the
RSC Group.

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 49 / 50

www.peano-framework.org
www.exahype.eu
www.gauss-centre.eu
www.lrz.de

Some links

I https://miscada.phyip3.dur.ac.uk

I www.peano-framework.org and www.exahype.eu

I dur.ac.uk/tobias.weinzierl

Tobias Weinzierl: Some communication-avoiding programming patterns— IPAM Workshop IV: New Architectures and Algorithms 50 / 50

https://miscada.phyip3.dur.ac.uk
www.peano-framework.org
www.exahype.eu
dur.ac.uk/tobias.weinzierl

	Motivation
	Demonstrators
	Communication-avoiding techniques
	Avoid assembling data
	Give up on task-traversal association
	Prioritise communication tasks
	Predict synchronisation
	Drop the IEEE standard

	Wrap-up

