
Challenges in Programming 
Extreme Scale Systems

William Gropp
wgropp.cs.illinois.edu

1



Towards Exascale Architectures

From “Abstract Machine 
Models and Proxy 
Architectures for 
Exascale Computing 
Rev 1.1,” J Ang et al

 

June 19, 2016 2 

 
Figure 1: Core Group for Node 

 
 
Figure 2: Basic Layout of a Node 

Sunway TaihuLight
• Heterogeneous 

processors (MPE, 

CPE)
• No data cache
• Tianhe2a has 

some data cache

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity, 
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

Adapteva Epiphany-V
• 1024 RISC 

processors

• 32x32 mesh
• Very high power 

efficiency (70GF/W)

DOE Sierra

• Power 9 with 4 NVIDA 

Volta GPU

• 4320 nodes

DOE Summit similar, but
• 6 NVIDIA GPUs/node

• 4608 nodes



Separate the Programming Model from the Execution Model
• What is an execution model?

• It’s how you think about how you can use a parallel computer to solve a 
problem

• Why talk about this?
• The execution model can influence what solutions you consider (see the 

Whorfian hypothesis in linguistics)
• After decades where many computer scientists only worked with one 

execution model, we are now seeing new models and their impact on 
programming and algorithms



Examples of Execution Models
• Von Neumann machine:

• Program counter
• Arithmetic Logic Unit
• Addressable Memory

• Classic Vector machine:
• Add “vectors” – apply the same operation to a group of data with a single 

instruction
• Arbitrary length (CDC Star 100), 64 words (Cray), 2 words (SSE)

• GPUs with collections of threads (Warps)



• Simplest
• Each processor – 1 floating point operation per cycle. No memory cost 

(data is available when needed)
• Consequences for algorithm design

• Focus on floating point operations for algorithms
• Ignores memory effects
• Ignores trade-offs of more floating point operations for better memory use to achieve 

faster time-to-solution
• Emphasizes scalar operations (easier to think about)

• Adding Parallelism
• May include Amdahl limits – impact of serial fraction T = (1-f)T0/p + fT0
• Between processors (nodes) – moving n words of data takes time T = s + r 

n

Common Execution Models With Performance 
Metrics



• Add memory cost
• Sustained performance to memory

• Achieving High Sustained Performance in an Unstructured Mesh CFD Application, W. 
K. Anderson, William D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, 
Proceedings of the ACM/IEEE SC99 Conference on High Performance Networking 
and Computing. https://ieeexplore.ieee.org/document/1592711

• T = max(c / flops, (r+w) / membw)
• Paper also considers instruction rate, important for codes with significant pointer and 

index manipulations (example later in talk)
• “Roofline” extends this to use “arithmetic intensity” as measure of an algorithm 

• Execution Cache Memory
• Execution-Cache-Memory Performance Model: Introduction and Validation, Johannes 

Hofmann, Jan Eitzinger, and Dietmar Fey. https://arxiv.org/pdf/1509.03118.pdf

Improving the Model – Each “Processor”

https://ieeexplore.ieee.org/document/1592711
https://arxiv.org/pdf/1509.03118.pdf


• Separate latency from overhead
• LogP: a practical model of parallel computation, David E. Culler, Richard M. 

Karp, David Patterson, Abhijit Sahay,Eunice E. Santos, Klaus Erik 
Schauser, Ramesh Subramonian, and Thorsten von Eicken

• Many variations (e.g., LogGp); also variations that include network capacity 
and bisection bandwidth

Improving the Model – Between Processors



Programming Models and Systems
• In past, often a tight connection between the execution model and the 

programming approach

• Fortran: FORmula TRANslation to von Neumann machine

• C: e.g., “register”, ++ operator match PDP-11 capabilities, needs

• Over time, execution models and reality changed but programming models 
rarely reflected those changes

• Rely on compiler to “hide” those changes from the user – e.g., auto-vectorization for 
SSE(n)

• Consequence: Mismatch between users’ expectation and system abilities.
• Can’t fully exploit system because user’s mental model of execution does not match real 

hardware

• Decades of compiler research have shown this problem is extremely hard – can’t expect 
system to do everything for you.



New Applications Will Be As Varied and 

Demanding
• Wide range of applications today

• More than CFD, Structural Mechanics, Molecular dynamics, QCD

• Include image processing, event-driven simulations, graph analytics

• Rising importance of machine learning and Imitation Intelligence
• The appearance of intelligence without anything behind it

• Still incredibly powerful and useful, but …

• Not Artificial intelligence (though this is the correct name for the field)
• Intelligence achieved through artificial means

• Training required for each “behavior” (one reason this is II, not AI)

• Current methods require large amounts of data and compute to train; application of the trained 
system is not (relatively speaking) computationally intensive

• Workflows involving all of the above
• One example:

• Use Einstein Toolkit to compute gravitational waves from cataclysmic events

• This is classic time-dependent PDE solution

• Use waveforms to train a machine learning system

• Use that system to provide (near) real time detection of gravitational waves from aLIGO

• https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.044039

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.044039


The Easy Part – Internode communication
• Often focus on the “scale” in Exascale as the hard part

• How to deal with a million or a billion processes?
• But really not too hard

• Many applications have large regions of regular parallelism
• Or nearly impossible

• If there isn’t enough independent parallelism

• Challenge is in handling definition and operation on distributed data 
structures

• Many solutions for the internode programming piece
• The dominant one in technical computing is the Message Passing Interface 

(MPI)



Modern MPI
• MPI is much more than message passing

• I prefer to call MPI a programming system rather than a programming model
• Because it implements several programming models

• Major features of MPI include
• Rich message passing, with nonblocking, thread safe, and persistent versions
• Rich collective communication methods
• Full-featured one-sided operations

• Many new capabilities over MPI-2
• Include remote atomic update

• Portable access to shared memory on nodes
• Process-based alternative to sharing via threads
• (Relatively) precise semantics

• Effective parallel I/O that is not restricted by POSIX semantics
• But see implementation issues …

• Perhaps most important
• Designed to support “programming in the large” – creation of libraries and tools



MPI (The Standard) Can Scale Beyond 

Exascale

• MPI implementations already supporting more than 1M processes

• Several systems (including Blue Waters) with over 0.5M independent cores

• Many Exascale designs have a similar number of nodes as today’s systems

• MPI as the internode programming system seems likely 

• There are challenges

• Connection management

• Buffer management

• Memory footprint

• Fast collective operations

• One sided notification still limited (and under discussion)

• Fault Tolerance remains an open issue

• But the importance of this is unclear

• …

• And no implementation is as good as it needs to be, but

• There are no intractable problems here – MPI implementations can be engineered to support 

Exascale systems, even in the MPI-everywhere approach

• MPI continues to evolve –MPI 4.0 Draft released at SC in Dallas earlier this month



Applications Still Mostly MPI-Everywhere

• “the larger jobs (> 4096 nodes) mostly use message passing with 
no threading.” – Blue Waters Workload study, 
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf

• Benefit of programmer-managed locality
• Memory performance nearly stagnant (will HBM save us?)

• Parallelism for performance implies locality must be managed effectively

• Benefit of a single programming system
• Often stated as desirable but with little evidence

• Common to mix Fortran, C, Python, etc.

• But…Interface between systems must work well, and often don’t
• E.g., for MPI+OpenMP, who manages the cores and how is that negotiated?

https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf


MPI is not a BSP system
• BSP = Bulk Synchronous Programming

• Programmers like the BSP model, adopting it even when not necessary (see “A Formal 
Approach to Detect Functionally Irrelevant Barriers in MPI Programs”)

• Unlike most programming models, designed with a performance model to encourage 
quantitative design in programs

• MPI makes it easy to emulate a BSP system
• Rich set of collectives, barriers, blocking operations

• MPI (even MPI-1) sufficient for dynamic adaptive programming
• The main issues are performance and “progress”
• Improving implementations and better HW support for integrated CPU/NIC coordination the 

answer



MPI is not only for Scientific Computing

and is close to native performance (geometric mean of 1.1-1.2X
for pagerank, BFS and collaborative filtering, and 2.5X for triangle
counting). (3) Giraph, on the other hand, is 2-3 orders of magnitude
slower than native code (4) CombBLAS and GraphLab perform
well on average. CombBLAS is very good for all algorithms except
for Triangle Counting, where it ran out of memory for real-world
inputs while computing the A2 matrix product. This is an express-
ibility problem in CombBLAS. GraphLab is 3-9X off from native
code, but performs reasonably consistently across algorithms. (5)
SociaLite performance is typically comparable to GraphLab (some-
times slightly better and sometimes slightly worse).

Finally, note that the trends on the synthetic dataset are in line
with real-world data, showing that our synthetic generators are ef-
fective in modeling real-world data.

5.3 Multi node results
We first show our scaling results of our frameworks on multiple

nodes. A major reason for using multiple nodes to process graph
data is to store the data in memory across the nodes. Hence a com-
mon use case is weak-scaling, where the data per node is kept con-
stant (and hence total data set size increases with number of nodes).
If we obtain perfect performance scaling, then the runtime should
be constant as we increase node count and data set size. In this
study, we include CombBLAS, GraphLab, SociaLite and Giraph
frameworks. Galois is currently only a single node framework and
we hence do not include results here.

Figures 4(a), 4(b), 4(c) and 4(d) show the results of multi node
runs on synthetically generated data sets for our benchmarks. The
data sizes are chosen so that all frameworks could complete without
running out of memory. Figure 5 shows the corresponding perfor-
mance results for larger real-world graphs. We run each algorithm
using one large dataset – we use the Twitter dataset [20] for Pager-
ank, BFS and Triangle Counting and the Yahoo Music KDDCup
dataset 2011 dataset for Collaborative Filtering [7].

Algorithm CombBLAS GraphLab SociaLite Giraph
PageRank 2.5 12.1 7.9 74.4

BFS 7.1 29.5 18.9 494.3
Coll. Filtering 3.5 7.1 7.0 87.9

Triangle Count. 13.1 3.6 1.5 54.4

Table 6: Summary of performance differences for multi node bench-
marks on different frameworks. Each entry is a slowdown factor from
native code, hence lower numbers indicate better performance.

As a convenient summary of performance, Table 6 shows the
geometric mean of the performance differences between our frame-
works combining real-world and synthetic datasets at different scales.
The table shows performance slowdowns of different frameworks
for specific algorithms compared to the native code for that algo-
rithm – hence lower numbers are better.

We note the following trends in our multi-node results. (1) There
is wide variability in our multi node results; as an example, na-
tive code performs anywhere between 2X to more than 560X better
than other frameworks on multi node runs (still up to 30X discount-
ing Giraph runtimes). (2) Giraph performs worse by far than other
frameworks and is frequently 2-3 orders magnitude off from na-
tive performance. (3) CombBLAS is competitive for Pagerank (ge-
omean of 2.5X native performance), BFS (7.1X off native) and Col-
laborative Filtering (3.5X off native). However, it performs poorly
on Triangle Counting due to extra computations performed as a re-
sult of framework expressibility issues. CombBLAS also runs out
of memory for the Twitter data set and hence this data point is not
plotted. (4) GraphLab performs well for Triangle Counting, due
to data structure optimizations performed for this case, namely the

1

10

100

at
io
n
�(s
ec
on

ds
)

Pagerank�(Weak�scaling,�128M�edges/node)

Native Combblas Graphlab Socialite Giraph

0.1

1

1 2 4 8 16 32 64

Ti
m
e�
pe

r�
it
er
a

Number�of�nodes
(a) PageRank

10

100

1000

ti
m
e�
(s
ec
on

ds
)

BFS�(Weak�scaling,�128M�undirected�edges/node)

Native Combblas Graphlab Socialite Giraph

0

1

1 2 4 8 16 32 64

O
ve
ra
ll�

Number�of�nodes
(b) Breadth-First Search

100

1000

10000

at
io
n
�(s
ec
on

ds
)

Collaborative�Filtering�(Weak�scaling,�250�M�edges/node)

Native Combblas Graphlab Socialite Giraph

1

10

1 2 4 8 16 32 64

Ti
m
e�
pe

r�
it
er
a

Number�of�nodes
(c) Collaborative Filtering

10

100

1000

m
e�
(s
ec
on

ds
)

Triangle�Counting�(Weak�scaling,�32M�edges/node)

Native Combblas Graphlab Socialite Giraph

0

1
1 2 4 8 16 32 64O

ve
ra
ll�
Ti
m

Number�of�nodes
(d) Triangle Counting

Figure 4: Performance results for different algorithms on large scale
synthetic graphs. The y-axis represents runtime in log-scale. We per-
form weak-scaling, where the amount of graph data per node is kept
constant, (a) 128 M edges/node for pagerank, (b) 128 M edges/node for
BFS, (c) 256M ratings/node for SGD, and (d) 32M edges/node for tri-
angle counting. Horizontal lines represent perfect scaling.

986

Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets 
Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park, M. Amber 
Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey

Factor of 
100!

MPI



MPI On Multicore Nodes
• MPI Everywhere (single core/single thread MPI processes) still common

• Easy to think about
• We have good performance models (or do we?)

• In reality, there are issues
• Memory per core declining

• Need to avoid large regions for data copies, e.g., halo cells
• MPI implementations could share internal table, data structures

• May only be important for extreme scale systems
• MPI Everywhere implicitly assume uniform communication cost model

• Limits algorithms explored, communication optimizations used

• Even here, there is much to do for
• Algorithm designers
• Application implementers
• MPI implementation developers

• One example: Can we use the single core performance model for MPI?



Rates Per MPI Process

• Ping-pong between 2 

nodes using 1-16 

cores on each node

• Top is BG/Q, bottom 

Cray XE6

• “Classic” model 

predicts a single curve 

– rates independent of 

the number of 

communicating 

processes

B
a

n
d

w
id

th
B

a
n

d
w

id
th



Why this Behavior?
• The T = s + r n model predicts the same performance independent 

of the number of communicating processes
• What is going on?
• How should we model the time for communication?

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NI
C

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NI
C



A Slightly Better Model
• For k processes sending messages, the sustained rate is

• min(RNIC-NIC, k RCORE-NIC)
• Thus

• T = s + k n/min(RNIC-NIC, k RCORE-NIC)
• Note if RNIC-NIC is very large (very fast network), this reduces to

• T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC

• This model is approximate; additional terms needed to capture 
effect of shared data paths in node, contention for shared 
resources

• But this new term is by far the dominant one



Comparison on Cray XE6

Measured Data Max-Rate Model

Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire 
the Ping Pong Test, W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16, 

https://doi.org/10.1145/2966884.2966919

https://doi.org/10.1145/2966884.2966919


MPI Virtual Process Topologies

• Lets user describe some common communication patterns

• Promises
• Better performance (with “reorder” flag true)
• Convenience in describing communication (at least with Cartesian process 

topologies)

• Reality
• “Reorder” for performance rarely implemented

• Few examples include NEC SX series and IBM BlueGene/L

• Challenge to implement in general
• Perfect mapping complex to achieve except in special cases

• And perfect is only WRT the abstraction, not the real system

• Rarely used in benchmarks/applications, so does not perform well, 
so is rarely used in benchmarks/applications



Example Cartesian Process Mesh

0 1

4 5

2 3

6 7

8 9

12 13

10 11

14 15

22



Example Cartesian Process Mesh – Four 
Nodes (Desired)

0 1

4 5

2 3

6 7

8 9

12 13

10 11

14 15

23



Example Cartesian Process Mesh – Four Nodes 
(Typical process mapping)

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

24



Can We Do Better?
• Hypothesis: A better process mapping within a node will provide 

significant benefits
• Ignore the internode network topology

• Vendors have argued that their network is fast enough that process mapping isn’t 
necessary

• They may be (almost) right – once data enters the network

• Idea for Cartesian Process Topologies
• Identify nodes (see MPI_Comm_split_type)
• Map processes within a node to minimize internode communication

• Trading intranode for internode communication
• Using Node Information to Implement MPI Cartesian Topologies, Gropp, William D., 

Proceedings of the 25th European MPI Users' Group Meeting, 18:1–18:9, 2018 
https://dl.acm.org/citation.cfm?id=3236377

https://dl.acm.org/citation.cfm?id=3236377


Algorithm

• Find the nodes

• MPI Provides a way to split a communicator based on a characteristic; 

MPI_COMM_TYPE_SHARED works on all systems

• Create communicators of (a) all processes on the same node 

(nodecomm) and (b) the 0th process from each node (leadercomm)

• All processes now know number of processes on each node and the number of 

nodes

• Form a 2 (or 3) level decomposition of the process mesh

• Factor dimensions and find consistent pair in each dimension

• From rank in nodecom and leadercomm, compute coordinates in node 

and among nodes. Gives new coordinate in mesh and hence new rank

• Use MPI_Comm_split on this rank to form new Cartesian communicator



Testing the Hypothesis: The Systems
• Blue Waters at Illinois

• Cray XE6/XK7
• 3D mesh (Gemini); service nodes embedded in mesh
• 22,636 XE6 nodes, each with 2 AMD Interlagos (and 4228 XK7 nodes)

• Theta at Argonne
• Cray XC40
• Dragonfly (Aires) interconnect
• 4392 Intel KNL nodes

• Piz Daint at Swiss National Supercomputing Center
• Cray XC50/XC40
• Dragonfly (Aires) interconnect
• 5320 XC50 and 1813 XC40 nodes



Comparing 2D Halo Exchanges

0.00E+00	

2.00E+08	

4.00E+08	

6.00E+08	

8.00E+08	

1.00E+09	

1.20E+09	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

2D	Halo	Exchange	

Cart-16	

Cart-32	

Cart-64	

Ncart-16	

Ncart-32	

Ncart-64	

0.00E+00	

1.00E+08	

2.00E+08	

3.00E+08	

4.00E+08	

5.00E+08	

6.00E+08	

7.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	P
ro
ce
ss
	

Message	Size	

2D	Halo	Exchange	

Cart-32x32	

Cart-64x32	

Ncart-32x32	

Ncart-64x32	

0.00E+00	

5.00E+07	

1.00E+08	

1.50E+08	

2.00E+08	

2.50E+08	

3.00E+08	

3.50E+08	

4.00E+08	

4.50E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

C-9x8x8	

C-12x12x8	

C-16x12x12	

C-18x16x16	

C-24x24x16	

C-32x24x24	

N-9x8x8	

N-12x12x8	

N-16x12x12	

N-18x16x16	

N-24x24x16	

N-32x24x24	

Blue Waters

Theta

Piz Daint



Comparing 3D Halo Exchanges

0.00E+00	

1.00E+08	

2.00E+08	

3.00E+08	

4.00E+08	

5.00E+08	

6.00E+08	

7.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

Cart-8	

Cart-16	

Ncart-8	

Ncart-16	

0.00E+00	
5.00E+07	
1.00E+08	
1.50E+08	
2.00E+08	
2.50E+08	
3.00E+08	
3.50E+08	
4.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	P
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

Cart-16x8x8	

Cart-16x16x8	

Ncart-16x8x8	

Ncart-16x16x8	

0.00E+00	

5.00E+07	

1.00E+08	

1.50E+08	

2.00E+08	

2.50E+08	

3.00E+08	

3.50E+08	

4.00E+08	

4.50E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

C-9x8x8	

C-12x12x8	

C-16x12x12	

C-18x16x16	

C-24x24x16	

C-32x24x24	

N-9x8x8	

N-12x12x8	

N-16x12x12	

N-18x16x16	

N-24x24x16	

N-32x24x24	

Blue Waters

Theta

Piz Daint



Comparing On- and Off-node Communication
• Number of intranode (on-

node) and internode (off-
node) communication 
partners per process

• 16 processes per node
• Size is Cartesian virtual 

process topology
• “Nodecart” mapping is 

significantly better
• In terms of reducing off-node 

communication in favor of 
on-node communication

On-node Off-node

Type Dim Size Min Max Avg Min Max Avg

Cart 2 128x128 1 2 1.88 2 3 2.12

Nodecart 2 128x128 2 4 3 0 2 1

Cart 3 32x32x16 1 2 1.88 4 5 4.12

Nodecart 3 32x32x16 3 4 3.5 2 3 2.5



How Important is Network Topology? 

• No answer yet, but…

• 432 nodes, 3D halo exchange on 
Blue Waters

• Requested a cube of nodes, used 
non-standard routines to implement 
mapping for network topology

• Part of study into scalable Krylov 
methods (looking to avoid the 
blocking MPI_Allreduce)

• Nodecart version provides most of 
the benefit with no need for network 
topology information

• Some (nontrivial) further benefit 
possible by taking network topology 
into account

• But the largest contribution comes 
from node-awareness

• Thanks to Paul Eller for these 
results



Dreams and Reality
• For codes that demand performance (and parallelism almost 

always implies that performance is important enough to justify the 
cost and complexity of parallelism), the dream is performance 
portability

• The reality is that most codes require specialized code to achieve 
high performance, even for non-parallel codes

• A typical refrain is “Let The Compiler Do It”
• This is the right answer …

• If only the compiler could do it
• Lets look at one of the simplest operations for a single core, dense matrix 

transpose
• Transpose involves only data motion; no floating point order to respect
• Only a double loop (fewer options to consider)



A Simple Example: Dense Matrix Transpose

• do j=1,n
do i=1,n

b(i,j) = a(j,i)
enddo

enddo
• No temporal locality (data used 

once)
• Spatial locality only if 

(words/cacheline) * n fits in cache
• Performance plummets when matrices no 

longer fit in cache

Perf limit based on 
STREAM

33



Blocking for Cache Helps
• do jj=1,n,stridej    

do ii=1,n,stridei
do j=jj,min(n,jj+stridej-1)

do i=ii,min(n,ii+stridei-1)
b(i,j) = a(j,i)

• Good choices of stridei and 
stridej can improve 
performance by a significant 
factor (nearly 3X)

• How sensitive is the 
performance to the choices of 
stridei and stridej?

1
2

3
456789

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 4 5 6 7 8 9

1800-2000

1600-1800

1400-1600

1200-1400

1000-1200

800-1000
600-800

400-600

200-400

0-200

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

1500-2000
1000-1500

500-1000

0-500

Simple, unblocked code compiled 
with O3 – 709MB/s



Sparse Matrix-Vector Product
• Common operation for optimal (in 

floating-point operations) solution 
of linear systems

• Sample code (common CSR 
format):
for row=1,n

m   = i[row] - i[row-1];
sum = 0;
for k=1,m

sum += *a++ * x[*j++];
y[i] = sum;

• Data structures are a[nnz], j[nnz], 
i[n], x[n], y[n]

• Insert one slide with sparse 
matrix, including the Gordon Bell 
award

Realistic Measures of  Peak Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0
100
200
300
400
500
600
700
800
900

SP Origin T3E Pentium Ultra II

Theoretical Peak
Oper. Issue Peak
Mem BW Peak
Observed

• Memory motion:
• nnz (sizeof(double) + sizeof(int)) + 

n (2*sizeof(double) + sizeof(int)) 
• Assume a perfect cache (never load same data 

twice)
• Computation

• nnz multiply-add (MA)

Results From 1999 SC Paper



Real Codes Include Performance Workarounds
• Code excerpt from 

VecMDot_Seq in PETSc
• Code is unrolled to provide 

performance
• Decision was made once (and 

verified as worth the effort at the 
time)

• Remains part of the code 
forevermore

• Unroll by 4 probably good for 
vectorization

• But not necessarily best for 
performance

• Does not address alignment

dvec2.c Sat Apr 29 13:29:17 2017 3
      sum2 += x0*PetscConj(yy2[0]); sum3 += x0*PetscConj(yy3[0]);
    case 0:
      x   += j_rem;
      yy0 += j_rem;
      yy1 += j_rem;
      yy2 += j_rem;
      yy3 += j_rem;
      j   -= j_rem;
      break;
    }
    while (j>0) {
      x0 = x[0];
      x1 = x[1];
      x2 = x[2];
      x3 = x[3];
      x += 4;

      sum0 += x0*PetscConj(yy0[0]) + x1*PetscConj(yy0[1]) + x2*PetscConj(yy0[2]) + x3*
PetscConj(yy0[3]); yy0+=4;
      sum1 += x0*PetscConj(yy1[0]) + x1*PetscConj(yy1[1]) + x2*PetscConj(yy1[2]) + x3*
PetscConj(yy1[3]); yy1+=4;
      sum2 += x0*PetscConj(yy2[0]) + x1*PetscConj(yy2[1]) + x2*PetscConj(yy2[2]) + x3*
PetscConj(yy2[3]); yy2+=4;
      sum3 += x0*PetscConj(yy3[0]) + x1*PetscConj(yy3[1]) + x2*PetscConj(yy3[2]) + x3*
PetscConj(yy3[3]); yy3+=4;
      j    -= 4;
    }
    z[0] = sum0;
    z[1] = sum1;
    z[2] = sum2;
    z[3] = sum3;
    z   += 4;
    i   -= 4;
    ierr = VecRestoreArrayRead(yy[0],&yy0);CHKERRQ(ierr);
    ierr = VecRestoreArrayRead(yy[1],&yy1);CHKERRQ(ierr);
    ierr = VecRestoreArrayRead(yy[2],&yy2);CHKERRQ(ierr);
    ierr = VecRestoreArrayRead(yy[3],&yy3);CHKERRQ(ierr);
    yy  += 4;
  }
  ierr = VecRestoreArrayRead(xin,&xbase);CHKERRQ(ierr);
  ierr = PetscLogFlops(PetscMax(nv*(2.0*xin->map->n-1),0.0));CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
#endif

/* ----------------------------------------------------------------------------*/
PetscErrorCode VecMTDot_Seq(Vec xin,PetscInt nv,const Vec yin[],PetscScalar *z)
{
  PetscErrorCode    ierr;
  PetscInt          n = xin->map->n,i,j,nv_rem,j_rem;
  PetscScalar       sum0,sum1,sum2,sum3,x0,x1,x2,x3;
  const PetscScalar *yy0,*yy1,*yy2,*yy3,*x,*xbase;
  Vec               *yy;

  PetscFunctionBegin;
  sum0 = 0.;
  sum1 = 0.;
  sum2 = 0.;

  i      = nv;
  nv_rem = nv&0x3;
  yy     = (Vec*)yin;
  j      = n;
  ierr   = VecGetArrayRead(xin,&xbase);CHKERRQ(ierr);

  x      = xbase;

  switch (nv_rem) {
  case 3:
    ierr = VecGetArrayRead(yy[0],&yy0);CHKERRQ(ierr);
    ierr = VecGetArrayRead(yy[1],&yy1);CHKERRQ(ierr);
    ierr = VecGetArrayRead(yy[2],&yy2);CHKERRQ(ierr);
    switch (j_rem=j&0x3) {
    case 3:
      x2    = x[2];
      sum0 += x2*yy0[2]; sum1 += x2*yy1[2];
      sum2 += x2*yy2[2];
    case 2:
      x1    = x[1];
      sum0 += x1*yy0[1]; sum1 += x1*yy1[1];
      sum2 += x1*yy2[1];
    case 1:
      x0    = x[0];
      sum0 += x0*yy0[0]; sum1 += x0*yy1[0];
      sum2 += x0*yy2[0];
    case 0:
      x   += j_rem;
      yy0 += j_rem;
      yy1 += j_rem;
      yy2 += j_rem;
      j   -= j_rem;
      break;
    }
    while (j>0) {
      x0 = x[0];
      x1 = x[1];
      x2 = x[2];
      x3 = x[3];
      x += 4;

      sum0 += x0*yy0[0] + x1*yy0[1] + x2*yy0[2] + x3*yy0[3]; yy0+=4;
      sum1 += x0*yy1[0] + x1*yy1[1] + x2*yy1[2] + x3*yy1[3]; yy1+=4;
      sum2 += x0*yy2[0] + x1*yy2[1] + x2*yy2[2] + x3*yy2[3]; yy2+=4;
      j    -= 4;
    }
    z[0] = sum0;
    z[1] = sum1;
    z[2] = sum2;
    ierr = VecRestoreArrayRead(yy[0],&yy0);CHKERRQ(ierr);
    ierr = VecRestoreArrayRead(yy[1],&yy1);CHKERRQ(ierr);
    ierr = VecRestoreArrayRead(yy[2],&yy2);CHKERRQ(ierr);
    break;
  case 2:
    ierr = VecGetArrayRead(yy[0],&yy0);CHKERRQ(ierr);
    ierr = VecGetArrayRead(yy[1],&yy1);CHKERRQ(ierr);
    switch (j_rem=j&0x3) {
    case 3:
      x2    = x[2];
      sum0 += x2*yy0[2]; sum1 += x2*yy1[2];
    case 2:
      x1    = x[1];
      sum0 += x1*yy0[1]; sum1 += x1*yy1[1];
    case 1:
      x0    = x[0];
      sum0 += x0*yy0[0]; sum1 += x0*yy1[0];
    case 0:
      x   += j_rem;
      yy0 += j_rem;
      yy1 += j_rem;



Practical Performance Optimization
• How to handle all the required optimizations together for many different 

scenarios?
• How to keep the code maintainable?
• How to find the best sequence of optimizations?

• Requirements
• ”Golden Copy” code runs without ICE – do not require “buy in” to the system
• Permit incremental adoption – apply ICE to subsets of the code, with subsets of 

tools
• Coexist with other tools
• Separate generation of optimized code from develop/run so that users do not 

need to install/run those tools.  Allow tuning runs on “related” systems (e.g., x86 
vectorization)

• Support ways to find the best sequence of optimizations



Illinois Coding Environment (ICE)
• One pragmatic approach

• Assumptions
• Fast code requires some expert intervention
• Can’t all be done at compile time
• Original code (in standard language) is 

maintained as reference
• Can add information about computation to 

code
• Center for Exascale Simulation of Plasma-

Coupled Combustion
• http://xpacc.illinois.edu
• ICE used to support “Golden Copy” code –

version natural for computational scientist, 
without code optimizations

• Used with primary simulation code, 
PlasCom2

• Approach
• Annotations provide additional descriptive 

information
• Block name, expected loop sizes, etc.

• Source-to-source transformations used to create 
code for compiler

• Exploit tool ecosystem – interface to existing tools
• Original “Golden Copy” used for development, correctness 

checks
• Database used to manage platform-specific 

versions; detect changes that invalidate 
transformed versions

• Don’t need to install/run transformation tools

http://xpacc.illinois.edu/


ICE
• Source code is annotated to define code 

regions
• Optimization file notation orchestrates 

the use of the optimization tools on the 
code regions defined

• Interface provides operations on the 
Source code to invoke optimizations 
through:

• Adding pragmas
• Adding labels
• Replacing code regions

• These operations are used by the 
interface to plug-in optimization tools

• Most tools are source-to-source
• tools must understand output of previous 

tools



Matrix Multiplication Example

—
# Built command before compilation
prebuildcmd:

# Compilation command before tests
buildcmd: make realclean;  make

#Command call for each test
runcmd: ./mmc

matmul:
- Pips.tiling+:

loop: 1
factor: [2..512, 2..512, 2..512]

- Pips.tiling+:
loop: 4
factor: [8, 16, 8]

- OpenMP.OMPFor+:
loop: 1

…

#pragma @ICE loop=matmul
for (i=0; i<matSize; i++)

for (j=0; j<matSize; j++) {
for (k=0; k<matSize; k++) {

matC[i][j] += matA[i][k] * 
matB[k][j];

}
}

}

#pragma omp parallel for schedule(static,1) private(i_t, k_t, j_t,i_t_t, k_t_t
,j_t_t, i, k,j)

for (i_t = 0; i_t <= 127; i_t += 1)
for (k_t = 0; k_t <= 127; k_t += 1)
for (j_t = 0; j_t <= 3; j_t += 1)
for (i_t_t = 4 * i_t; i_t_t <= ((4 * i_t) + 3); i_t_t += 1)
for (k_t_t = 2 * k_t; k_t_t <= ((2 * k_t) + 1); k_t_t += 1)
for (j_t_t = 32 * j_t; j_t_t <= ((32 * j_t) + 31); j_t_t += 1)
for (i = 4 * i_t_t; i <= ((4 * i_t_t) + 3); i += 1)
for (k = 8 * k_t_t; k <= ((8 * k_t_t) + 7); k += 1)
for (j = 16 * j_t_t; j <= ((16 * j_t_t) + 15); j += 1)
matC[i][j] += matA[i][k] * matB[k][j];



Matrix Multiplication Results
• Two levels of tiling + OpenMP
• Original version: 78,825 ms
• 98x speedup (1 core)
• 694x speedup (10 cores)
• Avg 2.2x speedup over Pluto

2048^2 ELEMENTS
ICC 17.0.1

INTEL E5-2660 V3
PLUTO PET BRANCH



Often Overlooked - IO Performance Often Terrible

• Applications just assume I/O is 
awful and can’t be fixed

• Even simple patterns not 
handled well

• Example: read or write a 
submesh of an N-dim mesh at 
an arbitrary offset in file

• Needed to read input mesh in 
PlasComCM.  Total I/O time less 
than 10% for long science runs 
(that is < 15 hours)

• But long init phase makes 
debugging, development hard

• Meshio library built to match 
application needs

• Replaces many lines in app with a 
single collective I/O call

• Meshio
https://github.com/oshkosher/meshio

• Work of Ed Karrels

Original Meshio Speedup

PlasComCM 4500 1 4500

MILC 750 15.6 48

https://github.com/oshkosher/meshio


What Are Some of the Problems?
• POSIX I/O has a strong consistency model

• Hard to cache effectively
• Applications need to transfer block-aligned and sized data to achieve performance
• Complexity adds to fragility of file system, the major cause of failures on large scale HPC systems

• Files as I/O objects add metadata “choke points”
• Serialize operations, even with “independent” files
• Do you know about O_NOATIME ?

• Burst buffers will not fix these problems – must change the semantics of the operations
• “Big Data” file systems have very different consistency models and metadata structures, 

designed for their application needs
• Why doesn’t HPC?

• There have been some efforts, such as PVFS, but the requirement for POSIX has held up progress

• Real problem for HPC – user’s “execution model” for I/O far from reality



Remember
• POSIX is not just “open, close, read, and write” (and seek …)

• That’s (mostly) syntax

• POSIX includes strong semantics about concurrent accesses
• Even if such accesses never occur

• POSIX also requires consistent metadata
• Access and update times, size, …



No Science Application Code Needs POSIX I/O

• Many are single reader or single writer

• Eventual consistency is fine

• Some are disjoint reader or writer

• Eventual consistency is fine, but must handle non-block-aligned writes

• Some applications use the file system as a simple data base

• Use a data base – we know how to make these fast and reliable

• Some applications use the file system to implement interprocess mutex

• Use a mutex service – even MPI point-to-point

• A few use the file system as a bulletin board

• May be better off using RDMA

• Only need release or eventual consistency

• Correct Fortran codes do not require POSIX

• Standard requires unique open, enabling correct and aggressive client and/or server-side caching

• MPI-IO would be better off without POSIX

• Does not and never has required POSIX



The really hard part – Combining internode and 
Intranode programming systems
• Most common approach likely to be MPI + X
• What To Use as X in MPI + X?

• Threads and Tasks
• OpenMP, pthreads, TBB, OmpSs, StarPU, …

• Streams (esp for accelerators)
• OpenCL, OpenACC, CUDA, …

• Alternative distributed memory system
• UPC, CAF, Global Arrays, GASPI/GPI

• MPI shared memory



What are the Issues?
• Isn’t the beauty of MPI + X that MPI and X can be learned (by 

users) and implemented (by developers) independently?
• Yes (sort of) for users
• No for developers

• MPI and X must either partition or share resources
• User must not blindly oversubscribe
• Developers must negotiate



More Effort needed on the “+”

• MPI+X won’t be enough for Exascale if the work for “+” is 

not done very well

• Some of this may be language specification:

• User-provided guidance on resource allocation, e.g., MPI_Info hints; thread-based 

endpoints, new APIs

• Some is developer-level standardization

• A simple example is the MPI ABI specification – users should ignore but benefit from 

developers supporting



Summary

• Challenges for Exascale programming are not just in scale
• Need to achieve extreme power and cost efficiencies puts large demands on the 

effectiveness of single core (whatever that means) and single node performance

• MPI remains the most viable internode programming system
• Supports a multiple parallel programming models, including one-sided and shared 

memory

• Contains features for “programming in the large” (tools, libraries, frameworks) that 
make it particularly appropriate for the internode system

• But some useful features still missing, especially WRT notification, and 
implementations don’t realize available performance

• Intranode programming for performance still an unsolved problem
• Lots of possibilities, but adoption remains a problem

• That points to unsolved problems, particularly in integration with large, multilingual codes

• Composition (e.g., MPI+X) is a practical approach
• But requires close attention to “+” 



Thanks!
• Philipp Samfass, Ed Karrels, Amanda Bienz, Paul Eller, Thiago Teixeira
• Luke Olson, David Padua
• Rajeev Thakur for runs on Theta
• Torsten Hoefler and Timo Schneider for runs on Piz Daint

• Department of Energy, National Nuclear Security Administration, under Award 
Number DE-NA0002374

• ExxonMobile Upstream Research
• Blue Waters Sustained Petascale Project, supported by the National Science 

Foundation (award number OCI 07–25070) and the state of Illinois.
• Argonne Leadership Computing Facility


